Temperature as a circadian timing cue in the visually impaired

The daily rise and fall in ambient temperature caused by Earth’s 24-hour rotation may help regulate circadian rhythms in visually impaired individuals. In all mammals, circadian rhythms, the daily cycles of physiology and behavior, are time controlled by the suprachiasmatic nucleus (SCN), the brain’...

Full description

Saved in:
Bibliographic Details
Published inProgress in brain research Vol. 292; pp. 1 - 24
Main Authors Ball, Danny M., Mann, Samantha S., Santhi, Nayantara, Speekenbrink, Maarten, Walsh, Vincent
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 2025
Subjects
Online AccessGet full text
ISSN0079-6123
1875-7855
1875-7855
DOI10.1016/bs.pbr.2025.02.004

Cover

Loading…
Abstract The daily rise and fall in ambient temperature caused by Earth’s 24-hour rotation may help regulate circadian rhythms in visually impaired individuals. In all mammals, circadian rhythms, the daily cycles of physiology and behavior, are time controlled by the suprachiasmatic nucleus (SCN), the brain’s central clock. The SCN typically synchronizes circadian rhythms with the light/dark cycle through photoentrainment, a process in which specialized retinal cells capture ambient light and transmit this information to the SCN, allowing it to set its phase. Without light input, the rodent SCN’s light-driven circuits can become desynchronized, potentially allowing alternative entrainment signals, such as ambient temperature, to influence central timing. Here, we consider whether a similar mechanism could benefit visually impaired humans who, due to retinal damage, have reduced or absent photic input to the central clock. Visually impaired individuals often experience circadian misalignment, whereby internal rhythms drift out of synchrony with the light-dark cycle, and we suggest that temperature information may mitigate some of this drift. Temperature entrainment could operate through heat shock pathways from the skin, via thermoregulatory brain regions with reciprocal connections to the SCN, or by shifting core body temperature through warm or cold baths, which can alter the phase of clocks in peripheral organs and potentially feedback to adjust central time. Given that temperature is a weaker cue than light, it remains unknown if, and to what extent, it may significantly impact central timing. However, if effective, temperature entrainment in the visually impaired could potentially improve circadian disorders, poor sleep, and adverse health outcomes associated with circadian dysfunction including depression, cognitive decline, and metabolic disorders, which are more prevalent in this population. Research is needed to confirm the long-term effectiveness of temperature as an entrainment cue in the visually impaired population, which may have broader implications for circadian timekeeping in mammals and the role of temperature in the absence of light.
AbstractList The daily rise and fall in ambient temperature caused by Earth's 24-hour rotation may help regulate circadian rhythms in visually impaired individuals. In all mammals, circadian rhythms, the daily cycles of physiology and behavior, are time controlled by the suprachiasmatic nucleus (SCN), the brain's central clock. The SCN typically synchronizes circadian rhythms with the light/dark cycle through photoentrainment, a process in which specialized retinal cells capture ambient light and transmit this information to the SCN, allowing it to set its phase. Without light input, the rodent SCN's light-driven circuits can become desynchronized, potentially allowing alternative entrainment signals, such as ambient temperature, to influence central timing. Here, we consider whether a similar mechanism could benefit visually impaired humans who, due to retinal damage, have reduced or absent photic input to the central clock. Visually impaired individuals often experience circadian misalignment, whereby internal rhythms drift out of synchrony with the light-dark cycle, and we suggest that temperature information may mitigate some of this drift. Temperature entrainment could operate through heat shock pathways from the skin, via thermoregulatory brain regions with reciprocal connections to the SCN, or by shifting core body temperature through warm or cold baths, which can alter the phase of clocks in peripheral organs and potentially feedback to adjust central time. Given that temperature is a weaker cue than light, it remains unknown if, and to what extent, it may significantly impact central timing. However, if effective, temperature entrainment in the visually impaired could potentially improve circadian disorders, poor sleep, and adverse health outcomes associated with circadian dysfunction including depression, cognitive decline, and metabolic disorders, which are more prevalent in this population. Research is needed to confirm the long-term effectiveness of temperature as an entrainment cue in the visually impaired population, which may have broader implications for circadian timekeeping in mammals and the role of temperature in the absence of light.
The daily rise and fall in ambient temperature caused by Earth's 24-hour rotation may help regulate circadian rhythms in visually impaired individuals. In all mammals, circadian rhythms, the daily cycles of physiology and behavior, are time controlled by the suprachiasmatic nucleus (SCN), the brain's central clock. The SCN typically synchronizes circadian rhythms with the light/dark cycle through photoentrainment, a process in which specialized retinal cells capture ambient light and transmit this information to the SCN, allowing it to set its phase. Without light input, the rodent SCN's light-driven circuits can become desynchronized, potentially allowing alternative entrainment signals, such as ambient temperature, to influence central timing. Here, we consider whether a similar mechanism could benefit visually impaired humans who, due to retinal damage, have reduced or absent photic input to the central clock. Visually impaired individuals often experience circadian misalignment, whereby internal rhythms drift out of synchrony with the light-dark cycle, and we suggest that temperature information may mitigate some of this drift. Temperature entrainment could operate through heat shock pathways from the skin, via thermoregulatory brain regions with reciprocal connections to the SCN, or by shifting core body temperature through warm or cold baths, which can alter the phase of clocks in peripheral organs and potentially feedback to adjust central time. Given that temperature is a weaker cue than light, it remains unknown if, and to what extent, it may significantly impact central timing. However, if effective, temperature entrainment in the visually impaired could potentially improve circadian disorders, poor sleep, and adverse health outcomes associated with circadian dysfunction including depression, cognitive decline, and metabolic disorders, which are more prevalent in this population. Research is needed to confirm the long-term effectiveness of temperature as an entrainment cue in the visually impaired population, which may have broader implications for circadian timekeeping in mammals and the role of temperature in the absence of light.The daily rise and fall in ambient temperature caused by Earth's 24-hour rotation may help regulate circadian rhythms in visually impaired individuals. In all mammals, circadian rhythms, the daily cycles of physiology and behavior, are time controlled by the suprachiasmatic nucleus (SCN), the brain's central clock. The SCN typically synchronizes circadian rhythms with the light/dark cycle through photoentrainment, a process in which specialized retinal cells capture ambient light and transmit this information to the SCN, allowing it to set its phase. Without light input, the rodent SCN's light-driven circuits can become desynchronized, potentially allowing alternative entrainment signals, such as ambient temperature, to influence central timing. Here, we consider whether a similar mechanism could benefit visually impaired humans who, due to retinal damage, have reduced or absent photic input to the central clock. Visually impaired individuals often experience circadian misalignment, whereby internal rhythms drift out of synchrony with the light-dark cycle, and we suggest that temperature information may mitigate some of this drift. Temperature entrainment could operate through heat shock pathways from the skin, via thermoregulatory brain regions with reciprocal connections to the SCN, or by shifting core body temperature through warm or cold baths, which can alter the phase of clocks in peripheral organs and potentially feedback to adjust central time. Given that temperature is a weaker cue than light, it remains unknown if, and to what extent, it may significantly impact central timing. However, if effective, temperature entrainment in the visually impaired could potentially improve circadian disorders, poor sleep, and adverse health outcomes associated with circadian dysfunction including depression, cognitive decline, and metabolic disorders, which are more prevalent in this population. Research is needed to confirm the long-term effectiveness of temperature as an entrainment cue in the visually impaired population, which may have broader implications for circadian timekeeping in mammals and the role of temperature in the absence of light.
Author Speekenbrink, Maarten
Walsh, Vincent
Ball, Danny M.
Mann, Samantha S.
Santhi, Nayantara
Author_xml – sequence: 1
  givenname: Danny M.
  surname: Ball
  fullname: Ball, Danny M.
  email: d.ball.17@ucl.ac.uk
  organization: The Institute of Cognitive Neuroscience, University College London, London, United Kingdom
– sequence: 2
  givenname: Samantha S.
  surname: Mann
  fullname: Mann, Samantha S.
  organization: Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom
– sequence: 3
  givenname: Nayantara
  surname: Santhi
  fullname: Santhi, Nayantara
  organization: Department of Psychology, Northumbria University, Newcastle, London, United Kingdom
– sequence: 4
  givenname: Maarten
  surname: Speekenbrink
  fullname: Speekenbrink, Maarten
  organization: Experimental Psychology, University College London, London, United Kingdom
– sequence: 5
  givenname: Vincent
  surname: Walsh
  fullname: Walsh, Vincent
  organization: The Institute of Cognitive Neuroscience, University College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40409916$$D View this record in MEDLINE/PubMed
BookMark eNo1kE1LxDAQhoOsuB_6BzxIj15aJ2nTNCCCLH7Bgpf1HNJkqpG2W5N2Yf-9WVbnMgw8DO_7LMms3_VIyDWFjAIt7-qQDbXPGDCeAcsAijOyoJXgqag4n5EFgJBpSVk-J8sQvgGYkFBckHkBBUhJywV52GI3oNfj5DHRIdGJcd5o63SfjK5z_WdiJkxcvL4w2bsw6bY9JK4btPNoL8l5o9uAV397RT6en7br13Tz_vK2ftykSCs6plrUumQVr4BJ3siC1Q3XEIdazixSMBKwMQ0TQlhZiFKYJo99bG4F10LnK3J7-jv43c-EYVSdCwbbVve4m4LKGQgGVVnSiN78oVPdoVWDd532B_XfOQL3JwBj4L1Dr4Jx2Bu0sZEZld05RUEdFas6qKhYHRUrYCpGyn8BpqZutQ
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier B.V.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier B.V.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/bs.pbr.2025.02.004
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1875-7855
EndPage 24
ExternalDocumentID 40409916
S0079612325000238
Genre Journal Article
Review
GroupedDBID ---
--K
-~X
.55
0R~
123
3O-
53G
5RE
8NA
8NC
8NF
AALRI
AAPMF
AAXUO
AAYSV
ABGWT
ABMAC
ABQQC
ACGFS
ACXMD
ADVLN
AENEX
AFFNX
AFOST
AFTJW
AGAMA
AHMUE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
DU5
EBS
EJD
F5P
FDB
FEDTE
HVGLF
HZ~
JDP
L7B
O9-
P2P
RIG
SBF
SDK
SES
SHL
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-e181t-a7ba628580295f942bf5a00001d52de10c90efcf2777d94767cf3004d3d75a7a3
ISSN 0079-6123
1875-7855
IngestDate Wed Jul 02 02:56:45 EDT 2025
Sun May 25 01:41:20 EDT 2025
Sat Jun 21 16:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords visual impairment
temperature
circadian
suprachiasmatic nucleus
non-photic entertainment
Blindness
Language English
License Copyright © 2025. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e181t-a7ba628580295f942bf5a00001d52de10c90efcf2777d94767cf3004d3d75a7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 40409916
PQID 3207208661
PQPubID 23479
PageCount 24
ParticipantIDs proquest_miscellaneous_3207208661
pubmed_primary_40409916
elsevier_sciencedirect_doi_10_1016_bs_pbr_2025_02_004
PublicationCentury 2000
PublicationDate 2025
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Progress in brain research
PublicationTitleAlternate Prog Brain Res
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pérez-Rico, Benítez-Herreros, Castro-Rebollo, Gómez-SanGil, Germain, Montes-Mollón (bib66) 2010; 94
Roessingh, Rosing, Marunova, Ogueta, George, Lamaze (bib76) 2019; 2
Vandewalle, van Ackeren, Daneault, Hull, Albouy, Lepore (bib94) 2018; 8
Czeisler, Duffy, Shanahan, Brown, Mitchell, Rimmer (bib14) 1999; 284
Mistlberger, Skene (bib53) 2004; 79
Foster, Hankins (bib21) 2002; 21
Quera Salva, Hartley, Léger, Dauvilliers (bib71) 2017; 8
Narasimamurthy, Virshup (bib60) 2017; 8
Mrosovsky (bib57) 1996; 71
Takahashi, Kanase, Kuniyoshi, Tabata, Takahashi, Kayama (bib89) 2015; 47
Fernandez, Chang, Hattar, Chen (bib20) 2016; 113
Leak, Moore (bib42) 2001; 433
Skene, Arendt (bib84) 2007; 8
Klerman, Rimmer, Dijk, Kronauer, Rizzo, Czeisler (bib37) 1998; 274
Todd, Venner, Anaclet, Broadhurst, De Luca, Bandaru (bib91) 2020; 11
Watanabe, Alford, Schneider, Bauer, Barthel, Stein (bib99) 2007; 4
Nakamura, Yamazaki, Takasu, Mishima, Block (bib59) 2005; 25
Edery (bib19) 2010; 330
Lockley, Skene, Arendt (bib50) 1999; 8
Liao, Wang, Kuo, Lo, Chiu, Ting (bib45) 2013; 50
Novak, Ehlen, Albers (bib61) 2008; 39
Wang, Qing-jun, Wang, Hong, Zhang, Zhan (bib98) 2008; 121
Campochiaro, Mir (bib11) 2018; 62
Leak, Card, Moore (bib41) 1999; 819
Lockley, Skene, Tabandeh, Bird, Defrance, Arendt (bib52) 1997; 12
Lin, Peng (bib46) 2013; 8
Sehgal, Price, Man, Young (bib83) 1994; 263
King, Zhao, Sangoram, Wilsbacher, Tanaka, Antoch (bib36) 1997; 89
Ono, Honma, Yanagawa, Yamanaka, Honma (bib65) 2019; 2
Tibary, El Allali (bib90) 2020; 154
Chen, Buhl, Xu, Croset, Rees, Lilley (bib12) 2015; 527
Ko, Takahashi (bib38) 2006; 15
Herzog, Huckfeldt (bib30) 2003; 90
Konopka, Benzer (bib39) 1971; 68
Ruoff, Rensing (bib79) 2004; 29
Weinreb, Aung, Medeiros (bib101) 2014; 311
Hull, Czeisler, Lockley (bib32) 2018; 125
Ohnishi, Tahara, Kuriki, Haraguchi, Shibata (bib62) 2014; 9
Aschoff, Tokura (bib3) 1986; 1
Quintero, Kuhlman, McMahon (bib72) 2003; 23
Atan, Subaşı, Güzel Özdemir, Batur (bib4) 2023; 53
Foster, Hughes, Peirson (bib22) 2020; 9
Sack, Brandes, Kendall, Lewy (bib80) 2000; 343
Xie, Xiong, Ma, Shi, Chen, Yang (bib103) 2023; 111
Yetish, Kaplan, Gurven, Wood, Pontzer, Manger (bib104) 2015; 25
Choi, Kim, Pionke (bib13) 2024
Mistlberger, Skene (bib54) 2005; 20
Herzog (bib29) 2007; 8
Uchiyama, Lockley (bib92) 2015; 10
Van Someren (bib96) 2003; 1
Lee, Swanson, de la Iglesia (bib43) 2009; 19
Bouâouda, Achâaban, Ouassat, Oukassou, Piro, Challet (bib7) 2014; 2
Ruby, Burns, Heller (bib78) 1999; 19
Davidson, Castanon-Cervantes, Leise, Molyneux, Harrington (bib15) 2009; 29
Provencio, Rodriguez, Jiang, Hayes, Moreira, Rollag (bib69) 2000; 20
Arens, Zhang (bib2) 2006
Haghayegh, Khoshnevis, Smolensky, Diller, Castriotta (bib26) 2019; 46
Kunz, Achermann (bib40) 2003; 224
Qiu, Ramulu, Boland (bib70) 2019; 28
Buhr, Takahashi (bib8) 2013
Auger, Burgess, Emens, Deriy, Thomas, Sharkey (bib5) 2015; 11
van Marken Lichtenbelt, Daanen, Wouters, Fronczek, Raymann, Severens (bib95) 2006; 88
Strehaianu, Dascalescu, Ionescu, Burcel, Potop, Corbu (bib88) 2017; 61
Gracitelli, Abe, Medeiros (bib23) 2015; 9
Santhi, Ball (bib81) 2020; 253
Preto, Gomes (bib67) 2019
de la Iglesia, Cambras, Schwartz, Díez-Noguera (bib16) 2004; 14
Lockley, Skene, James, Thapan, Wright, Arendt (bib51) 2000; 164
Mohawk, Green, Takahashi (bib55) 2012; 35
Slimani, Ptito, Kupers (bib85) 2015; 283
Lindquist, Craig (bib47) 1988; 22
Allen (bib1) 2019
Lewy, Emens, Lefler, Yuhas, Jackman (bib44) 2005; 22
Guan, Lazar (bib25) 2022; 42
Refinetti (bib74) 2015; 65
Wheeler, Pfeuty (bib102) 1993; 71
Harding, Franks, Wisden (bib27) 2019; 13
Duffy, Wright (bib18) 2005; 20
Horst, van der Muijtjens, Kobayashi, Takano, Kanno, Takao (bib31) 1999; 398
Myung, Hong, DeWoskin, De Schutter, Forger, Takumi (bib58) 2015; 112
Ono, Honma, Honma (bib64) 2021; 15
Refinetti (bib73) 2010; 25
Hazlerigg, Tyler (bib28) 2019; 17
Starnes, Jones (bib86) 2023; 12
Jean-Louis, Zizi, Lazzaro, Wolintz (bib33) 2008; 6
Steel, Tir, Tam, Bussell, Spitschan, Foster (bib87) 2021; 15
Vanderleest, Galper (bib93) 2009; 20
Mohawk, Takahashi (bib56) 2011; 34
Provencio, Rollag, Castrucci (bib105) 2002; 415
Weaver (bib100) 1998; 13
Lockley, Arendt, Skene (bib48) 2007; 9
Lockley, Arendt, Skene (bib49) 2017
Buhr, Yoo, Takahashi (bib9) 2010; 330
Okamoto-Mizuno, Mizuno (bib63) 2012; 31
Saper, Scammell, Lu (bib82) 2005; 437
Vitaterna (bib97) 1994; 10
Kaur, Singh (bib35) 2023; 18
Provencio, Jiang, De Grip, Hayes, Rollag (bib68) 1998; 95
Gracitelli, Duque-Chica, Roizenblatt, Moura, de, Nagy (bib24) 2015; 122
Rubinstein, Sessler (bib77) 1990; 73
Joshi, Cai, Xia, Chiu, Emery (bib34) 2022; 13
Bunger, Wilsbacher, Moran, Clendenin, Radcliffe, Hogenesch (bib10) 2000; 103
Drouyer, Dkhissi-Benyahya, Chiquet, WoldeMussie, Ruiz, Wheeler (bib17) 2008; 3
Barrett, Takahashi (bib6) 1995; 15
Refinetti (bib75) 2020; 7
References_xml – volume: 20
  start-page: 326
  year: 2005
  end-page: 338
  ident: bib18
  article-title: Entrainment of the human circadian system by light
  publication-title: J. Biol. Rhythm.
– volume: 8
  start-page: 16968
  year: 2018
  ident: bib94
  article-title: Light modulates oscillatory alpha activity in the occipital cortex of totally visually blind individuals with intact non-image-forming photoreception
  publication-title: Sci. Rep.
– volume: 90
  start-page: 763
  year: 2003
  end-page: 770
  ident: bib30
  article-title: Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus
  publication-title: J. Neurophysiol.
– start-page: 3
  year: 2013
  end-page: 27
  ident: bib8
  article-title: Molecular components of the mammalian circadian clock
  publication-title: Handb. Exp. Pharmacol.
– volume: 284
  start-page: 2177
  year: 1999
  end-page: 2181
  ident: bib14
  article-title: Stability, precision, and near-24-hour period of the human circadian pacemaker
  publication-title: Science
– volume: 79
  start-page: 533
  year: 2004
  end-page: 556
  ident: bib53
  article-title: Social influences on mammalian circadian rhythms: animal and human studies
  publication-title: Biol. Rev. Camb. Philos. Soc.
– volume: 23
  start-page: 8070
  year: 2003
  end-page: 8076
  ident: bib72
  article-title: The biological clock nucleus: a multiphasic oscillator network regulated by light
  publication-title: J. Neurosci.: Off. J. Soc. Neurosci.
– volume: 20
  start-page: 339
  year: 2005
  end-page: 352
  ident: bib54
  article-title: Nonphotic entrainment in humans?
  publication-title: J. Biol. Rhythm.
– volume: 113
  start-page: 6047
  year: 2016
  end-page: 6052
  ident: bib20
  article-title: Architecture of retinal projections to the central circadian pacemaker
  publication-title: Proc. Natl Acad. Sci.
– start-page: 56
  year: 2019
  end-page: 67
  ident: bib67
  article-title: Glaucoma and short-wavelength light sensitivity (blue light)
  publication-title: Adv. Hum. Factors Ergonomics Healthc. Med. Devices
– volume: 2
  year: 2014
  ident: bib7
  article-title: Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions
  publication-title: Physiol. Rep.
– volume: 8
  start-page: 686
  year: 2017
  ident: bib71
  article-title: Non-24-hour sleep-wake rhythm disorder in the totally blind: diagnosis and management
  publication-title: Front. Neurol.
– volume: 263
  start-page: 1603
  year: 1994
  end-page: 1606
  ident: bib83
  article-title: Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless
  publication-title: Science
– volume: 7
  start-page: 321
  year: 2020
  end-page: 362
  ident: bib75
  article-title: Circadian rhythmicity of body temperature and metabolism
  publication-title: Temperature
– volume: 253
  start-page: 17
  year: 2020
  end-page: 24
  ident: bib81
  article-title: Applications in sleep: how light affects sleep
  publication-title: Prog. BraRes.
– volume: 73
  start-page: 541
  year: 1990
  end-page: 545
  ident: bib77
  article-title: Skin-surface temperature gradients correlate with fingertip blood flow in humans
  publication-title: Anesthesiology
– volume: 415
  start-page: 493
  year: 2002
  ident: bib105
  article-title: Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night
  publication-title: Nature
– volume: 47
  start-page: 3907
  year: 2015
  end-page: 3913
  ident: bib89
  article-title: Freezing the butterfly motion of carbamazepine derivatives
  publication-title: Synthesis
– volume: 10
  start-page: 495
  year: 2015
  end-page: 516
  ident: bib92
  article-title: Non–24-hour sleep–wake rhythm disorder in sighted and blind patients
  publication-title: Sleep. Med. Clin.
– year: 2019
  ident: bib1
  publication-title: Circadian Rhythm. Blind.
– volume: 25
  start-page: 2862
  year: 2015
  end-page: 2868
  ident: bib104
  article-title: Natural sleep and its seasonal variations in three pre-industrial societies
  publication-title: Curr. Biology: CB
– volume: 19
  start-page: 8630
  year: 1999
  end-page: 8636
  ident: bib78
  article-title: Circadian rhythms in the suprachiasmatic nucleus are temperature-compensated and phase-shifted by heat pulses in vitro
  publication-title: J. Neurosci.: Off. J. Soc. Neurosci.
– volume: 62
  start-page: 24
  year: 2018
  end-page: 37
  ident: bib11
  article-title: The mechanism of cone cell death in retinitis pigmentosa
  publication-title: Prog. Retinal Eye Res.
– volume: 4
  start-page: 292
  year: 2007
  end-page: 300
  ident: bib99
  article-title: Demonstration of circadian rhythm in heart rate turbulence using novel application of correlator functions
  publication-title: Heart Rhythm.: Off. J. Heart Rhythm Soc.
– volume: 112
  start-page: E3920
  year: 2015
  end-page: E3929
  ident: bib58
  article-title: GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time
  publication-title: Proc. Natl Acad. Sci. U S A.
– volume: 12
  start-page: 16
  year: 1997
  end-page: 25
  ident: bib52
  article-title: Relationship between napping and melatonin in the blind
  publication-title: J. Biol. Rhythm.
– volume: 17
  year: 2019
  ident: bib28
  article-title: Activity patterns in mammals: circadian dominance challenged
  publication-title: PLoS Biol.
– volume: 121
  start-page: 1015
  year: 2008
  end-page: 1019
  ident: bib98
  article-title: Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model
  publication-title: Chin. Med. J.
– volume: 34
  start-page: 349
  year: 2011
  end-page: 358
  ident: bib56
  article-title: Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators
  publication-title: Trends Neurosci.
– volume: 71
  start-page: 1653
  year: 1993
  end-page: 1656
  ident: bib102
  article-title: Critical concentration fluctuations in polymerizing solutions
  publication-title: Phys. Rev. Lett.
– volume: 65
  start-page: 359
  year: 2015
  end-page: 366
  ident: bib74
  article-title: Comparison of light, food, and temperature as environmental synchronizers of the circadian rhythm of activity in mice
  publication-title: J. Physiol. Sci.
– volume: 819
  start-page: 23
  year: 1999
  end-page: 32
  ident: bib41
  article-title: Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport
  publication-title: Brain Res.
– volume: 311
  start-page: 1901
  year: 2014
  ident: bib101
  article-title: The pathophysiology and treatment of glaucoma
  publication-title: JAMA
– volume: 527
  start-page: 516
  year: 2015
  end-page: 520
  ident: bib12
  article-title: Drosophila ionotropic receptor 25a mediates circadian clock resetting by temperature
  publication-title: Nature
– volume: 42
  start-page: 113
  year: 2022
  end-page: 121
  ident: bib25
  article-title: Circadian regulation of gene expression and metabolism in the liver
  publication-title: Semin. Liver Dis.
– volume: 8
  start-page: 790
  year: 2007
  end-page: 802
  ident: bib29
  article-title: Neurons and networks in daily rhythms
  publication-title: Nat. Reviews. Neurosci.
– volume: 13
  start-page: 100
  year: 1998
  end-page: 112
  ident: bib100
  article-title: The suprachiasmatic nucleus: a 25-year retrospective
  publication-title: J. Biol. Rhythm.
– volume: 122
  start-page: 1139
  year: 2015
  end-page: 1148
  ident: bib24
  article-title: Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma
  publication-title: Ophthalmology
– volume: 1
  start-page: 91
  year: 1986
  end-page: 99
  ident: bib3
  article-title: Circadian activity rhythms in squirrel monkeys: entrainment by temperature cycles
  publication-title: J. Biol. Rhythm.
– volume: 14
  start-page: 796
  year: 2004
  end-page: 800
  ident: bib16
  article-title: Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus
  publication-title: Curr. Biology: CB
– volume: 20
  start-page: 600
  year: 2000
  end-page: 605
  ident: bib69
  article-title: A novel human opsin in the inner retina
  publication-title: J. Neurosci.: Off. J. Soc. Neurosci.
– volume: 19
  start-page: 848
  year: 2009
  end-page: 852
  ident: bib43
  article-title: Circadian Timing of REM Sleep Is Coupled to an Oscillator within the Dorsomedial Suprachiasmatic Nucleus.
  publication-title: Current Biology: CB
– volume: 22
  start-page: 631
  year: 1988
  end-page: 677
  ident: bib47
  article-title: The heat-shock proteins
  publication-title: Annu. Rev. Genet.
– volume: 2
  start-page: 232
  year: 2019
  ident: bib65
  article-title: GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice
  publication-title: Commun. Biol.
– year: 2017
  ident: bib49
  article-title: Visual impairment and circadian rhythm sleep disorders
  publication-title: Ref. Module Neurosci. Biobehav. Psychol.
– volume: 13
  start-page: 336
  year: 2019
  ident: bib27
  article-title: The temperature dependence of sleep
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 4410
  year: 2020
  ident: bib91
  article-title: Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations
  publication-title: Nat. Commun.
– volume: 53
  start-page: 111
  year: 2023
  end-page: 119
  ident: bib4
  article-title: The effect of blindness on biological rhythms and the consequences of circadian rhythm disorder
  publication-title: Turkish J. Ophthalmol.
– volume: 15
  year: 2021
  ident: bib64
  article-title: Corrigendum: roles of neuropeptides, VIP and AVP, in the mammalian central circadian clock
  publication-title: Front. Neurosci.
– volume: 29
  start-page: 445
  year: 2004
  end-page: 456
  ident: bib79
  article-title: Temperature effects on circadian clocks
  publication-title: J. Therm. Biol.
– volume: 3
  year: 2008
  ident: bib17
  article-title: Glaucoma alters the circadian timing system
  publication-title: PLoS ONE
– volume: 89
  start-page: 641
  year: 1997
  end-page: 653
  ident: bib36
  article-title: Positional cloning of the mouse circadian clock gene
  publication-title: Cell
– volume: 12
  year: 2023
  ident: bib86
  article-title: Inputs and outputs of the mammalian circadian clock
  publication-title: Biology
– volume: 154
  start-page: 203
  year: 2020
  end-page: 211
  ident: bib90
  article-title: Dromedary camel: a model of heat resistant livestock animal
  publication-title: Theriogenology
– volume: 224
  start-page: 63
  year: 2003
  end-page: 78
  ident: bib40
  article-title: Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators
  publication-title: J. Theor. Biol.
– volume: 8
  start-page: 175
  year: 1999
  end-page: 183
  ident: bib50
  article-title: Comparison between subjective and actigraphic measurement of sleep and sleep rhythms
  publication-title: J. Sleep. Res.
– volume: 46
  start-page: 124
  year: 2019
  end-page: 135
  ident: bib26
  article-title: Before-bedtime passive body heating by warm shower or bath to improve sleep: a systematic review and meta-analysis
  publication-title: Sleep. Med. Rev.
– volume: 164
  start-page: R1
  year: 2000
  end-page: R6
  ident: bib51
  article-title: Melatonin administration can entrain the free-running circadian system of blind subjects
  publication-title: J. Endocrinol.
– volume: 95
  start-page: 340
  year: 1998
  end-page: 345
  ident: bib68
  article-title: Melanopsin: an opsin in melanophores, brain, and eye
  publication-title: Proc. Natl Acad. Sci. U S A.
– volume: 39
  start-page: 291
  year: 2008
  end-page: 304
  ident: bib61
  article-title: Photic and nonphotic inputs to the diurnal circadian clock
  publication-title: Biol. Rhythm. Res.
– volume: 2
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib76
  article-title: Temperature synchronization of the Drosophila circadian clock protein PERIOD is controlled by the TRPA channel PYREXIA
  publication-title: Commun. Biol.
– volume: 21
  start-page: 507
  year: 2002
  end-page: 527
  ident: bib21
  article-title: Non-rod, non-cone photoreception in the vertebrates
  publication-title: Prog. Retinal Eye Res.
– volume: 9
  year: 2014
  ident: bib62
  article-title: Warm water bath stimulates phase-shifts of the peripheral circadian clocks in PER2::LUCIFERASE mouse
  publication-title: PLoS ONE
– start-page: 1
  year: 2024
  end-page: 19
  ident: bib13
  article-title: The sleep health of individuals with visual impairments: a scoping review
  publication-title: Ophthalmic Epidemiol.
– volume: 29
  start-page: 171
  year: 2009
  end-page: 180
  ident: bib15
  article-title: Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system
  publication-title: Eur. J. Neurosci.
– volume: 18
  start-page: 513
  year: 2023
  end-page: 518
  ident: bib35
  article-title: Inflammation and retinal degenerative diseases
  publication-title: Neural Regeneration Res.
– volume: 8
  year: 2013
  ident: bib46
  article-title: Retinal ganglion cells are resistant to photoreceptor loss in retinal degeneration
  publication-title: PLoS ONE
– volume: 35
  start-page: 445
  year: 2012
  end-page: 462
  ident: bib55
  article-title: Central and peripheral circadian clocks in mammals
  publication-title: Annu. Rev. Neurosci.
– volume: 9
  start-page: 68
  year: 2015
  end-page: 77
  ident: bib23
  article-title: Spectral-domain optical coherence tomography for glaucoma diagnosis
  publication-title: Open. Ophthalmol. J.
– volume: 15
  start-page: R271
  year: 2006
  end-page: R277
  ident: bib38
  article-title: Molecular components of the mammalian circadian clock
  publication-title: Hum. Mol. Genet.
– volume: 9
  start-page: 301
  year: 2007
  end-page: 314
  ident: bib48
  article-title: Visual impairment and circadian rhythm disorders
  publication-title: Dialogues Clin. Neurosci.
– volume: 330
  start-page: 379
  year: 2010
  end-page: 385
  ident: bib9
  article-title: Temperature as a universal resetting cue for mammalian circadian oscillators
  publication-title: Science
– volume: 68
  start-page: 2112
  year: 1971
  end-page: 2116
  ident: bib39
  article-title: Clock mutants of Drosophila melanogaster
  publication-title: Proc. Natl Acad. Sci. U S A.
– volume: 25
  start-page: 5481
  year: 2005
  end-page: 5487
  ident: bib59
  article-title: Differential response of period 1 expression within the suprachiasmatic nucleus
  publication-title: J. Neurosci.: Off. J. Soc. Neurosci.
– volume: 398
  start-page: 627
  year: 1999
  end-page: 630
  ident: bib31
  article-title: Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
  publication-title: Nature
– volume: 8
  start-page: 161
  year: 2017
  ident: bib60
  article-title: Molecular mechanisms regulating temperature compensation of the circadian clock
  publication-title: Front. Neurol.
– volume: 61
  start-page: 284
  year: 2017
  end-page: 289
  ident: bib88
  article-title: The importance of ganglion cell complex investigation in myopic patients
  publication-title: Romanian J. Ophthalmol.
– volume: 71
  start-page: 343
  year: 1996
  end-page: 372
  ident: bib57
  article-title: Locomotor activity and non-photic influences on circadian clocks
  publication-title: Biol. Rev. Camb. Philos. Soc.
– volume: 283
  start-page: 233
  year: 2015
  end-page: 237
  ident: bib85
  article-title: Enhanced heat discrimination in congenital blindness
  publication-title: Behav. Brain Res.
– volume: 103
  start-page: 1009
  year: 2000
  end-page: 1017
  ident: bib10
  article-title: Mop3 is an essential component of the master circadian pacemaker in mammals
  publication-title: Cell
– volume: 343
  start-page: 1070
  year: 2000
  end-page: 1077
  ident: bib80
  article-title: Entrainment of free-running circadian rhythms by melatonin in blind people
  publication-title: N. Engl. J. Med.
– volume: 433
  start-page: 312
  year: 2001
  end-page: 334
  ident: bib42
  article-title: Topographic organization of suprachiasmatic nucleus projection neurons
  publication-title: J. Comp. Neurol.
– volume: 50
  start-page: 1607
  year: 2013
  end-page: 1616
  ident: bib45
  article-title: Effect of a warm footbath before bedtime on body temperature and sleep in older adults with good and poor sleep: an experimental crossover trial
  publication-title: Int. J. Nurs. Stud.
– volume: 437
  start-page: 1257
  year: 2005
  end-page: 1263
  ident: bib82
  article-title: Hypothalamic regulation of sleep and circadian rhythms
  publication-title: Nature
– volume: 88
  start-page: 489
  year: 2006
  end-page: 497
  ident: bib95
  article-title: Evaluation of wireless determination of skin temperature using iButtons
  publication-title: Physiol. & Behav.
– volume: 94
  start-page: 267
  year: 2010
  end-page: 268
  ident: bib66
  article-title: Endothelial cells analysis after intravitreal ranibizumab (Lucentis) in age-related macular degeneration treatment: a pilot study
  publication-title: Br. J. Ophthalmol.
– volume: 22
  start-page: 1093
  year: 2005
  end-page: 1106
  ident: bib44
  article-title: Melatonin entrains free-running blind people according to a physiological dose-response curve
  publication-title: Chronobiology Int.
– volume: 15
  year: 2021
  ident: bib87
  article-title: Effects of cage position and light transmission on home cage activity and circadian entrainment in mice
  publication-title: Front. Neurosci.
– volume: 25
  start-page: 247
  year: 2010
  end-page: 256
  ident: bib73
  article-title: Entrainment of circadian rhythm by ambient temperature cycles in mice
  publication-title: J. Biol. Rhythm.
– volume: 274
  start-page: R991
  year: 1998
  end-page: R996
  ident: bib37
  article-title: Nonphotic entrainment of the human circadian pacemaker
  publication-title: Am. J. Physiol.
– volume: 330
  start-page: 329
  year: 2010
  end-page: 330
  ident: bib19
  article-title: Temperatures to communicate by
  publication-title: Science
– volume: 6
  start-page: 1
  year: 2008
  ident: bib33
  article-title: Circadian rhythm dysfunction in glaucoma: a hypothesis
  publication-title: J. Circadian Rhythm.
– start-page: 560
  year: 2006
  end-page: 602
  ident: bib2
  article-title: The skin’s role in human thermoregulation and comfort
  publication-title: Cent. Built Environ.
– volume: 31
  start-page: 14
  year: 2012
  ident: bib63
  article-title: Effects of thermal environment on sleep and circadian rhythm
  publication-title: J. Physiol. Anthropol.
– volume: 10
  start-page: 229
  year: 1994
  ident: bib97
  article-title: Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior
  publication-title: Trends Genetics: TIG
– volume: 28
  start-page: 97
  year: 2019
  end-page: 104
  ident: bib70
  article-title: Association between sleep parameters and glaucoma in the united states population: national health and nutrition examination survey
  publication-title: J. Glaucoma
– volume: 11
  start-page: 1199
  year: 2015
  end-page: 1236
  ident: bib5
  article-title: Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015: an American Academy of sleep medicine clinical practice guideline
  publication-title: J. Clin. Sleep Med.
– volume: 15
  start-page: 5681
  year: 1995
  end-page: 5692
  ident: bib6
  article-title: Temperature compensation and temperature entrainment of the chick pineal cell circadian clock
  publication-title: J. Neurosci.: Off. J. Soc. Neurosci.
– volume: 20
  start-page: 411
  year: 2009
  end-page: 416
  ident: bib93
  article-title: Improving the health of transgender people: transgender medical education in Arizona
  publication-title: J. Assoc. Nurses AIDS Care: JANAC
– volume: 13
  year: 2022
  ident: bib34
  article-title: PERIOD phosphoclusters control temperature compensation of the Drosophila circadian clock
  publication-title: Front. Physiol.
– volume: 1
  start-page: 55
  year: 2003
  end-page: 64
  ident: bib96
  article-title: Thermosensitivity of the circadian timing system
  publication-title: Sleep. Biol. Rhythm.
– volume: 111
  start-page: 2201
  year: 2023
  end-page: 2217
  ident: bib103
  article-title: Cholecystokinin neurons in mouse suprachiasmatic nucleus regulate the robustness of circadian clock
  publication-title: Neuron
– volume: 9
  start-page: 180
  year: 2020
  ident: bib22
  article-title: Circadian photoentrainment in mice and humans
  publication-title: Biology
– volume: 125
  start-page: 1160
  year: 2018
  end-page: 1171
  ident: bib32
  article-title: Suppression of melatonin secretion in totally visually blind people by ocular exposure to white light: clinical characteristics
  publication-title: Ophthalmology
– volume: 8
  start-page: 651
  year: 2007
  end-page: 655
  ident: bib84
  article-title: Circadian rhythm sleep disorders in the blind and their treatment with melatonin
  publication-title: Sleep. Med.
SSID ssj0027904
Score 2.446898
SecondaryResourceType review_article
Snippet The daily rise and fall in ambient temperature caused by Earth’s 24-hour rotation may help regulate circadian rhythms in visually impaired individuals. In all...
The daily rise and fall in ambient temperature caused by Earth's 24-hour rotation may help regulate circadian rhythms in visually impaired individuals. In all...
SourceID proquest
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Animals
Blindness
circadian
Circadian Rhythm - physiology
Cues
Humans
non-photic entertainment
Persons with Visual Disabilities
suprachiasmatic nucleus
Suprachiasmatic Nucleus - physiology
Suprachiasmatic Nucleus - physiopathology
Temperature
Vision Disorders - physiopathology
visual impairment
Title Temperature as a circadian timing cue in the visually impaired
URI https://dx.doi.org/10.1016/bs.pbr.2025.02.004
https://www.ncbi.nlm.nih.gov/pubmed/40409916
https://www.proquest.com/docview/3207208661
Volume 292
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge-EFAeOjDJCREC9RqtRN4vgFqSDQxDSEyCb2ZtmOzSK2tGrSSeWv55xL0kJBgr1EiRvlqrvT-Xfn-yDkVeEyyyPtwhTAcBibKQsFdyZ0RqQTA3g_azvenHxKj87ij-fJ-WYqaltd0uix-fHHupKbSBXWQK6-SvY_JDt8FBbgHuQLV5AwXP9NxhZALzZF9vNiVGDKpcFmA42f1vUtMCvbZzJel_VKXV6u28LI8rcJnZ99mpY3evCy9lMjgq4L0BAtfqvwgALUpFoHJ-NNKBsRcK6uQEgXKsiHn3K_UKINX8O9Wg57QL6w9rut9BJcYSwZ8rml1XYMAiuVMSS2UxaDZpaL0Pd12TazDGfedYZysrXjYhH1ji3HsIKuxwvtG7eyBJurxpuda8gnzD1FT5AlbQef7DbZZ5xPwMztz46_fD3e-OAiwsbc3T_s6qh8yt8upV8Ayt8ckBaInN4jdzsPgs5QHe6TW7Z6QA5mlWrmV2v6mrY5ve1hyQF5s6UhVNVU0UFDKGoIBQ2hJTxdWNprCO015CE5-_D-9N1R2E3MCC0gtSZUXCtfE5tFTCROxEy7RLUHOEXCCjuJjIisMw54wwsR85Qb51uuFdOCJ4qr6SOyV80r-4RQpSObcecceLhxatKMJY4DeGUGKAkuRiTpeSM7sIYgTIL8ZJ87qGsJPJWepzJiEkiNyMuekRIsmT-eUpWdr2o5ZRFn4GGnkxF5jByWC2y5ImPYa7wn8_SGVA_JHf-EsbNnZK9ZruxzQJONftFpyE_3rHUb
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+as+a+circadian+timing+cue+in+the+visually+impaired&rft.jtitle=Progress+in+brain+research&rft.au=Ball%2C+Danny+M.&rft.au=Mann%2C+Samantha+S.&rft.au=Santhi%2C+Nayantara&rft.au=Speekenbrink%2C+Maarten&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=0079-6123&rft.volume=292&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1016%2Fbs.pbr.2025.02.004&rft.externalDocID=S0079612325000238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6123&client=summon