Study of a 3D-Ginzburg–Landau functional with a discontinuous pinning term
In a convex domain Ω⊂R3, we consider the minimization of a 3D-Ginzburg–Landau type energy Eε(u)=12∫Ω|∇u|2+12ε2(a2−|u|2)2 with a discontinuous pinning term a among H1(Ω,C)-maps subject to a Dirichlet boundary condition g∈H1/2(∂Ω,S1). The pinning term a:R3→R+∗ takes a constant value b∈(0,1) in ω, an i...
Saved in:
Published in | Nonlinear analysis Vol. 75; no. 17; pp. 6275 - 6296 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0362-546X 1873-5215 |
DOI | 10.1016/j.na.2012.07.004 |
Cover
Abstract | In a convex domain Ω⊂R3, we consider the minimization of a 3D-Ginzburg–Landau type energy Eε(u)=12∫Ω|∇u|2+12ε2(a2−|u|2)2 with a discontinuous pinning term a among H1(Ω,C)-maps subject to a Dirichlet boundary condition g∈H1/2(∂Ω,S1). The pinning term a:R3→R+∗ takes a constant value b∈(0,1) in ω, an inner strictly convex subdomain of Ω, and 1 outside ω. We prove energy estimates with various error terms depending on assumptions on Ω,ω and g. In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of g (the singularities are polarized and quantified by their degrees which are ±1), vorticity defects are geodesics (computed w.r.t. a geodesic metric da2 depending only on a) joining two paired singularities of gpi&nσ(i) where σ is a minimal connection (computed w.r.t. a metric da2) of the singularities of g and p1,…,pk are the positive (resp. n1,…,nk are the negative) singularities. |
---|---|
AbstractList | In a convex domain $\O\subset\R^3$, we consider the minimization of a $3D$-Ginzburg-Landau type energy $E_\v(u)=\frac{1}{2}\int_\O|\n u|^2+\frac{1}{2\v^2}(a^2-|u|^2)^2$ with a discontinuous pinning term $a$ among $H^1(\O,\C)$-maps subject to a Dirichlet boundary condition $g\in H^{1/2}(\p\O,\S^1)$. The pinning term $a:\R^3\to\R^*_+$ takes a constant value $b\in(0,1)$ in $\o$, an inner strictly convex subdomain of $\O$, and $1$ outside $\o$. We prove energy estimates with various error terms depending on assumptions on $\O,\o$ and $g$. In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of $g$ (the singularities are polarized and quantified by their degrees which are $\pm 1$), vorticity defects are geodesics (computed w.r.t. a geodesic metric $d_{a^2}$ depending only on $a$) joining two paired singularities of $g$ $p_i\& n_{\sigma(i)}$ where $\sigma$ is a minimal connection (computed w.r.t. a metric $d_{a^2}$) of the singularities of $g$ and $p_1,...p_k$ are the positive (resp. $n_1,...,n_k$ the negative) singularities. In a convex domain Ω⊂R3, we consider the minimization of a 3D-Ginzburg–Landau type energy Eε(u)=12∫Ω|∇u|2+12ε2(a2−|u|2)2 with a discontinuous pinning term a among H1(Ω,C)-maps subject to a Dirichlet boundary condition g∈H1/2(∂Ω,S1). The pinning term a:R3→R+∗ takes a constant value b∈(0,1) in ω, an inner strictly convex subdomain of Ω, and 1 outside ω. We prove energy estimates with various error terms depending on assumptions on Ω,ω and g. In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of g (the singularities are polarized and quantified by their degrees which are ±1), vorticity defects are geodesics (computed w.r.t. a geodesic metric da2 depending only on a) joining two paired singularities of gpi&nσ(i) where σ is a minimal connection (computed w.r.t. a metric da2) of the singularities of g and p1,…,pk are the positive (resp. n1,…,nk are the negative) singularities. |
Author | Dos Santos, Mickaël |
Author_xml | – sequence: 1 givenname: Mickaël surname: Dos Santos fullname: Dos Santos, Mickaël email: mickael.dos-santos@u-pec.fr organization: Université Paris-Est, LAMA–CNRS UMR 8050, 61, Avenue du Général de Gaulle, 94010 Créteil, France |
BackLink | https://hal.science/hal-00578445$$DView record in HAL |
BookMark | eNotkMtKw0AYhQepYK3uXWbrIvGfSzKpu1K1FQIuVHA3_JlLO6WdlFwqdeU7-IY-iQl1dTiHj8PhXJJRqIIl5IZCQoFmd5skYMKAsgRkAiDOyJjmkscpo-mIjIFnLE5F9nFBLptmAwBU8mxMite2M8eochFG_CFe-PBVdvXq9_unwGCwi1wXdOurgNvo07frHjO-0VVofeiqron2PgQfVlFr690VOXe4bez1v07I-9Pj23wZFy-L5_msiC2V0MaclVMtUurKKbUosN-GKCQOKRXOmVxrQ3PQpQM2zajNmHFMM9s7SbOUT8jtqXeNW7Wv_Q7ro6rQq-WsUEMGkMpciPTAe_b-xNp-0MHbWjXa26Ct8bXVrTKVVxTU8KHaqIBq-FCB7DsE_wPVf2hC |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 1XC VOOES |
DOI | 10.1016/j.na.2012.07.004 |
DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1873-5215 |
EndPage | 6296 |
ExternalDocumentID | oai_HAL_hal_00578445v3 S0362546X12002829 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HMJ HVGLF HZ~ IHE J1W JJJVA KOM M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SME SPC SPCBC SST SSW SSZ T5K TN5 WUQ XPP YQT ZMT ~G- 1XC AATTM AAXKI ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ ANKPU APXCP BNPGV SSH VOOES |
ID | FETCH-LOGICAL-e170t-32b9c451fb91ea4a036aa47ab9c414ffd8ccd180cbf02961e62df2c2e02971653 |
IEDL.DBID | AIKHN |
ISSN | 0362-546X |
IngestDate | Fri May 09 12:28:26 EDT 2025 Fri Feb 23 02:29:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | 35J50 Vorticity defects Pinning 35B40 Energy minimization Ginzburg–Landau energy 35J55 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-e170t-32b9c451fb91ea4a036aa47ab9c414ffd8ccd180cbf02961e62df2c2e02971653 |
ORCID | 0000-0003-3094-9084 |
OpenAccessLink | https://hal.science/hal-00578445 |
PageCount | 22 |
ParticipantIDs | hal_primary_oai_HAL_hal_00578445v3 elsevier_sciencedirect_doi_10_1016_j_na_2012_07_004 |
PublicationCentury | 2000 |
PublicationDate | November 2012 2012-11 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: November 2012 |
PublicationDecade | 2010 |
PublicationTitle | Nonlinear analysis |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Bethuel, Brezis, Orlandi (br000035) 2000; 331 Dos Santos, Misiats (br000045) 2011; 6 Lassoued, Mironescu (br000005) 1999; 77 Lin, Rivière (br000015) 1999; 1 Brezis, Coron, Lieb (br000025) 1986; 107 Brezis (br000050) 2006; vol. 244 Sandier (br000010) 2001; 50 Brezis (br000055) 1987; vol. 5 Bourgain, Brezis, Mironescu (br000020) 2004; 99 Lin, Rivière (br000030) 2001; 54 Liu, Zhou (br000040) 2010; 11 Demazure (br000060) 2000 |
References_xml | – volume: 77 start-page: 1 year: 1999 end-page: 26 ident: br000005 article-title: Ginzburg–Landau type energy with discontinuous constraint publication-title: J. Anal. Math. – volume: 99 start-page: 1 year: 2004 end-page: 115 ident: br000020 article-title: maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation publication-title: Publ. Math. Inst. Hautes Études Sci. – volume: 50 start-page: 1807 year: 2001 end-page: 1844 ident: br000010 article-title: Ginzburg–Landau minimizers from publication-title: Indiana Univ. Math. J. – volume: 1 start-page: 237 year: 1999 end-page: 311 ident: br000015 article-title: Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents publication-title: J. Eur. Math. Soc. (JEMS) – volume: 107 start-page: 649 year: 1986 end-page: 705 ident: br000025 article-title: Harmonic maps with defects publication-title: Comm. Math. Phys. – volume: 11 start-page: 1046 year: 2010 end-page: 1060 ident: br000040 article-title: Vortex-filaments for inhomogeneous superconductors in three dimensions publication-title: Nonlinear Anal. RWA – volume: 54 start-page: 206 year: 2001 end-page: 228 ident: br000030 article-title: A quantization property for static Ginzburg–Landau vortices publication-title: Comm. Pure Appl. Math. – year: 2000 ident: br000060 publication-title: Bifurcations and Catastrophes – volume: 6 year: 2011 ident: br000045 article-title: Ginzburg–Landau model with small pinning domains publication-title: Netw. Heterog. Media – volume: vol. 5 start-page: 31 year: 1987 end-page: 52 ident: br000055 article-title: Liquid crystals and energy estimates for publication-title: Theory and Applications of Liquid Crystals (Minneapolis, Minn., 1985) – volume: 331 start-page: 763 year: 2000 end-page: 770 ident: br000035 article-title: Small energy solutions to the Ginzburg–Landau equation publication-title: C. R. Acad. Sci. Paris Sér. I Math. – volume: vol. 244 start-page: 137 year: 2006 end-page: 154 ident: br000050 article-title: New questions related to the topological degree publication-title: The Unity of Mathematics |
SSID | ssj0001736 |
Score | 2.0065508 |
Snippet | In a convex domain Ω⊂R3, we consider the minimization of a 3D-Ginzburg–Landau type energy Eε(u)=12∫Ω|∇u|2+12ε2(a2−|u|2)2 with a discontinuous pinning term a... In a convex domain $\O\subset\R^3$, we consider the minimization of a $3D$-Ginzburg-Landau type energy $E_\v(u)=\frac{1}{2}\int_\O|\n... |
SourceID | hal elsevier |
SourceType | Open Access Repository Publisher |
StartPage | 6275 |
SubjectTerms | Analysis of PDEs Energy minimization Ginzburg–Landau energy Mathematics Pinning Vorticity defects |
Title | Study of a 3D-Ginzburg–Landau functional with a discontinuous pinning term |
URI | https://dx.doi.org/10.1016/j.na.2012.07.004 https://hal.science/hal-00578445 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB11ucCBHbFWFuIaGi9xkmPFVqDlApV6s5zEEeWQVrRFggPiH_hDvgRP4yB65ehRnETj5M1oljcAp0ZyylKuvdQ6157Ic21xkIVeEOk4Etr3U4a9w_172R2I22EwrMF51QuDZZUO-0tMX6C1k7SdNtuT0aj9gNgbCDmkrMwH1qHJeCyDBjQ7N3fd-19ApiGXFYsUbnDZyrLMq0DyIQwIIpWhWDJJ9acquLowNlcbsOa8RNIpX2QTaqbYgnXnMRL3P063YPUPnaBd9X85WKfb0MMSwTcyzokm_MK7HhXvmFL5_vzqYfRgTtCklZFAgtFYexm26I5xdMR8PJ-SyWgxzoggeO_A4Ory8bzrudkJnqGhP_M4S-JUBDRPYmq0VTqXWotQo5TaI8miNM1o5KdJ7rNYUiNZlrOUGRxmRWXAd6FRjAuzBySRJuTGxNIkkRDWwQiECMOMJzLOwtyIfeCVztTS0SmLyqqqIntWhVaoaeVjxtvuOrHqVZOSU0Mhy3W301MowwZZfNIrP_jXrQ9hBVdlx-ARNGYvc3NsXYdZ0oL62QdtuQ_kBy5AwnA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4AHtSDD9T4dmO8VrqP7rZHgiJq4SIk3DbbdhvxUIiAiR6M_8F_6C9xh7YqV4-dbh-Zbb-ZzOMbhC6MYITGTDuxda4dnqba4iCVjufrwOfadWMKvcPdnugM-N3QG1ZQq-yFgbLKAvtzTF-gdSFpFNpsTEajxgNgr8fFkNA8H1hFK9xjEur6Lt9_6zyIZKLkkILlRa4yL_LKgHoIwoFAZMiXDFL1sQytLkxNewttFD4ibuavsY0qJqujzcJfxMXfOK2j9T9kgvao-8PAOt1BIRQIvuJxijVmV87NKHuDhMrXx2cIsYM5BoOWxwExxGLtMmjQHcPgiPl4PsWT0WKYEQbo3kWD9nW_1XGKyQmOIdKdOYxGQcw9kkYBMdqqnAmtudQgJXZDEj-OE-K7cZS6NBDECJqkNKYGRlkR4bE9VMvGmdlHOBJGMmMCYSKfc-teeJxLmbBIBIlMDT9ArNSZWto4ZTFZlTVkTyrTCjStXMh326vOrXrVJGfUUMBx3WmGCmTQHgtPemGH_7r1GVrt9LuhCm9790doDc7kvYPHqDZ7npsT60TMotPFR_INzBPDOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+a+%243D%24+Ginzburg-Landau+functional+with+a+discontinuous+pinning+term&rft.jtitle=Nonlinear+analysis&rft.au=dos+Santos%2C+Micka%C3%ABl&rft.date=2012-11-01&rft.pub=Elsevier&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=75&rft.issue=17&rft.spage=6275&rft.epage=6296&rft_id=info:doi/10.1016%2Fj.na.2012.07.004&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00578445v3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon |