Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization

AbstractPurposeTo compare the diagnostic accuracy and explainability of a new Vision Transformer deep learning technique, Data-efficient image Transformer (DeiT), and Resnet-50, trained on fundus photographs from the Ocular Hypertension Treatment Study (OHTS) to detect primary open-angle glaucoma (P...

Full description

Saved in:
Bibliographic Details
Published inOphthalmology science (Online) Vol. 3; no. 1; p. 100233
Main Authors Fan, Rui, Alipour, Kamran, Bowd, Christopher, Christopher, Mark, Brye, Nicole, Proudfoot, James A, Goldbaum, Michael H, Belghith, Akram, Girkin, Christopher A, Fazio, Massimo A, Liebmann, Jeffrey M, Weinreb, Robert N, Pazzani, Michael, Kriegman, David, Zangwill, Linda M
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…