Rainbow forest consisting of short paths in Kn
Recently, the anti-Ramsey problem for disjoint union of graphs in complete graphs Kn received much attention. In particular, several researchers focused on the problem for graphs consisting of small components and in particular the problem for several forests have been investigated well. Notice that...
Saved in:
Published in | Discrete Applied Mathematics Vol. 376; pp. 260 - 269 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, the anti-Ramsey problem for disjoint union of graphs in complete graphs Kn received much attention. In particular, several researchers focused on the problem for graphs consisting of small components and in particular the problem for several forests have been investigated well. Notice that previous results were always proved for large enough n. In this paper, we continue the work in this direction and consider the problem for general kP3∪tP2. We refine the bound on n and obtain the precise value of AR(Kn,kP3∪tP2) for k≥2, t≥k2−k+42 and n≥3k+2t+1. |
---|---|
AbstractList | Recently, the anti-Ramsey problem for disjoint union of graphs in complete graphs Kn received much attention. In particular, several researchers focused on the problem for graphs consisting of small components and in particular the problem for several forests have been investigated well. Notice that previous results were always proved for large enough n. In this paper, we continue the work in this direction and consider the problem for general kP3∪tP2. We refine the bound on n and obtain the precise value of AR(Kn,kP3∪tP2) for k≥2, t≥k2−k+42 and n≥3k+2t+1. |
Author | Jie, Qing He, Menglu Jin, Zemin |
Author_xml | – sequence: 1 givenname: Qing surname: Jie fullname: Jie, Qing email: 2782193314@qq.com – sequence: 2 givenname: Menglu surname: He fullname: He, Menglu email: 1378196448@qq.com – sequence: 3 givenname: Zemin surname: Jin fullname: Jin, Zemin email: zeminjin@zjnu.cn |
BookMark | eNotj81KxDAUhbMYwZnRB3CXF2i8N22vLa5k8GdwQBAFdyFtbp0MmkgT9PXNoKvDOYvv8K3EIsTAQlwgKASky4Ny9lNp0K0CUtDgQizLTpXG7u1UrFI6AACWthTq2fowxB85xZlTlmMMyafsw7uMk0z7OGf5ZfM-SR_kYzgTJ5P9SHz-n2vxenf7snmodk_3283NrmINfa46Isf6qgHnyNZ1S0xop2lk17q-by1abEfsyDbOMrtGu37QdqKaCDscqF6L6z8ul5Nvz7NJo-dQAH7mMRsXvUEwR11zMEXXHHUNkCm69S-t703D |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DOI | 10.1016/j.dam.2025.06.041 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EndPage | 269 |
ExternalDocumentID | S0166218X25003609 |
GroupedDBID | -~X ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE |
ID | FETCH-LOGICAL-e209t-866de2740dd6a3356e61affced5d995a1a15c186a4daeed42d9b2af6366181b63 |
IEDL.DBID | .~1 |
ISSN | 0166-218X |
IngestDate | Sat Aug 02 17:11:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Linear forest Rainbow graph Anti-Ramsey number |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-e209t-866de2740dd6a3356e61affced5d995a1a15c186a4daeed42d9b2af6366181b63 |
PageCount | 10 |
ParticipantIDs | elsevier_sciencedirect_doi_10_1016_j_dam_2025_06_041 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-15 |
PublicationDateYYYYMMDD | 2025-12-15 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Discrete Applied Mathematics |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Haas, Young (b7) 2012; 312 Jin, Gu (b11) 2024; 44 Jin, Jie, Cao (b12) 2024; 474 Bialostocki, Gilboa, Roditty (b1) 2015; 123 Chen, Li, Tu (b2) 2009; 309 Gilboa, Roditty (b6) 2016; 32 Schiermeyer (b13) 2004; 286 Fang, Győri, Lu, Xiao (b4) 2021; 291 Erdős, Simonovits, Sós (b3) 1975; vol. 10 Jahanbekam, West (b9) 2016; 82 Xie, Yuan (b14) 2020; 343 Fujita, Kaneko, Schiermeyer, Suzuki (b5) 2009; 16 He, Jin (b8) 2025; 361 Jie, Jin (b10) 2025 |
References_xml | – volume: 361 start-page: 523 year: 2025 end-page: 536 ident: b8 article-title: Rainbow short linear forests in edge-colored complete graph publication-title: Discrete Appl. Math. – volume: 44 start-page: 953 year: 2024 end-page: 970 ident: b11 article-title: Rainbow disjoint union of clique and matching in edge-colored complete graph publication-title: Discuss. Math. Graph Theory – volume: 123 start-page: 41 year: 2015 end-page: 53 ident: b1 article-title: Anti-Ramsey numbers of small graphs publication-title: Ars Combin. – volume: 16 start-page: #R51 year: 2009 ident: b5 article-title: A rainbow publication-title: Electron. J. Combin. – volume: 32 start-page: 649 year: 2016 end-page: 662 ident: b6 article-title: Anti-Ramsey numbers of graphs with small connected components publication-title: Graphs Combin. – volume: 291 start-page: 129 year: 2021 end-page: 142 ident: b4 article-title: On the anti-Ramsey number of forests publication-title: Discrete Appl. Math. – volume: 474 year: 2024 ident: b12 article-title: Rainbow disjoint union of publication-title: Appl. Math. Comput. – volume: 312 start-page: 933 year: 2012 end-page: 937 ident: b7 article-title: The anti-Ramsey number of perfect matching publication-title: Discrete Math. – volume: vol. 10 start-page: 633 year: 1975 end-page: 643 ident: b3 publication-title: Anti-Ramsey Theorems, Infinite and Finite Sets, Vol. II – volume: 343 year: 2020 ident: b14 article-title: On the anti-Ramsey numbers of linear forests publication-title: Discrete Math. – volume: 286 start-page: 157 year: 2004 end-page: 162 ident: b13 article-title: Rainbow numbers for matchings and complete graphs publication-title: Discrete Math. – volume: 309 start-page: 3370 year: 2009 end-page: 3380 ident: b2 article-title: Complete solution for the rainbow numbers of matchings publication-title: Discrete Math. – year: 2025 ident: b10 article-title: Anti-Ramsey number of union of 5-path and matching publication-title: Discuss. Math Graph Theory – volume: 82 start-page: 75 year: 2016 end-page: 89 ident: b9 article-title: Anti-Ramsey problems for publication-title: J. Graph Theory |
SSID | ssj0001218 ssj0000186 ssj0006644 |
Score | 2.4320114 |
Snippet | Recently, the anti-Ramsey problem for disjoint union of graphs in complete graphs Kn received much attention. In particular, several researchers focused on the... |
SourceID | elsevier |
SourceType | Publisher |
StartPage | 260 |
SubjectTerms | Anti-Ramsey number Linear forest Rainbow graph |
Title | Rainbow forest consisting of short paths in Kn |
URI | https://dx.doi.org/10.1016/j.dam.2025.06.041 |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZSkD4imelQdWt3Viu8lYVaBC1S5QqVvkpyhDikhZ-e2cU6eUFWVKpETxOb7vi--7O4B76YfCZ07Tgcs9RQgwNHO43LV0eFhhrAlbA7O5nCz481IsWzBucmGCrDL6_q1Pr711vNKP1ux_rFb9FyQrEgFqiSCObrhO4uN8GL7y3jfbKyEV6qN1mk2X3xgDYi2Plb8lDc9pYp61-suqkKaeiLq4Z2gXv4OqPfh5PIajyBvJaPtqJ9By5SkcznZFV6sz6MVYDUEeir6emKB9rYKsmaw9qd6QaJPQgLgiq5JMy3NYPD68jic0tkOgLhnkG5pJaR3-RA6slSpNBdqSKe_RUMLmuVBMMWFwtIpbhcjHE5vrRHmZIgQjOZXpBbTLdekugSgnhXaZGzKN_EMhxcBlz1UilPbGpPwKeDPc4s9sFOhoi0YY9l6glYpgpSKI4zi7_t9tN9AJZ0EkwsQttDefX-4OoX6ju_VcduFg9DSdzH8A8iGl0w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZaAMiKd444HVbZPYbjKiiqrQx0IrdYscP0QZUkTKym_nLk1KWVG2RI7is3zfF993dwAPyvekj13Guy7xHCHA8Njhds-Uw8tKYw0dDUymajgXLwu5aEC_zoUhWWXl-zc-vfTW1Z1OZc3Ox3LZeUWyohCgFgji6IYpiW9P4PalNgbt72CnhhQVSGvVpy6_QQYEW1GV_lacXlQHPUv5l9WUpx7Ksron9YvfYtUO_gyO4LAijuxx823H0HD5CRxMtlVXi1NoV8EahkQUnT0zJH4tSNfMVp4Vb8i0GXUgLtgyZ6P8DOaDp1l_yKt-CNyF3WTNY6Wsw7_IrrVKR5FEYwbae7SUtEkidaADaXC2WliN0CdCm2Sh9ipCDEZ2qqJzaOar3F0A007JzMWuF2RIQDRyDNz3QodSZ96YSFyCqKeb_lmOFD1tWivD3lO0UkpWSkkdJ4Kr_w27h_3hbDJOx8_T0TW06AkpRgJ5A83155e7RdxfZ3fluv4AITmnYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rainbow+forest+consisting+of+short+paths+in+Kn&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Jie%2C+Qing&rft.au=He%2C+Menglu&rft.au=Jin%2C+Zemin&rft.date=2025-12-15&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.volume=376&rft.spage=260&rft.epage=269&rft_id=info:doi/10.1016%2Fj.dam.2025.06.041&rft.externalDocID=S0166218X25003609 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |