On the Solution of the Smoluchowski Coagulation Equation Using a Conservative Discretization Approach (CDA)

The continuous Smoluchowski coagulation equation, which is known as the population balance equation (PBE) for particle coagulation, is a nonlinear integro-partial differential equation with no general analytical solution. In this work, we are concerned with extending our discrete formulation of the...

Full description

Saved in:
Bibliographic Details
Published inComputer Aided Chemical Engineering Vol. 46; pp. 691 - 696
Main Authors Attarakih, Menwer, Bart, Hans-Jörg
Format Book Chapter
LanguageEnglish
Published 2019
Subjects
Online AccessGet full text
ISBN9780128186343
0128186348
ISSN1570-7946
DOI10.1016/B978-0-12-818634-3.50116-8

Cover

Loading…
Abstract The continuous Smoluchowski coagulation equation, which is known as the population balance equation (PBE) for particle coagulation, is a nonlinear integro-partial differential equation with no general analytical solution. In this work, we are concerned with extending our discrete formulation of the PBE for particle breakage using a Conservative Discretization Approach (CDA) (Attarakih et al., 2004) to solve the Smoluchowski coagulation equation coupled with particle growth. The method is based on introducing auxiliary functions to modify the discrete loss and formation terms in the discrete PBE. These are then uniquely determined by exactly reproducing two arbitrary chosen integral quantities from the continuous PBE. The CDA is validated using many test cases with known analytical solutions including coupled particle coagulation and growth dynamics as a simplified model for a batch crystallizer. The discrete approximate solutions for the number concentration function is found to converge with an order O(1/M) where M is the number of grid points.
AbstractList The continuous Smoluchowski coagulation equation, which is known as the population balance equation (PBE) for particle coagulation, is a nonlinear integro-partial differential equation with no general analytical solution. In this work, we are concerned with extending our discrete formulation of the PBE for particle breakage using a Conservative Discretization Approach (CDA) (Attarakih et al., 2004) to solve the Smoluchowski coagulation equation coupled with particle growth. The method is based on introducing auxiliary functions to modify the discrete loss and formation terms in the discrete PBE. These are then uniquely determined by exactly reproducing two arbitrary chosen integral quantities from the continuous PBE. The CDA is validated using many test cases with known analytical solutions including coupled particle coagulation and growth dynamics as a simplified model for a batch crystallizer. The discrete approximate solutions for the number concentration function is found to converge with an order O(1/M) where M is the number of grid points.
Author Bart, Hans-Jörg
Attarakih, Menwer
Author_xml – sequence: 1
  givenname: Menwer
  surname: Attarakih
  fullname: Attarakih, Menwer
  email: attarakih@yahoo.com
  organization: The University of Jordan, Scjool of Engineering, Department of Chemical Engineering, 11942 Amman, Jordan
– sequence: 2
  givenname: Hans-Jörg
  surname: Bart
  fullname: Bart, Hans-Jörg
  organization: The University of Jordan, Scjool of Engineering, Department of Chemical Engineering, 11942 Amman, Jordan
BookMark eNotkE1PwkAQhjcRExH5D40nPSzudNv9OGLBj4SEg3LeLNsprGAX24KJv96VOpd5530mM8l7TQZ1qJGQW2ATYCAeHrVUlFFIqQIleEb5JGcAgqoLMo6MQdoDPiBDyCWjUmfiiozb9oMxlkqdaymHZLesk26LyVvYHzsf6iRU_fwZDbcN3-3OJ0Wwm-Penvn869iLVevrTWIjrFtsTtE8YTLzrWuw8z_9zvRwaIJ12-SumE3vb8hlZfctjv_7iKye5u_FC10sn1-L6YJimvOOihIdwhrAodZR2VjSaoFCAXOyUlpmolQWeJlxm3O7lhkrIQXFqigtH5FZfxfjk5PHxrTOY-2w9A26zpTBG2DmL0fzl6OJOjV9XIabc45G8V_r_GoB
ContentType Book Chapter
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DOI 10.1016/B978-0-12-818634-3.50116-8
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 696
ExternalDocumentID B9780128186343501168
GroupedDBID 20A
38.
AAAAS
AABBV
AAJFB
AAKZG
AAWMN
AAXUO
AAZNM
ABGTF
ABGWT
ABJDO
ABLXK
ABMAC
ABQQC
ACDGK
ACKCA
ADCEY
ADNDI
ADNKK
ADVEM
AEIOE
AEIUV
AEPKO
AEYWH
AFNOJ
AIJLT
AJMPQ
ALBLE
ALMA_UNASSIGNED_HOLDINGS
AQBRY
AUEHQ
BAPMM
BBABE
BMNAY
BMYCL
BVXGA
CZZ
DKEWE
GEOUK
HGY
IOT
KQHZQ
SDK
ID FETCH-LOGICAL-e253t-6dece1b11ce99ce1aaaa7a96e6810c7f89746d8a13d43a53ab740d12180fb74a3
ISBN 9780128186343
0128186348
ISSN 1570-7946
IngestDate Fri Feb 23 02:47:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Smoluchowski
CDA
Population Balances
Coagulation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e253t-6dece1b11ce99ce1aaaa7a96e6810c7f89746d8a13d43a53ab740d12180fb74a3
PageCount 6
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_0_12_818634_3_50116_8
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationTitle Computer Aided Chemical Engineering
PublicationYear 2019
SSID ssj0002795977
ssib045323371
Score 1.955629
Snippet The continuous Smoluchowski coagulation equation, which is known as the population balance equation (PBE) for particle coagulation, is a nonlinear...
SourceID elsevier
SourceType Publisher
StartPage 691
SubjectTerms CDA
Coagulation
Population Balances
Smoluchowski
Title On the Solution of the Smoluchowski Coagulation Equation Using a Conservative Discretization Approach (CDA)
URI https://dx.doi.org/10.1016/B978-0-12-818634-3.50116-8
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZge2l7oS_1QSsfOFCtTJPYcZwDh92WarUSRRUg7S2yEwdtEUFAEFJ_PeNX1tvHoWUPkWNlHcufMx6PZ75BaIdlTMHC15KmFglhui5JSescbmG1SFoFYtPEOx9-47NTNl_ki5Up20aX9Gqv_vnHuJL_QRXqAFcTJfsPyA6NQgWUAV-4AsJw_UX5XTezOl4Bn49hPFk2xkwbIv8jhsEBzb6X16AqWhPKoe7uVi65U-lidmawZJG5OTafcs955SfSkXOEDPaz4FRwfAEVIDvvbs6XIFXkmc8DNj64cuzhY-eNIG1OUGf6NU5KS5BTuvfRn0YJdiFd5jD5yyTYJbwZwkQ-DWaIsBu1p3KCU8e7FARqkRBDYh9LXBaLTO6ydfnVl7v8tr8JdmdjmDo-4BSEuH0RoXu5OUkiYrWcDU6G07Uu2efEJtosBBuhR5P598VxEDwspxkNvIA_7GlsaXj5LNeu77-lY_KNCc_cNDQe2GxT_unvXYzUnUiFOdlCT01YCzbxJtD9Z2hDd8_Rk2iyvEDnRx0GaHGAGl-27j6CGkdQ4wA1tlBjiWOo8TrUOECNdwHojy_R6deDk88z4pNxEJ3ltCe80bVOVZrWuiyhJOFXyJJrQ2hXF62AjSlvhExpw6jMqVQFS5oUNEj44gsm6Ss06i47_RrhtFWCiSRvG9YwJYtStYJLxmEvbbTf7A3aDwNVeT3Q6XcVzIYquCWaga6gnFVuoCta2YGuxNsH_v8derya4dto1F_f6vegevbqg58494gCde8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Attarakih%2C+Menwer&rft.au=Bart%2C+Hans-J%C3%B6rg&rft.atitle=On+the+Solution+of+the+Smoluchowski+Coagulation+Equation+Using+a+Conservative+Discretization+Approach+%28CDA%29&rft.date=2019-01-01&rft.isbn=9780128186343&rft.issn=1570-7946&rft.volume=46&rft.spage=691&rft.epage=696&rft_id=info:doi/10.1016%2FB978-0-12-818634-3.50116-8&rft.externalDocID=B9780128186343501168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon