학습률 향상을 위한 딥러닝 기반 맞춤형 문제 추천 알고리즘

최근 딥러닝 기술의 발전과 함께 추천 시스템의 영역도 다양해졌다. 본 논문은 학습률 향상을 위한 알고리즘을 연구하였으며 Word2Vec 모델의 성능 특징과 비교를 통해 단어에 따른 유의어 결과를 연구하였다. 문제 추천 알고리즘 은 Word2Vec 모델의 특징인 텍스트 간 의미 반영 및 유사성 테스트를 통해 표현된 값으로 구현됐다. Word2Vec 의 학습 결과를 통해 텍스트 유사도 값을 이용해 문제 추천을 진행하였으며 유사도가 높은 문제를 추천할 수 있다. 실험 과정에서 정량적인 데이터양으로는 정확성이 낮아지는 결과를 보았으며 데이...

Full description

Saved in:
Bibliographic Details
Published inThe journal of the institute of internet, broadcasting and communication : JIIBC Vol. 22; no. 5; pp. 171 - 176
Main Authors 임민아, 황승연, 김정준
Format Journal Article
LanguageKorean
Published 31.10.2022
Subjects
Online AccessGet full text
ISSN2289-0238
2289-0246

Cover

More Information
Summary:최근 딥러닝 기술의 발전과 함께 추천 시스템의 영역도 다양해졌다. 본 논문은 학습률 향상을 위한 알고리즘을 연구하였으며 Word2Vec 모델의 성능 특징과 비교를 통해 단어에 따른 유의어 결과를 연구하였다. 문제 추천 알고리즘 은 Word2Vec 모델의 특징인 텍스트 간 의미 반영 및 유사성 테스트를 통해 표현된 값으로 구현됐다. Word2Vec 의 학습 결과를 통해 텍스트 유사도 값을 이용해 문제 추천을 진행하였으며 유사도가 높은 문제를 추천할 수 있다. 실험 과정에서 정량적인 데이터양으로는 정확성이 낮아지는 결과를 보았으며 데이터 셋의 데이터양이 방대할수록 정확성을 높일 수 있음을 확인하였다.
Bibliography:KISTI1.1003/JNL.JAKO202231159470541
ISSN:2289-0238
2289-0246