Abiotic Stress Signaling and Responses in Plants

As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress sig...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 167; no. 2; pp. 313 - 324
Main Author Zhu, Jian-Kang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population. Understanding the core set of pathways that allow plants to cope with abiotic stresses such as salinity, drought, and extreme temperatures can allow us to improve crop sustainability and food security for a growing world population.
AbstractList As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.
As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population. Understanding the core set of pathways that allow plants to cope with abiotic stresses such as salinity, drought, and extreme temperatures can allow us to improve crop sustainability and food security for a growing world population.
As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.
Author Zhu, Jian-Kang
AuthorAffiliation 1 Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China
2 Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
AuthorAffiliation_xml – name: 2 Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
– name: 1 Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China
Author_xml – sequence: 1
  givenname: Jian-Kang
  surname: Zhu
  fullname: Zhu, Jian-Kang
  email: jkzhu@purdue.edu
  organization: Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27716505$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LAzEQhoNU7If-AQ-yRy-7TrKbTRZEKMUvKChWzyHdna0p26RutgX_vSmtoifnMgPz8s7LM0PSs84iIecUEgo0v1omJTZNwsKcgEyAFUdkQKEQcUYF65EBQMFimYusT4beLwFAcs5PSJ8JQXMOfEBgPDeuM2U061r0PpqZhdWNsYtI2yp6Qb921qOPjI2eG207f0qOa914PDv0EXm7u32dPMTTp_vHyXgaY5azLkbQeU2Z5FBloXPIJJvXuoKKlikWnGKNHGrBmYSaYl4IXcqapSBEFYLV6Yjc7H3Xm_kKqxJt1-pGrVuz0u2nctqovxtr3tXCbRWnkNECgsHlwaB1Hxv0nVoZvwOmLbqNVyzgSGUo8a-UypSnReDLg_Tid6yfPN9Eg-B6L8AAZ2uwVb40aEusTItlpypnFAW1e6Baqt0RtXugAqnCgfQL5JGOlA
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2016.08.029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 324
ExternalDocumentID PMC5104190
27716505
S0092867416310807
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM059138
– fundername: NIGMS NIH HHS
  grantid: R01 GM070795
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
AAEDT
AAHBH
AALRI
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAYWO
ABDGV
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AIGII
AKBMS
AKYEP
APXCP
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-e462t-e0a6f12850d4f1250482bfad0d1c3e951efe50f75280f1e697ac8f23077d505f3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:18:22 EDT 2025
Fri Jul 11 06:51:38 EDT 2025
Mon Jul 21 11:47:07 EDT 2025
Thu Apr 03 06:56:04 EDT 2025
Fri Feb 23 02:30:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e462t-e0a6f12850d4f1250482bfad0d1c3e951efe50f75280f1e697ac8f23077d505f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867416310807
PMID 27716505
PQID 1835390295
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5104190
proquest_miscellaneous_2000388887
proquest_miscellaneous_1835390295
pubmed_primary_27716505
elsevier_sciencedirect_doi_10_1016_j_cell_2016_08_029
PublicationCentury 2000
PublicationDate 2016-10-06
PublicationDateYYYYMMDD 2016-10-06
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Arnadóttir, Chalfie (bib2) 2010; 39
Fuglsang, Guo, Cuin, Qiu, Song, Kristiansen, Bych, Schulz, Shabala, Schumaker (bib17) 2007; 19
Xiao, Savchenko, Baidoo, Chehab, Hayden, Tolstikov, Corwin, Kliebenstein, Keasling, Dehesh (bib72) 2012; 149
Ng, De Clercq, Van Aken, Law, Ivanova, Willems, Giraud, Van Breusegem, Whelan (bib48) 2014; 7
Teige, Scheikl, Eulgem, Dóczi, Ichimura, Shinozaki, Dangl, Hirt (bib64) 2004; 15
Brandt, Munemasa, Wang, Nguyen, Yong, Yang, Poretsky, Belknap, Waadt, Aleman (bib4) 2015; 4
Hua, Wang, He, Liao, Duan, Zhu, Guo, Chen, Gong (bib34) 2012; 24
Quan, Lin, Mendoza, Zhang, Cao, Yang, Shang, Chen, Pardo, Guo (bib52) 2007; 19
Rodriguez, Gonzalez-Guzman, Diaz, Rodrigues, Izquierdo-Garcia, Peirats-Llobet, Fernandez, Antoni, Fernandez, Marquez (bib54) 2014; 26
Swarbreck, Colaço, Davies (bib62) 2013; 163
Thewes (bib66) 2014; 13
Kumar, Wigge (bib37) 2010; 140
Hardie, Schaffer, Brunet (bib28) 2016; 26
Voxeur, Höfte (bib67) 2016
Saruhashi, Kumar Ghosh, Arai, Ishizaki, Hagiwara, Komatsu, Shiwa, Izumikawa, Yoshikawa, Umezawa (bib57) 2015; 112
Ma, Dai, Xu, Luo, Zheng, Zeng, Pan, Lin, Liu, Zhang (bib43) 2015; 160
Furihata, Maruyama, Fujita, Umezawa, Yoshida, Shinozaki, Yamaguchi-Shinozaki (bib21) 2006; 103
Dubiella, Seybold, Durian, Komander, Lassig, Witte, Schulze, Romeis (bib13) 2013; 110
Miller, Schlauch, Tam, Cortes, Torres, Shulaev, Dangl, Mittler (bib47) 2009; 2
Walter, Ron (bib69) 2011; 334
Park, Fung, Nishimura, Jensen, Fujii, Zhao, Lumba, Santiago, Rodrigues, Chow (bib51) 2009; 324
Zhang, Zhu, Zhang, Li, Yan, Wang, Wang, Welti, Zhang, Wang (bib77) 2009; 21
Guo, Halfter, Ishitani, Zhu (bib26) 2001; 13
Zhou, Lin, Chen, Becker, Yang, Zhao, Kudla, Schumaker, Guo (bib79) 2014; 26
Boudsocq, Barbier-Brygoo, Laurière (bib3) 2004; 279
Scharf, Berberich, Ebersberger, Nover (bib58) 2012; 1819
Liu, Howell (bib41) 2016; 211
He, Duan, Hua, Fan, Wang, Liu, Chen, Han, Qu, Gong (bib29) 2012; 24
Ramel, Birtic, Ginies, Soubigou-Taconnat, Triantaphylidès, Havaux (bib53) 2012; 109
Tang, Zhao, Garcia, Kleist, Yang, Zhang, Luan (bib63) 2015; 112
Fedoroff, Battisti, Beachy, Cooper, Fischhoff, Hodges, Knauf, Lobell, Mazur, Molden (bib16) 2010; 327
Du, Lin, Chen, Wu, Zhang, Fuglsang, Palmgren, Wu, Guo (bib12) 2011; 156
Fujii, Zhu (bib18) 2009; 106
Hohmann (bib31) 2002; 66
Wang, Du, Hou, Zhao, Hsu, Yuan, Zhu, Tao, Song, Zhu (bib71) 2015; 112
Aleman, Yazaki, Lee, Takahashi, Kim, Li, Kinoshita, Ecker, Schroeder (bib1) 2016; 6
Castillo, Lozano-Juste, González-Guzmán, Rodriguez, Rodriguez, León (bib5) 2015; 8
Drerup, Schlücking, Hashimoto, Manishankar, Steinhorst, Kuchitsu, Kudla (bib11) 2013; 6
Mäser, Eckelman, Vaidyanathan, Horie, Fairbairn, Kubo, Yamagami, Yamaguchi, Nishimura, Uozumi (bib44) 2002; 531
Norén, Kindgren, Stachula, Rühl, Eriksson, Hurry, Strand (bib49) 2016; 171
Mignolet-Spruyt, Xu, Idänheimo, Hoeberichts, Mühlenbock, Brosché, Van Breusegem, Kangasjärvi (bib46) 2016; 67
Chinnusamy, Zhu, Zhu (bib6) 2007; 12
Dong, Zolman, Bartel, Lee, Stevenson, Agarwal, Zhu (bib10) 2009; 2
Zhu, Shabala, Cuin, Huang, Zhou, Munns, Shabala (bib83) 2016; 67
Grondin, Rodrigues, Verdoucq, Merlot, Leonhardt, Maurel (bib25) 2015; 27
Ding, Li, Zhang, Xie, Gong, Yang (bib9) 2015; 32
Ohta, Guo, Halfter, Zhu (bib50) 2003; 100
Melcher, Ng, Zhou, Soon, Xu, Suino-Powell, Park, Weiner, Fujii, Chinnusamy (bib45) 2009; 462
Zhu (bib81) 2000; 124
Geiger, Scherzer, Mumm, Marten, Ache, Matschi, Liese, Wellmann, Al-Rasheid, Grill (bib23) 2010; 107
Zhu (bib82) 2002; 53
Li, Li, Gao, Chinnusamy, Bressan, Wang, Zhu, Wu, Liu (bib39) 2012; 54
Yu, An, Li (bib75) 2014; 33
Endler, Kesten, Schneider, Zhang, Ivakov, Froehlich, Funke, Persson (bib14) 2015; 162
Sangwan, Orvar, Beyerly, Hirt, Dhindsa (bib56) 2002; 31
Xu, Li, Chen, Wang, Liu, He, Wu (bib73) 2006; 125
Yuan, Yang, Xue, Kong, Ye, Li, Zhang, Theprungsirikul, Shrift, Krichilsky (bib76) 2014; 514
Li, Waadt, Schroeder (bib40) 2016; 14
Gonzalez-Guzman, Pizzio, Antoni, Vera-Sirera, Merilo, Bassel, Fernández, Holdsworth, Perez-Amador, Kollist, Rodriguez (bib24) 2012; 24
Tenhaken (bib65) 2014; 5
de Zelicourt, Colcombet, Hirt (bib8) 2016; 21
Zhu, Lee, Dellinger, Cui, Zhang, Wu, Nothnagel, Zhu (bib80) 2010; 63
Hou, Ufer, Bartels (bib32) 2016; 39
Estavillo, Crisp, Pornsiriwong, Wirtz, Collinge, Carrie, Giraud, Whelan, David, Javot (bib15) 2011; 23
Lee, Lee, Xiong, Zhu (bib38) 2002; 14
Wagner, Przybyla, Op den Camp, Kim, Landgraf, Lee, Würsch, Laloi, Nater, Hideg, Apel (bib68) 2004; 306
Fujii, Chinnusamy, Rodrigues, Rubio, Antoni, Park, Cutler, Sheen, Rodriguez, Zhu (bib19) 2009; 462
Fujii, Verslues, Zhu (bib20) 2011; 108
Ma, Szostkiewicz, Korte, Moes, Yang, Christmann, Grill (bib42) 2009; 324
Choi, Toyota, Kim, Hilleary, Gilroy (bib7) 2014; 111
Jendretzki, Wittland, Wilk, Straede, Heinisch (bib36) 2011; 90
Wang, Xue, Batelli, Lee, Hou, Van Oosten, Zhang, Tao, Zhu (bib70) 2013; 110
Geiger, Scherzer, Mumm, Stange, Marten, Bauer, Ache, Matschi, Liese, Al-Rasheid (bib22) 2009; 106
Shi, Quintero, Pardo, Zhu (bib59) 2002; 14
Rus, Lee, Muñoz-Mayor, Sharkhuu, Miura, Zhu, Bressan, Hasegawa (bib55) 2004; 136
Yang, Shad Ali, Yang, Du, Reddy, Poovaiah (bib74) 2010; 5
Jammes, Song, Shin, Munemasa, Takeda, Gu, Cho, Lee, Giordo, Sritubtim (bib35) 2009; 106
Sirichandra, Gu, Hu, Davanture, Lee, Djaoui, Valot, Zivy, Leung, Merlot, Kwak (bib60) 2009; 583
Soon, Ng, Zhou, West, Kovach, Tan, Suino-Powell, He, Xu, Chalmers (bib61) 2012; 335
Hedrich (bib30) 2012; 92
Hrabak, Chan, Gribskov, Harper, Choi, Halford, Kudla, Luan, Nimmo, Sussman (bib33) 2003; 132
Hamilton, Jensen, Maksaev, Katims, Sherp, Haswell (bib27) 2015; 350
Zhao, Xing, Wang, Hou, Gao, Wang, Duan, Zhu, Zhu (bib78) 2014; 7
20192782 - Annu Rev Biophys. 2010;39:111-37
25709610 - Front Plant Sci. 2015 Jan 07;5:771
26163575 - Plant Cell. 2015 Jul;27(7):1945-54
20409003 - Plant J. 2010 Jul 1;63(1):128-40
15539603 - Science. 2004 Nov 12;306(5699):1183-5
23335733 - Mol Plant. 2013 Mar;6(2):559-69
27192441 - PLoS Biol. 2016 May 18;14(5):e1002461
19910530 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20520-5
26329583 - Sci Signal. 2015 Sep 01;8(392):ra89
26192964 - Elife. 2015 Jul 20;4:null
15292193 - J Biol Chem. 2004 Oct 1;279(40):41758-66
15225555 - Mol Cell. 2004 Jul 2;15(1):141-52
11884687 - Plant Cell. 2002 Feb;14(2):465-77
22116026 - Science. 2012 Jan 6;335(6064):85-8
19690149 - Plant Cell. 2009 Aug;21(8):2357-77
15347798 - Plant Physiol. 2004 Sep;136(1):2500-11
26540727 - Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):E6388-96
25465408 - Plant Cell. 2014 Dec;26(12):4802-20
23073631 - Physiol Rev. 2012 Oct;92(4):1777-811
26616193 - Trends Cell Biol. 2016 Mar;26(3):190-201
17449811 - Plant Cell. 2007 Apr;19(4):1415-31
19716822 - FEBS Lett. 2009 Sep 17;583(18):2982-6
16446457 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1988-93
12805596 - Plant Physiol. 2003 Jun;132(2):666-80
26990454 - New Phytol. 2016 Jul;211(2):418-28
22251383 - J Integr Plant Biol. 2012 Mar;54(3):180-8
25646412 - Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3134-9
27143288 - Trends Plant Sci. 2016 Aug;21(8):677-85
19898420 - Nature. 2009 Dec 3;462(7273):602-8
22033015 - Biochim Biophys Acta. 2012 Feb;1819(2):104-19
23650383 - Proc Natl Acad Sci U S A. 2013 May 21;110(21):8744-9
22116877 - Science. 2011 Nov 25;334(6059):1081-6
26510494 - Plant Cell Environ. 2016 May;39(5):1029-48
19407143 - Science. 2009 May 22;324(5930):1064-8
12221975 - Annu Rev Plant Biol. 2002;53:247-73
24894996 - Sci Signal. 2014 Jun 03;7(328):ra53
24097244 - Plant Cell Rep. 2014 Feb;33(2):203-14
16814720 - Cell. 2006 Jun 30;125(7):1347-60
20150494 - Science. 2010 Feb 12;327(5967):833-4
19955405 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21425-30
12040128 - Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72
20724845 - Plant Signal Behav. 2010 Aug;5(8):991-4
26976816 - J Exp Bot. 2016 Jun;67(13):3831-44
26343580 - Cell. 2015 Sep 10;162(6):1353-64
25550508 - Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):613-8
19420218 - Proc Natl Acad Sci U S A. 2009 May 19;106(20):8380-5
17855156 - Trends Plant Sci. 2007 Oct;12(10):444-51
27208227 - Plant Physiol. 2016 Jun;171(2):1392-406
22431637 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5535-40
26945038 - Glycobiology. 2016 Sep;26(9):950-960
21220313 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1717-22
22730405 - Plant Cell. 2012 Jun;24(6):2546-61
21685179 - Plant Physiol. 2011 Aug;156(4):2235-43
24711293 - Mol Plant. 2014 Jul;7(7):1075-93
22128124 - Plant Cell. 2011 Nov;23 (11):3992-4012
19407142 - Science. 2009 May 22;324(5930):1068-71
17483306 - Plant Cell. 2007 May;19(5):1617-34
25162526 - Nature. 2014 Oct 16;514(7522):367-71
22739828 - Plant Cell. 2012 Jun;24(6):2483-96
19690331 - Sci Signal. 2009 Aug 18;2(84):ra45
24659330 - Plant Cell. 2014 Mar;26(3):1166-82
22652060 - Plant Cell. 2012 May;24(5):1815-33
24706854 - Proc Natl Acad Sci U S A. 2014 Apr 29;111(17 ):6497-502
12207652 - Plant J. 2002 Sep;31(5):629-38
21640429 - Eur J Cell Biol. 2011 Sep;90(9):740-4
24681686 - Eukaryot Cell. 2014 Jun;13(6):694-705
20079334 - Cell. 2010 Jan 8;140(1):136-47
25669882 - Dev Cell. 2015 Feb 9;32(3):278-89
23776212 - Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11205-10
26585227 - J Exp Bot. 2016 Feb;67(3):835-44
19924127 - Nature. 2009 Dec 3;462(7273):660-4
11080272 - Plant Physiol. 2000 Nov;124(3):941-8
11402167 - Plant Cell. 2001 Jun;13(6):1383-400
20385816 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):8023-8
26494758 - Science. 2015 Oct 23;350(6259):438-41
27357749 - Sci Rep. 2016 Jun 30;6:28941
22726439 - Cell. 2012 Jun 22;149(7):1525-35
14504388 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11771-6
12417304 - FEBS Lett. 2002 Nov 6;531(2):157-61
12084824 - Plant Cell. 2002 Jun;14(6):1235-51
19529827 - Mol Plant. 2009 Jan;2(1):59-72
25728666 - Cell. 2015 Mar 12;160(6):1209-21
23860348 - Plant Physiol. 2013 Oct;163(2):514-22
References_xml – volume: 324
  start-page: 1068
  year: 2009
  end-page: 1071
  ident: bib51
  article-title: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins
  publication-title: Science
– volume: 106
  start-page: 8380
  year: 2009
  end-page: 8385
  ident: bib18
  article-title: Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 108
  start-page: 1717
  year: 2011
  end-page: 1722
  ident: bib20
  article-title: Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 583
  start-page: 2982
  year: 2009
  end-page: 2986
  ident: bib60
  article-title: Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase
  publication-title: FEBS Lett.
– volume: 140
  start-page: 136
  year: 2010
  end-page: 147
  ident: bib37
  article-title: H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis
  publication-title: Cell
– volume: 125
  start-page: 1347
  year: 2006
  end-page: 1360
  ident: bib73
  article-title: A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in
  publication-title: Cell
– volume: 53
  start-page: 247
  year: 2002
  end-page: 273
  ident: bib82
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 462
  start-page: 602
  year: 2009
  end-page: 608
  ident: bib45
  article-title: A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors
  publication-title: Nature
– volume: 103
  start-page: 1988
  year: 2006
  end-page: 1993
  ident: bib21
  article-title: Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 334
  start-page: 1081
  year: 2011
  end-page: 1086
  ident: bib69
  article-title: The unfolded protein response: from stress pathway to homeostatic regulation
  publication-title: Science
– volume: 24
  start-page: 1815
  year: 2012
  end-page: 1833
  ident: bib29
  article-title: DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling
  publication-title: Plant Cell
– volume: 15
  start-page: 141
  year: 2004
  end-page: 152
  ident: bib64
  article-title: The MKK2 pathway mediates cold and salt stress signaling in
  publication-title: Mol. Cell
– volume: 26
  start-page: 4802
  year: 2014
  end-page: 4820
  ident: bib54
  article-title: C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis
  publication-title: Plant Cell
– volume: 7
  start-page: ra53
  year: 2014
  ident: bib78
  article-title: The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes
  publication-title: Sci. Signal.
– volume: 12
  start-page: 444
  year: 2007
  end-page: 451
  ident: bib6
  article-title: Cold stress regulation of gene expression in plants
  publication-title: Trends Plant Sci.
– volume: 112
  start-page: E6388
  year: 2015
  end-page: E6396
  ident: bib57
  article-title: Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 991
  year: 2010
  end-page: 994
  ident: bib74
  article-title: Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants
  publication-title: Plant Signal. Behav.
– volume: 39
  start-page: 111
  year: 2010
  end-page: 137
  ident: bib2
  article-title: Eukaryotic mechanosensitive channels
  publication-title: Annu. Rev. Biophys.
– volume: 171
  start-page: 1392
  year: 2016
  end-page: 1406
  ident: bib49
  article-title: Circadian and plastid signaling pathways are integrated to ensure correct expression of the CBF and COR genes during photoperiodic growth
  publication-title: Plant Physiol.
– volume: 106
  start-page: 21425
  year: 2009
  end-page: 21430
  ident: bib22
  article-title: Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 106
  start-page: 20520
  year: 2009
  end-page: 20525
  ident: bib35
  article-title: MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 110
  start-page: 8744
  year: 2013
  end-page: 8749
  ident: bib13
  article-title: Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 1415
  year: 2007
  end-page: 1431
  ident: bib52
  article-title: SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress
  publication-title: Plant Cell
– volume: 136
  start-page: 2500
  year: 2004
  end-page: 2511
  ident: bib55
  article-title: AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta
  publication-title: Plant Physiol.
– volume: 107
  start-page: 8023
  year: 2010
  end-page: 8028
  ident: bib23
  article-title: Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: e03599
  year: 2015
  ident: bib4
  article-title: Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells
  publication-title: eLife
– volume: 26
  start-page: 190
  year: 2016
  end-page: 201
  ident: bib28
  article-title: AMPK: an energy-sensing pathway with multiple inputs and outputs
  publication-title: Trends Cell Biol.
– volume: 21
  start-page: 2357
  year: 2009
  end-page: 2377
  ident: bib77
  article-title: Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis
  publication-title: Plant Cell
– volume: 8
  start-page: ra89
  year: 2015
  ident: bib5
  article-title: Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants
  publication-title: Sci. Signal.
– volume: 14
  start-page: e1002461
  year: 2016
  ident: bib40
  article-title: Release of GTP exchange factor mediated down-regulation of abscisic acid signal transduction through ABA-induced rapid degradation of RopGEFs
  publication-title: PLoS Biol.
– volume: 39
  start-page: 1029
  year: 2016
  end-page: 1048
  ident: bib32
  article-title: Lipid signalling in plant responses to abiotic stress
  publication-title: Plant Cell Environ.
– volume: 124
  start-page: 941
  year: 2000
  end-page: 948
  ident: bib81
  article-title: Genetic analysis of plant salt tolerance using Arabidopsis
  publication-title: Plant Physiol.
– volume: 162
  start-page: 1353
  year: 2015
  end-page: 1364
  ident: bib14
  article-title: A mechanism for sustained cellulose synthesis during salt stress
  publication-title: Cell
– year: 2016
  ident: bib67
  article-title: Cell wall integrity signaling in plants: “To grow or not to grow that’s the question.”
  publication-title: Glycobiology.
– volume: 23
  start-page: 3992
  year: 2011
  end-page: 4012
  ident: bib15
  article-title: Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis
  publication-title: Plant Cell
– volume: 31
  start-page: 629
  year: 2002
  end-page: 638
  ident: bib56
  article-title: Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways
  publication-title: Plant J.
– volume: 335
  start-page: 85
  year: 2012
  end-page: 88
  ident: bib61
  article-title: Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases
  publication-title: Science
– volume: 100
  start-page: 11771
  year: 2003
  end-page: 11776
  ident: bib50
  article-title: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 28941
  year: 2016
  ident: bib1
  article-title: An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: A putative link of ABA and JA signaling
  publication-title: Sci Rep
– volume: 324
  start-page: 1064
  year: 2009
  end-page: 1068
  ident: bib42
  article-title: Regulators of PP2C phosphatase activity function as abscisic acid sensors
  publication-title: Science
– volume: 163
  start-page: 514
  year: 2013
  end-page: 522
  ident: bib62
  article-title: Plant calcium-permeable channels
  publication-title: Plant Physiol.
– volume: 21
  start-page: 677
  year: 2016
  end-page: 685
  ident: bib8
  article-title: The role of MAPK modules and ABA during abiotic stress signaling
  publication-title: Trends Plant Sci.
– volume: 109
  start-page: 5535
  year: 2012
  end-page: 5540
  ident: bib53
  article-title: Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 149
  start-page: 1525
  year: 2012
  end-page: 1535
  ident: bib72
  article-title: Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes
  publication-title: Cell
– volume: 14
  start-page: 465
  year: 2002
  end-page: 477
  ident: bib59
  article-title: The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants
  publication-title: Plant Cell
– volume: 110
  start-page: 11205
  year: 2013
  end-page: 11210
  ident: bib70
  article-title: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 211
  start-page: 418
  year: 2016
  end-page: 428
  ident: bib41
  article-title: Managing the protein folding demands in the endoplasmic reticulum of plants
  publication-title: New Phytol.
– volume: 2
  start-page: 59
  year: 2009
  end-page: 72
  ident: bib10
  article-title: Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling
  publication-title: Mol. Plant
– volume: 1819
  start-page: 104
  year: 2012
  end-page: 119
  ident: bib58
  article-title: The plant heat stress transcription factor (Hsf) family: structure, function and evolution
  publication-title: Biochim. Biophys. Acta
– volume: 5
  start-page: 771
  year: 2014
  ident: bib65
  article-title: Cell wall remodeling under abiotic stress
  publication-title: Front. Plant Sci.
– volume: 13
  start-page: 694
  year: 2014
  end-page: 705
  ident: bib66
  article-title: Calcineurin-Crz1 signaling in lower eukaryotes
  publication-title: Eukaryot. Cell
– volume: 306
  start-page: 1183
  year: 2004
  end-page: 1185
  ident: bib68
  article-title: The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana
  publication-title: Science
– volume: 26
  start-page: 1166
  year: 2014
  end-page: 1182
  ident: bib79
  article-title: Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins
  publication-title: Plant Cell
– volume: 24
  start-page: 2546
  year: 2012
  end-page: 2561
  ident: bib34
  article-title: A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis
  publication-title: Plant Cell
– volume: 24
  start-page: 2483
  year: 2012
  end-page: 2496
  ident: bib24
  article-title: Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid
  publication-title: Plant Cell
– volume: 90
  start-page: 740
  year: 2011
  end-page: 744
  ident: bib36
  article-title: How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity
  publication-title: Eur. J. Cell Biol.
– volume: 63
  start-page: 128
  year: 2010
  end-page: 140
  ident: bib80
  article-title: A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis
  publication-title: Plant J.
– volume: 462
  start-page: 660
  year: 2009
  end-page: 664
  ident: bib19
  article-title: In vitro reconstitution of an abscisic acid signalling pathway
  publication-title: Nature
– volume: 27
  start-page: 1945
  year: 2015
  end-page: 1954
  ident: bib25
  article-title: Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation
  publication-title: Plant Cell
– volume: 6
  start-page: 559
  year: 2013
  end-page: 569
  ident: bib11
  article-title: The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF
  publication-title: Mol. Plant
– volume: 54
  start-page: 180
  year: 2012
  end-page: 188
  ident: bib39
  article-title: ROP11 GTPase negatively regulates ABA signaling by protecting ABI1 phosphatase activity from inhibition by the ABA receptor RCAR1/PYL9 in Arabidopsis
  publication-title: J. Integr. Plant Biol.
– volume: 7
  start-page: 1075
  year: 2014
  end-page: 1093
  ident: bib48
  article-title: Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress
  publication-title: Mol. Plant
– volume: 112
  start-page: 3134
  year: 2015
  end-page: 3139
  ident: bib63
  article-title: Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  start-page: 278
  year: 2015
  end-page: 289
  ident: bib9
  article-title: OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in
  publication-title: Dev. Cell
– volume: 531
  start-page: 157
  year: 2002
  end-page: 161
  ident: bib44
  article-title: Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1
  publication-title: FEBS Lett.
– volume: 14
  start-page: 1235
  year: 2002
  end-page: 1251
  ident: bib38
  article-title: A mitochondrial complex I defect impairs cold-regulated nuclear gene expression
  publication-title: Plant Cell
– volume: 327
  start-page: 833
  year: 2010
  end-page: 834
  ident: bib16
  article-title: Radically rethinking agriculture for the 21st century
  publication-title: Science
– volume: 19
  start-page: 1617
  year: 2007
  end-page: 1634
  ident: bib17
  article-title: Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein
  publication-title: Plant Cell
– volume: 66
  start-page: 300
  year: 2002
  end-page: 372
  ident: bib31
  article-title: Osmotic stress signaling and osmoadaptation in yeasts
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 67
  start-page: 835
  year: 2016
  end-page: 844
  ident: bib83
  article-title: Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat
  publication-title: J. Exp. Bot.
– volume: 111
  start-page: 6497
  year: 2014
  end-page: 6502
  ident: bib7
  article-title: Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 156
  start-page: 2235
  year: 2011
  end-page: 2243
  ident: bib12
  article-title: Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis
  publication-title: Plant Physiol.
– volume: 92
  start-page: 1777
  year: 2012
  end-page: 1811
  ident: bib30
  article-title: Ion channels in plants
  publication-title: Physiol. Rev.
– volume: 13
  start-page: 1383
  year: 2001
  end-page: 1400
  ident: bib26
  article-title: Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance
  publication-title: Plant Cell
– volume: 67
  start-page: 3831
  year: 2016
  end-page: 3844
  ident: bib46
  article-title: Spreading the news: subcellular and organellar reactive oxygen species production and signalling
  publication-title: J. Exp. Bot.
– volume: 132
  start-page: 666
  year: 2003
  end-page: 680
  ident: bib33
  article-title: The Arabidopsis CDPK-SnRK superfamily of protein kinases
  publication-title: Plant Physiol.
– volume: 2
  start-page: ra45
  year: 2009
  ident: bib47
  article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli
  publication-title: Sci. Signal.
– volume: 160
  start-page: 1209
  year: 2015
  end-page: 1221
  ident: bib43
  article-title: COLD1 confers chilling tolerance in rice
  publication-title: Cell
– volume: 514
  start-page: 367
  year: 2014
  end-page: 371
  ident: bib76
  article-title: OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis
  publication-title: Nature
– volume: 279
  start-page: 41758
  year: 2004
  end-page: 41766
  ident: bib3
  article-title: Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana
  publication-title: J. Biol. Chem.
– volume: 350
  start-page: 438
  year: 2015
  end-page: 441
  ident: bib27
  article-title: Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination
  publication-title: Science
– volume: 112
  start-page: 613
  year: 2015
  end-page: 618
  ident: bib71
  article-title: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 33
  start-page: 203
  year: 2014
  end-page: 214
  ident: bib75
  article-title: The CBL-CIPK network mediates different signaling pathways in plants
  publication-title: Plant Cell Rep.
– reference: 21220313 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1717-22
– reference: 15539603 - Science. 2004 Nov 12;306(5699):1183-5
– reference: 24681686 - Eukaryot Cell. 2014 Jun;13(6):694-705
– reference: 25728666 - Cell. 2015 Mar 12;160(6):1209-21
– reference: 25709610 - Front Plant Sci. 2015 Jan 07;5:771
– reference: 22730405 - Plant Cell. 2012 Jun;24(6):2546-61
– reference: 15347798 - Plant Physiol. 2004 Sep;136(1):2500-11
– reference: 26990454 - New Phytol. 2016 Jul;211(2):418-28
– reference: 22128124 - Plant Cell. 2011 Nov;23 (11):3992-4012
– reference: 11402167 - Plant Cell. 2001 Jun;13(6):1383-400
– reference: 12805596 - Plant Physiol. 2003 Jun;132(2):666-80
– reference: 19690149 - Plant Cell. 2009 Aug;21(8):2357-77
– reference: 12040128 - Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72
– reference: 22431637 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5535-40
– reference: 20724845 - Plant Signal Behav. 2010 Aug;5(8):991-4
– reference: 23073631 - Physiol Rev. 2012 Oct;92(4):1777-811
– reference: 22652060 - Plant Cell. 2012 May;24(5):1815-33
– reference: 21640429 - Eur J Cell Biol. 2011 Sep;90(9):740-4
– reference: 23650383 - Proc Natl Acad Sci U S A. 2013 May 21;110(21):8744-9
– reference: 22116026 - Science. 2012 Jan 6;335(6064):85-8
– reference: 23776212 - Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11205-10
– reference: 12207652 - Plant J. 2002 Sep;31(5):629-38
– reference: 26510494 - Plant Cell Environ. 2016 May;39(5):1029-48
– reference: 26540727 - Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):E6388-96
– reference: 25550508 - Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):613-8
– reference: 19924127 - Nature. 2009 Dec 3;462(7273):660-4
– reference: 27208227 - Plant Physiol. 2016 Jun;171(2):1392-406
– reference: 17855156 - Trends Plant Sci. 2007 Oct;12(10):444-51
– reference: 20150494 - Science. 2010 Feb 12;327(5967):833-4
– reference: 20192782 - Annu Rev Biophys. 2010;39:111-37
– reference: 19898420 - Nature. 2009 Dec 3;462(7273):602-8
– reference: 19529827 - Mol Plant. 2009 Jan;2(1):59-72
– reference: 19716822 - FEBS Lett. 2009 Sep 17;583(18):2982-6
– reference: 24894996 - Sci Signal. 2014 Jun 03;7(328):ra53
– reference: 12084824 - Plant Cell. 2002 Jun;14(6):1235-51
– reference: 23335733 - Mol Plant. 2013 Mar;6(2):559-69
– reference: 11080272 - Plant Physiol. 2000 Nov;124(3):941-8
– reference: 19910530 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20520-5
– reference: 27192441 - PLoS Biol. 2016 May 18;14(5):e1002461
– reference: 26343580 - Cell. 2015 Sep 10;162(6):1353-64
– reference: 26585227 - J Exp Bot. 2016 Feb;67(3):835-44
– reference: 15225555 - Mol Cell. 2004 Jul 2;15(1):141-52
– reference: 19407143 - Science. 2009 May 22;324(5930):1064-8
– reference: 24711293 - Mol Plant. 2014 Jul;7(7):1075-93
– reference: 12417304 - FEBS Lett. 2002 Nov 6;531(2):157-61
– reference: 22739828 - Plant Cell. 2012 Jun;24(6):2483-96
– reference: 21685179 - Plant Physiol. 2011 Aug;156(4):2235-43
– reference: 12221975 - Annu Rev Plant Biol. 2002;53:247-73
– reference: 20385816 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):8023-8
– reference: 19420218 - Proc Natl Acad Sci U S A. 2009 May 19;106(20):8380-5
– reference: 25162526 - Nature. 2014 Oct 16;514(7522):367-71
– reference: 24097244 - Plant Cell Rep. 2014 Feb;33(2):203-14
– reference: 17483306 - Plant Cell. 2007 May;19(5):1617-34
– reference: 27357749 - Sci Rep. 2016 Jun 30;6:28941
– reference: 22033015 - Biochim Biophys Acta. 2012 Feb;1819(2):104-19
– reference: 20409003 - Plant J. 2010 Jul 1;63(1):128-40
– reference: 26945038 - Glycobiology. 2016 Sep;26(9):950-960
– reference: 17449811 - Plant Cell. 2007 Apr;19(4):1415-31
– reference: 26976816 - J Exp Bot. 2016 Jun;67(13):3831-44
– reference: 26494758 - Science. 2015 Oct 23;350(6259):438-41
– reference: 25465408 - Plant Cell. 2014 Dec;26(12):4802-20
– reference: 19955405 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21425-30
– reference: 11884687 - Plant Cell. 2002 Feb;14(2):465-77
– reference: 24659330 - Plant Cell. 2014 Mar;26(3):1166-82
– reference: 16446457 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1988-93
– reference: 14504388 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11771-6
– reference: 15292193 - J Biol Chem. 2004 Oct 1;279(40):41758-66
– reference: 27143288 - Trends Plant Sci. 2016 Aug;21(8):677-85
– reference: 20079334 - Cell. 2010 Jan 8;140(1):136-47
– reference: 22116877 - Science. 2011 Nov 25;334(6059):1081-6
– reference: 26163575 - Plant Cell. 2015 Jul;27(7):1945-54
– reference: 19690331 - Sci Signal. 2009 Aug 18;2(84):ra45
– reference: 23860348 - Plant Physiol. 2013 Oct;163(2):514-22
– reference: 22251383 - J Integr Plant Biol. 2012 Mar;54(3):180-8
– reference: 25646412 - Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3134-9
– reference: 26616193 - Trends Cell Biol. 2016 Mar;26(3):190-201
– reference: 24706854 - Proc Natl Acad Sci U S A. 2014 Apr 29;111(17 ):6497-502
– reference: 25669882 - Dev Cell. 2015 Feb 9;32(3):278-89
– reference: 19407142 - Science. 2009 May 22;324(5930):1068-71
– reference: 16814720 - Cell. 2006 Jun 30;125(7):1347-60
– reference: 22726439 - Cell. 2012 Jun 22;149(7):1525-35
– reference: 26329583 - Sci Signal. 2015 Sep 01;8(392):ra89
– reference: 26192964 - Elife. 2015 Jul 20;4:null
SSID ssj0008555
Score 2.6967852
SecondaryResourceType review_article
Snippet As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve...
As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress signaling pathways involve...
SourceID pubmedcentral
proquest
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 313
SubjectTerms abiotic stress
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
Chloroplasts - enzymology
Cold-Shock Response
crops
Crops, Agricultural - enzymology
Crops, Agricultural - genetics
Crops, Agricultural - physiology
drought
Droughts
Endoplasmic Reticulum Stress
energy
Energy Metabolism
food security
Food Supply
gene expression
Gene Expression Regulation, Plant
Heat-Shock Response
homeostasis
mammals
Mitochondria - enzymology
Osmotic Pressure
Peroxisomes - enzymology
protein kinases
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
proteins
Salinity
Signal Transduction
soil salinity
stress tolerance
Stress, Physiological - genetics
Stress, Physiological - physiology
sustainable agriculture
temperature
yeasts
Title Abiotic Stress Signaling and Responses in Plants
URI https://dx.doi.org/10.1016/j.cell.2016.08.029
https://www.ncbi.nlm.nih.gov/pubmed/27716505
https://www.proquest.com/docview/1835390295
https://www.proquest.com/docview/2000388887
https://pubmed.ncbi.nlm.nih.gov/PMC5104190
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqSkgsiDfhpSCxRk0d20nGUlFVSDBQKnWz8jiXMKQVTQf-PXdOUiiIhSxRYg_xnX3-Lv7ujrFbXxrITQAeem05JdUOvERC5AXABWToZGf2RPfxSY2n4mEmZx02bGNhiFbZ2P7apltr3bzpNdLsLYuCYnxjHimLKIgoRxHlgYhsEN_sbmONIynrKgYxrnzs3QTO1Bwv-jlO9C5l03hamPm1I_1GnD-Jk992otE-22sgpDuov_KAdaA8ZDt1UcmPI-YP0mKBTe7EhoG4k2JOYLucu0mZu881JxZWblG6VLGoWh2z6ej-ZTj2mroIHgjFKw_8RBncV6SfC7xLXIQ8NUnu5_0sAIRMYED6JpQ88k0fVBwmWWSI8R3mCHhMcMK65aKEM-aidDJa16gpECAk-jN5phSEWSpUJJXDZCsQvaUWjRZXtwyxN02C1CRITUUteeywm1Z6GucrNSclLNYrjSZE4hTgsfy7D7cHlniFDjutJa6XdfINzUP08HAUDgu3dLHpQPmyt1vK4tXmzUbzIxD_nP9zTBdsl54sk09dsm71voYrRCRVem2n3CdTp96l
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4CMEF8WY8i8S1oqRN0h4HAm2wcWBD2i3qWgfKoUNsHPj32GkHDMSFXirVObRO7HxuPtsAp4G0mNsQfYraci6qHfqpxNgPUUSYUZCduRPd7p1qPUQ3AzmYg8tpLgzTKmvfX_l0563rJ2e1Ns9eioJzfBMRK4comCin52GR0IBm62wPLj7dcSxl1cYgIdOn4XXmTEXy4r_jzO9Sro6nw5lfW9JvyPmTOfltK7peg9UaQ3rN6jXXYQ7LDViqukq-b0LQHBYjEnk9lwfi9YpHRtvlo5eWuXdfkWJx7BWlxy2LJuMteLi-6l-2_Loxgo-REhMfg1RZ2lhkkEd0l2SFYmjTPMjPsxAJM6FFGVgtRRzYc1SJTrPYMuVb54R4bLgNC-WoxF3wSDsZGzZNFUYYSQpo8kwp1NkwUrFUDZBThZiZeTHkcs2UIvZsWJGGFWm4q6VIGnAy1Z6hBcvitMTR29iQD5G0BkQi_x4j3IklXboBO5XGzUtVfcMITSEefUUD9MxcfA7ggtmzkrJ4coWzyf9EBID2_vlNx7Dc6nc7ptO-u92HFZY4Wp86gIXJ6xseEjyZDI_c8vsAkTXhxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abiotic+Stress+Signaling+and+Responses+in+Plants&rft.jtitle=Cell&rft.au=Zhu%2C+Jian-Kang&rft.date=2016-10-06&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=167&rft.issue=2&rft.spage=313&rft_id=info:doi/10.1016%2Fj.cell.2016.08.029&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon