Rainbow forest consisting of short paths in Kn

Recently, the anti-Ramsey problem for disjoint union of graphs in complete graphs Kn received much attention. In particular, several researchers focused on the problem for graphs consisting of small components and in particular the problem for several forests have been investigated well. Notice that...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 376; pp. 260 - 269
Main Authors Jie, Qing, He, Menglu, Jin, Zemin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, the anti-Ramsey problem for disjoint union of graphs in complete graphs Kn received much attention. In particular, several researchers focused on the problem for graphs consisting of small components and in particular the problem for several forests have been investigated well. Notice that previous results were always proved for large enough n. In this paper, we continue the work in this direction and consider the problem for general kP3∪tP2. We refine the bound on n and obtain the precise value of AR(Kn,kP3∪tP2) for k≥2, t≥k2−k+42 and n≥3k+2t+1.
AbstractList Recently, the anti-Ramsey problem for disjoint union of graphs in complete graphs Kn received much attention. In particular, several researchers focused on the problem for graphs consisting of small components and in particular the problem for several forests have been investigated well. Notice that previous results were always proved for large enough n. In this paper, we continue the work in this direction and consider the problem for general kP3∪tP2. We refine the bound on n and obtain the precise value of AR(Kn,kP3∪tP2) for k≥2, t≥k2−k+42 and n≥3k+2t+1.
Author Jie, Qing
He, Menglu
Jin, Zemin
Author_xml – sequence: 1
  givenname: Qing
  surname: Jie
  fullname: Jie, Qing
  email: 2782193314@qq.com
– sequence: 2
  givenname: Menglu
  surname: He
  fullname: He, Menglu
  email: 1378196448@qq.com
– sequence: 3
  givenname: Zemin
  surname: Jin
  fullname: Jin, Zemin
  email: zeminjin@zjnu.cn
BookMark eNotj81KxDAUhbMYwZnRB3CXF2i8N22vLa5k8GdwQBAFdyFtbp0MmkgT9PXNoKvDOYvv8K3EIsTAQlwgKASky4Ny9lNp0K0CUtDgQizLTpXG7u1UrFI6AACWthTq2fowxB85xZlTlmMMyafsw7uMk0z7OGf5ZfM-SR_kYzgTJ5P9SHz-n2vxenf7snmodk_3283NrmINfa46Isf6qgHnyNZ1S0xop2lk17q-by1abEfsyDbOMrtGu37QdqKaCDscqF6L6z8ul5Nvz7NJo-dQAH7mMRsXvUEwR11zMEXXHHUNkCm69S-t703D
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DOI 10.1016/j.dam.2025.06.041
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 269
ExternalDocumentID S0166218X25003609
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
ID FETCH-LOGICAL-e209t-866de2740dd6a3356e61affced5d995a1a15c186a4daeed42d9b2af6366181b63
IEDL.DBID .~1
ISSN 0166-218X
IngestDate Sat Aug 02 17:11:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Linear forest
Rainbow graph
Anti-Ramsey number
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e209t-866de2740dd6a3356e61affced5d995a1a15c186a4daeed42d9b2af6366181b63
PageCount 10
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_dam_2025_06_041
PublicationCentury 2000
PublicationDate 2025-12-15
PublicationDateYYYYMMDD 2025-12-15
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Haas, Young (b7) 2012; 312
Jin, Gu (b11) 2024; 44
Jin, Jie, Cao (b12) 2024; 474
Bialostocki, Gilboa, Roditty (b1) 2015; 123
Chen, Li, Tu (b2) 2009; 309
Gilboa, Roditty (b6) 2016; 32
Schiermeyer (b13) 2004; 286
Fang, Győri, Lu, Xiao (b4) 2021; 291
Erdős, Simonovits, Sós (b3) 1975; vol. 10
Jahanbekam, West (b9) 2016; 82
Xie, Yuan (b14) 2020; 343
Fujita, Kaneko, Schiermeyer, Suzuki (b5) 2009; 16
He, Jin (b8) 2025; 361
Jie, Jin (b10) 2025
References_xml – volume: 361
  start-page: 523
  year: 2025
  end-page: 536
  ident: b8
  article-title: Rainbow short linear forests in edge-colored complete graph
  publication-title: Discrete Appl. Math.
– volume: 44
  start-page: 953
  year: 2024
  end-page: 970
  ident: b11
  article-title: Rainbow disjoint union of clique and matching in edge-colored complete graph
  publication-title: Discuss. Math. Graph Theory
– volume: 123
  start-page: 41
  year: 2015
  end-page: 53
  ident: b1
  article-title: Anti-Ramsey numbers of small graphs
  publication-title: Ars Combin.
– volume: 16
  start-page: #R51
  year: 2009
  ident: b5
  article-title: A rainbow
  publication-title: Electron. J. Combin.
– volume: 32
  start-page: 649
  year: 2016
  end-page: 662
  ident: b6
  article-title: Anti-Ramsey numbers of graphs with small connected components
  publication-title: Graphs Combin.
– volume: 291
  start-page: 129
  year: 2021
  end-page: 142
  ident: b4
  article-title: On the anti-Ramsey number of forests
  publication-title: Discrete Appl. Math.
– volume: 474
  year: 2024
  ident: b12
  article-title: Rainbow disjoint union of
  publication-title: Appl. Math. Comput.
– volume: 312
  start-page: 933
  year: 2012
  end-page: 937
  ident: b7
  article-title: The anti-Ramsey number of perfect matching
  publication-title: Discrete Math.
– volume: vol. 10
  start-page: 633
  year: 1975
  end-page: 643
  ident: b3
  publication-title: Anti-Ramsey Theorems, Infinite and Finite Sets, Vol. II
– volume: 343
  year: 2020
  ident: b14
  article-title: On the anti-Ramsey numbers of linear forests
  publication-title: Discrete Math.
– volume: 286
  start-page: 157
  year: 2004
  end-page: 162
  ident: b13
  article-title: Rainbow numbers for matchings and complete graphs
  publication-title: Discrete Math.
– volume: 309
  start-page: 3370
  year: 2009
  end-page: 3380
  ident: b2
  article-title: Complete solution for the rainbow numbers of matchings
  publication-title: Discrete Math.
– year: 2025
  ident: b10
  article-title: Anti-Ramsey number of union of 5-path and matching
  publication-title: Discuss. Math Graph Theory
– volume: 82
  start-page: 75
  year: 2016
  end-page: 89
  ident: b9
  article-title: Anti-Ramsey problems for
  publication-title: J. Graph Theory
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.4320114
Snippet Recently, the anti-Ramsey problem for disjoint union of graphs in complete graphs Kn received much attention. In particular, several researchers focused on the...
SourceID elsevier
SourceType Publisher
StartPage 260
SubjectTerms Anti-Ramsey number
Linear forest
Rainbow graph
Title Rainbow forest consisting of short paths in Kn
URI https://dx.doi.org/10.1016/j.dam.2025.06.041
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZSkD4imelQdWt3Viu8lYVaBC1S5QqVvkpyhDikhZ-e2cU6eUFWVKpETxOb7vi--7O4B76YfCZ07Tgcs9RQgwNHO43LV0eFhhrAlbA7O5nCz481IsWzBucmGCrDL6_q1Pr711vNKP1ux_rFb9FyQrEgFqiSCObrhO4uN8GL7y3jfbKyEV6qN1mk2X3xgDYi2Plb8lDc9pYp61-suqkKaeiLq4Z2gXv4OqPfh5PIajyBvJaPtqJ9By5SkcznZFV6sz6MVYDUEeir6emKB9rYKsmaw9qd6QaJPQgLgiq5JMy3NYPD68jic0tkOgLhnkG5pJaR3-RA6slSpNBdqSKe_RUMLmuVBMMWFwtIpbhcjHE5vrRHmZIgQjOZXpBbTLdekugSgnhXaZGzKN_EMhxcBlz1UilPbGpPwKeDPc4s9sFOhoi0YY9l6glYpgpSKI4zi7_t9tN9AJZ0EkwsQttDefX-4OoX6ju_VcduFg9DSdzH8A8iGl0w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZaAMiKd444HVbZPYbjKiiqrQx0IrdYscP0QZUkTKym_nLk1KWVG2RI7is3zfF993dwAPyvekj13Guy7xHCHA8Njhds-Uw8tKYw0dDUymajgXLwu5aEC_zoUhWWXl-zc-vfTW1Z1OZc3Ox3LZeUWyohCgFgji6IYpiW9P4PalNgbt72CnhhQVSGvVpy6_QQYEW1GV_lacXlQHPUv5l9WUpx7Ksron9YvfYtUO_gyO4LAijuxx823H0HD5CRxMtlVXi1NoV8EahkQUnT0zJH4tSNfMVp4Vb8i0GXUgLtgyZ6P8DOaDp1l_yKt-CNyF3WTNY6Wsw7_IrrVKR5FEYwbae7SUtEkidaADaXC2WliN0CdCm2Sh9ipCDEZ2qqJzaOar3F0A007JzMWuF2RIQDRyDNz3QodSZ96YSFyCqKeb_lmOFD1tWivD3lO0UkpWSkkdJ4Kr_w27h_3hbDJOx8_T0TW06AkpRgJ5A83155e7RdxfZ3fluv4AITmnYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rainbow+forest+consisting+of+short+paths+in+Kn&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Jie%2C+Qing&rft.au=He%2C+Menglu&rft.au=Jin%2C+Zemin&rft.date=2025-12-15&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.volume=376&rft.spage=260&rft.epage=269&rft_id=info:doi/10.1016%2Fj.dam.2025.06.041&rft.externalDocID=S0166218X25003609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon