Study of a 3D-Ginzburg–Landau functional with a discontinuous pinning term

In a convex domain Ω⊂R3, we consider the minimization of a 3D-Ginzburg–Landau type energy Eε(u)=12∫Ω|∇u|2+12ε2(a2−|u|2)2 with a discontinuous pinning term a among H1(Ω,C)-maps subject to a Dirichlet boundary condition g∈H1/2(∂Ω,S1). The pinning term a:R3→R+∗ takes a constant value b∈(0,1) in ω, an i...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis Vol. 75; no. 17; pp. 6275 - 6296
Main Author Dos Santos, Mickaël
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0362-546X
1873-5215
DOI10.1016/j.na.2012.07.004

Cover

Abstract In a convex domain Ω⊂R3, we consider the minimization of a 3D-Ginzburg–Landau type energy Eε(u)=12∫Ω|∇u|2+12ε2(a2−|u|2)2 with a discontinuous pinning term a among H1(Ω,C)-maps subject to a Dirichlet boundary condition g∈H1/2(∂Ω,S1). The pinning term a:R3→R+∗ takes a constant value b∈(0,1) in ω, an inner strictly convex subdomain of Ω, and 1 outside ω. We prove energy estimates with various error terms depending on assumptions on Ω,ω and g. In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of g (the singularities are polarized and quantified by their degrees which are ±1), vorticity defects are geodesics (computed w.r.t. a geodesic metric da2 depending only on a) joining two paired singularities of gpi&nσ(i) where σ is a minimal connection (computed w.r.t. a metric da2) of the singularities of g and p1,…,pk are the positive (resp. n1,…,nk are the negative) singularities.
AbstractList In a convex domain $\O\subset\R^3$, we consider the minimization of a $3D$-Ginzburg-Landau type energy $E_\v(u)=\frac{1}{2}\int_\O|\n u|^2+\frac{1}{2\v^2}(a^2-|u|^2)^2$ with a discontinuous pinning term $a$ among $H^1(\O,\C)$-maps subject to a Dirichlet boundary condition $g\in H^{1/2}(\p\O,\S^1)$. The pinning term $a:\R^3\to\R^*_+$ takes a constant value $b\in(0,1)$ in $\o$, an inner strictly convex subdomain of $\O$, and $1$ outside $\o$. We prove energy estimates with various error terms depending on assumptions on $\O,\o$ and $g$. In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of $g$ (the singularities are polarized and quantified by their degrees which are $\pm 1$), vorticity defects are geodesics (computed w.r.t. a geodesic metric $d_{a^2}$ depending only on $a$) joining two paired singularities of $g$ $p_i\& n_{\sigma(i)}$ where $\sigma$ is a minimal connection (computed w.r.t. a metric $d_{a^2}$) of the singularities of $g$ and $p_1,...p_k$ are the positive (resp. $n_1,...,n_k$ the negative) singularities.
In a convex domain Ω⊂R3, we consider the minimization of a 3D-Ginzburg–Landau type energy Eε(u)=12∫Ω|∇u|2+12ε2(a2−|u|2)2 with a discontinuous pinning term a among H1(Ω,C)-maps subject to a Dirichlet boundary condition g∈H1/2(∂Ω,S1). The pinning term a:R3→R+∗ takes a constant value b∈(0,1) in ω, an inner strictly convex subdomain of Ω, and 1 outside ω. We prove energy estimates with various error terms depending on assumptions on Ω,ω and g. In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of g (the singularities are polarized and quantified by their degrees which are ±1), vorticity defects are geodesics (computed w.r.t. a geodesic metric da2 depending only on a) joining two paired singularities of gpi&nσ(i) where σ is a minimal connection (computed w.r.t. a metric da2) of the singularities of g and p1,…,pk are the positive (resp. n1,…,nk are the negative) singularities.
Author Dos Santos, Mickaël
Author_xml – sequence: 1
  givenname: Mickaël
  surname: Dos Santos
  fullname: Dos Santos, Mickaël
  email: mickael.dos-santos@u-pec.fr
  organization: Université Paris-Est, LAMA–CNRS UMR 8050, 61, Avenue du Général de Gaulle, 94010 Créteil, France
BackLink https://hal.science/hal-00578445$$DView record in HAL
BookMark eNotkMtKw0AYhQepYK3uXWbrIvGfSzKpu1K1FQIuVHA3_JlLO6WdlFwqdeU7-IY-iQl1dTiHj8PhXJJRqIIl5IZCQoFmd5skYMKAsgRkAiDOyJjmkscpo-mIjIFnLE5F9nFBLptmAwBU8mxMite2M8eochFG_CFe-PBVdvXq9_unwGCwi1wXdOurgNvo07frHjO-0VVofeiqron2PgQfVlFr690VOXe4bez1v07I-9Pj23wZFy-L5_msiC2V0MaclVMtUurKKbUosN-GKCQOKRXOmVxrQ3PQpQM2zajNmHFMM9s7SbOUT8jtqXeNW7Wv_Q7ro6rQq-WsUEMGkMpciPTAe_b-xNp-0MHbWjXa26Ct8bXVrTKVVxTU8KHaqIBq-FCB7DsE_wPVf2hC
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DOI 10.1016/j.na.2012.07.004
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1873-5215
EndPage 6296
ExternalDocumentID oai_HAL_hal_00578445v3
S0362546X12002829
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
1XC
AATTM
AAXKI
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
ANKPU
APXCP
BNPGV
SSH
VOOES
ID FETCH-LOGICAL-e170t-32b9c451fb91ea4a036aa47ab9c414ffd8ccd180cbf02961e62df2c2e02971653
IEDL.DBID AIKHN
ISSN 0362-546X
IngestDate Fri May 09 12:28:26 EDT 2025
Fri Feb 23 02:29:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords 35J50
Vorticity defects
Pinning
35B40
Energy minimization
Ginzburg–Landau energy
35J55
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e170t-32b9c451fb91ea4a036aa47ab9c414ffd8ccd180cbf02961e62df2c2e02971653
ORCID 0000-0003-3094-9084
OpenAccessLink https://hal.science/hal-00578445
PageCount 22
ParticipantIDs hal_primary_oai_HAL_hal_00578445v3
elsevier_sciencedirect_doi_10_1016_j_na_2012_07_004
PublicationCentury 2000
PublicationDate November 2012
2012-11
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: November 2012
PublicationDecade 2010
PublicationTitle Nonlinear analysis
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Bethuel, Brezis, Orlandi (br000035) 2000; 331
Dos Santos, Misiats (br000045) 2011; 6
Lassoued, Mironescu (br000005) 1999; 77
Lin, Rivière (br000015) 1999; 1
Brezis, Coron, Lieb (br000025) 1986; 107
Brezis (br000050) 2006; vol. 244
Sandier (br000010) 2001; 50
Brezis (br000055) 1987; vol. 5
Bourgain, Brezis, Mironescu (br000020) 2004; 99
Lin, Rivière (br000030) 2001; 54
Liu, Zhou (br000040) 2010; 11
Demazure (br000060) 2000
References_xml – volume: 77
  start-page: 1
  year: 1999
  end-page: 26
  ident: br000005
  article-title: Ginzburg–Landau type energy with discontinuous constraint
  publication-title: J. Anal. Math.
– volume: 99
  start-page: 1
  year: 2004
  end-page: 115
  ident: br000020
  article-title: maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation
  publication-title: Publ. Math. Inst. Hautes Études Sci.
– volume: 50
  start-page: 1807
  year: 2001
  end-page: 1844
  ident: br000010
  article-title: Ginzburg–Landau minimizers from
  publication-title: Indiana Univ. Math. J.
– volume: 1
  start-page: 237
  year: 1999
  end-page: 311
  ident: br000015
  article-title: Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents
  publication-title: J. Eur. Math. Soc. (JEMS)
– volume: 107
  start-page: 649
  year: 1986
  end-page: 705
  ident: br000025
  article-title: Harmonic maps with defects
  publication-title: Comm. Math. Phys.
– volume: 11
  start-page: 1046
  year: 2010
  end-page: 1060
  ident: br000040
  article-title: Vortex-filaments for inhomogeneous superconductors in three dimensions
  publication-title: Nonlinear Anal. RWA
– volume: 54
  start-page: 206
  year: 2001
  end-page: 228
  ident: br000030
  article-title: A quantization property for static Ginzburg–Landau vortices
  publication-title: Comm. Pure Appl. Math.
– year: 2000
  ident: br000060
  publication-title: Bifurcations and Catastrophes
– volume: 6
  year: 2011
  ident: br000045
  article-title: Ginzburg–Landau model with small pinning domains
  publication-title: Netw. Heterog. Media
– volume: vol. 5
  start-page: 31
  year: 1987
  end-page: 52
  ident: br000055
  article-title: Liquid crystals and energy estimates for
  publication-title: Theory and Applications of Liquid Crystals (Minneapolis, Minn., 1985)
– volume: 331
  start-page: 763
  year: 2000
  end-page: 770
  ident: br000035
  article-title: Small energy solutions to the Ginzburg–Landau equation
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– volume: vol. 244
  start-page: 137
  year: 2006
  end-page: 154
  ident: br000050
  article-title: New questions related to the topological degree
  publication-title: The Unity of Mathematics
SSID ssj0001736
Score 2.0065508
Snippet In a convex domain Ω⊂R3, we consider the minimization of a 3D-Ginzburg–Landau type energy Eε(u)=12∫Ω|∇u|2+12ε2(a2−|u|2)2 with a discontinuous pinning term a...
In a convex domain $\O\subset\R^3$, we consider the minimization of a $3D$-Ginzburg-Landau type energy $E_\v(u)=\frac{1}{2}\int_\O|\n...
SourceID hal
elsevier
SourceType Open Access Repository
Publisher
StartPage 6275
SubjectTerms Analysis of PDEs
Energy minimization
Ginzburg–Landau energy
Mathematics
Pinning
Vorticity defects
Title Study of a 3D-Ginzburg–Landau functional with a discontinuous pinning term
URI https://dx.doi.org/10.1016/j.na.2012.07.004
https://hal.science/hal-00578445
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB11ucCBHbFWFuIaGi9xkmPFVqDlApV6s5zEEeWQVrRFggPiH_hDvgRP4yB65ehRnETj5M1oljcAp0ZyylKuvdQ6157Ic21xkIVeEOk4Etr3U4a9w_172R2I22EwrMF51QuDZZUO-0tMX6C1k7SdNtuT0aj9gNgbCDmkrMwH1qHJeCyDBjQ7N3fd-19ApiGXFYsUbnDZyrLMq0DyIQwIIpWhWDJJ9acquLowNlcbsOa8RNIpX2QTaqbYgnXnMRL3P063YPUPnaBd9X85WKfb0MMSwTcyzokm_MK7HhXvmFL5_vzqYfRgTtCklZFAgtFYexm26I5xdMR8PJ-SyWgxzoggeO_A4Ory8bzrudkJnqGhP_M4S-JUBDRPYmq0VTqXWotQo5TaI8miNM1o5KdJ7rNYUiNZlrOUGRxmRWXAd6FRjAuzBySRJuTGxNIkkRDWwQiECMOMJzLOwtyIfeCVztTS0SmLyqqqIntWhVaoaeVjxtvuOrHqVZOSU0Mhy3W301MowwZZfNIrP_jXrQ9hBVdlx-ARNGYvc3NsXYdZ0oL62QdtuQ_kBy5AwnA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4AHtSDD9T4dmO8VrqP7rZHgiJq4SIk3DbbdhvxUIiAiR6M_8F_6C9xh7YqV4-dbh-Zbb-ZzOMbhC6MYITGTDuxda4dnqba4iCVjufrwOfadWMKvcPdnugM-N3QG1ZQq-yFgbLKAvtzTF-gdSFpFNpsTEajxgNgr8fFkNA8H1hFK9xjEur6Lt9_6zyIZKLkkILlRa4yL_LKgHoIwoFAZMiXDFL1sQytLkxNewttFD4ibuavsY0qJqujzcJfxMXfOK2j9T9kgvao-8PAOt1BIRQIvuJxijVmV87NKHuDhMrXx2cIsYM5BoOWxwExxGLtMmjQHcPgiPl4PsWT0WKYEQbo3kWD9nW_1XGKyQmOIdKdOYxGQcw9kkYBMdqqnAmtudQgJXZDEj-OE-K7cZS6NBDECJqkNKYGRlkR4bE9VMvGmdlHOBJGMmMCYSKfc-teeJxLmbBIBIlMDT9ArNSZWto4ZTFZlTVkTyrTCjStXMh326vOrXrVJGfUUMBx3WmGCmTQHgtPemGH_7r1GVrt9LuhCm9790doDc7kvYPHqDZ7npsT60TMotPFR_INzBPDOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+a+%243D%24+Ginzburg-Landau+functional+with+a+discontinuous+pinning+term&rft.jtitle=Nonlinear+analysis&rft.au=dos+Santos%2C+Micka%C3%ABl&rft.date=2012-11-01&rft.pub=Elsevier&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=75&rft.issue=17&rft.spage=6275&rft.epage=6296&rft_id=info:doi/10.1016%2Fj.na.2012.07.004&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00578445v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon