Stepwise Parameter Fitting to Combine Industrial and Pilot Plant Datasets

In kinetic model development for hydrotreatment processes industrial data are generally not used because deactivation must be taken into account, which is very difficult due to the high complexity of chemical phenomena. This is unfortunate because industrial data contains far larger feedstocks varia...

Full description

Saved in:
Bibliographic Details
Published inComputer Aided Chemical Engineering Vol. 53; pp. 901 - 906
Main Authors Becker, Per Julian, Celse, Benoit
Format Book Chapter Journal Article
LanguageEnglish
Published Elsevier 2024
SeriesComputer Aided Chemical Engineering
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In kinetic model development for hydrotreatment processes industrial data are generally not used because deactivation must be taken into account, which is very difficult due to the high complexity of chemical phenomena. This is unfortunate because industrial data contains far larger feedstocks variation compared to pilot plant tests. The aim of this work is to propose an innovative method to include industrial data in kinetic model fitting. A stepwise parameter fitting method is proposed to use both pilot plant and industrial data. Pilot plant experiments provide robust data but with small feed variations, on the contrary industrial plant data provide huge feed variation. To obtain more robust models, a combined modeling framework for the kinetic reactor and deactivation models, solved simultaneously, is proposed for the HDN reaction in a hydrotreatment reactor. The kinetic parameters (reaction orders, activation energy) are calibrated on pilot plant points, while the empirical feedstock parameters as well as the deactivation model is calibrated on industrial points. This methodology leverages the strengths of each of the two datasets which results in more robust predictive models.
AbstractList In kinetic model development for hydrotreatment processes industrial data are generally not used because deactivation must be taken into account, which is very difficult due to the high complexity of chemical phenomena. This is unfortunate because industrial data contains far larger feedstocks variation compared to pilot plant tests. The aim of this work is to propose an innovative method to include industrial data in kinetic model fitting. A stepwise parameter fitting method is proposed to use both pilot plant and industrial data. Pilot plant experiments provide robust data but with small feed variations, on the contrary industrial plant data provide huge feed variation. To obtain more robust models, a combined modeling framework for the kinetic reactor and deactivation models, solved simultaneously, is proposed for the HDN reaction in a hydrotreatment reactor. The kinetic parameters (reaction orders, activation energy) are calibrated on pilot plant points, while the empirical feedstock parameters as well as the deactivation model is calibrated on industrial points. This methodology leverages the strengths of each of the two datasets which results in more robust predictive models.
Author Celse, Benoit
Becker, Per Julian
Author_xml – sequence: 1
  givenname: Per Julian
  surname: Becker
  fullname: Becker, Per Julian
  email: per.becker@ifpen.fr
  organization: IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France
– sequence: 2
  givenname: Benoit
  surname: Celse
  fullname: Celse, Benoit
  organization: IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France
BackLink https://ifp.hal.science/hal-04920962$$DView record in HAL
BookMark eNotkF1Lw0AQRResYK39D4tvPqzuJPuRfayttYWCBfV5mSSjLqSbkqwV_71p69PAnMvlcq7ZKLaRGLsFeQ8SzMOjs4WQQqlcZEWRKQH3WoIGoS7YdGByICcAIzYGbaWwTpkrNu37UEpwBlzh5JitXxPtf0JPfIsd7ihRx5chpRA_eWr5vN2VIRJfx_q7T13AhmOs-TY0beLbBmPiC0zYU-pv2OUHNj1N_--EvS-f3uYrsXl5Xs9nG0FgdBIuAyiwNFYbI1GhAlejUc6hyfKqgMJaJYfhpXYGlcm1slWlyZZQImGe5RN2d-79wsbvu7DD7te3GPxqtvHHn1Quk85kBxiyi3OWhkGHQJ3vq0Cxojp0VCVft8GD9Eej_mjUSz948ydxHvzJqFf5H0Gqadk
ContentType Book Chapter
Journal Article
Copyright 2024 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
DOI 10.1016/B978-0-443-28824-1.50151-4
DatabaseName Hyper Article en Ligne (HAL)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EndPage 906
ExternalDocumentID oai_HAL_hal_04920962v1
B9780443288241501514
GroupedDBID AABBV
ALMA_UNASSIGNED_HOLDINGS
BBABE
1XC
ADWVC
ID FETCH-LOGICAL-e165t-92118ab675660a4a419da6499a623c8187740882b596a463547cc5e7b1baea323
ISBN 9780443288241
0443288240
ISSN 1570-7946
IngestDate Fri May 09 12:18:08 EDT 2025
Sat Jan 25 15:59:36 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Catalyst Deactivation
Industrial Data
Hydrotreatment
Modeling
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e165t-92118ab675660a4a419da6499a623c8187740882b596a463547cc5e7b1baea323
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_04920962v1
elsevier_sciencedirect_doi_10_1016_B978_0_443_28824_1_50151_4
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationSeriesTitle Computer Aided Chemical Engineering
PublicationTitle Computer Aided Chemical Engineering
PublicationYear 2024
Publisher Elsevier
Publisher_xml – name: Elsevier
References Chehadeh, Ma, Al Bazzaz (bb0010) 2023; 334
Rodriguez (bb0015) 2018; 225
Forzatti, Lietti (bb0005) 1999; 52
Becker, Celse, Guillaume, Costa, Bertier, Guillon, Pirngruber (bb0020) 2016
Pang (bb0030) 2024; 1193386
Becker, Serrand, Celse, Guillaume, Dulot (bb0025) 2016; 165
References_xml – volume: 334
  year: 2023
  ident: bb0010
  article-title: Recent progress in hydrotreating kinetics and modeling of heavy oil and residue: A review
  publication-title: Fuel
– volume: 1193386
  year: 2024
  ident: bb0030
  article-title: Data-driven prediction of product yields and control framework of hydrocracking unit
  publication-title: Chemical Engineering Science
– volume: 225
  start-page: 118
  year: 2018
  end-page: 133
  ident: bb0015
  article-title: Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons
  publication-title: Fuel.
– volume: 165
  start-page: 306
  year: 2016
  end-page: 315
  ident: bb0025
  article-title: Comparing hydrocracking models: Continuous lumping vs. single events
  publication-title: Fuel
– volume: 52
  start-page: 165
  year: 1999
  end-page: 181
  ident: bb0005
  article-title: Catalyst deactivation
  publication-title: Catalysis Today
– start-page: 73
  year: 2016
  end-page: 82
  ident: bb0020
  article-title: A continuous lumping model for hydrocracking on a zeolite catalysts: model development and parameter identification
  publication-title: Fuel
SSID ssib019619890
ssib055836272
ssib056837921
ssib056258536
ssib045323371
Score 2.2829385
Snippet In kinetic model development for hydrotreatment processes industrial data are generally not used because deactivation must be taken into account, which is very...
SourceID hal
elsevier
SourceType Open Access Repository
Publisher
StartPage 901
SubjectTerms Catalyst Deactivation
Chemical engineering
Chemical Sciences
Hydrotreatment
Industrial Data
Modeling
Title Stepwise Parameter Fitting to Combine Industrial and Pilot Plant Datasets
URI https://dx.doi.org/10.1016/B978-0-443-28824-1.50151-4
https://ifp.hal.science/hal-04920962
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXY5YK4FAGiUJCFuKGUOLGd5MBhW1EtLSA-WrE3y068aiS0i8CAxK_n2Yk3CSoH4JJsoigTz_OO34xmxoQ8YWlT1FklErEuqoSXep3oXNukNhp8Q2a61D7e8fqNXF7w05VYDdvcheoSZw7rn1fWlfwLqrgHXH2V7F8gu3spbuA38MURCOP4G_mdhlm7vgL9fgxPF23jw7Sx8n_UYXDna9uYPPEWz_uS6GFOHPvFMaBsN9vWjaeQzwD70X61oJk-hcvLOmm7PGkwVsg3nqKONv8IlQftp60LeyE5TCmHRdJNQgsZH4UWooeZcp5nYOGcjY1kkSa-Mf3Yiop8ZAar_i22v5JXGusubnDU9fiFnCQIStihAEdhffHPtBn20eSTwnN8RmZFKebk-uL03epDNCawLD4dbGeMuMizfNT7T4gSa_dQNOwdQVAXOVzDda-6ur043tDRoBeexu5N8WNiR1smn_15SBPKM7uMwftAZs73yE1f4EJ95QkGfYtcs5vb5GUEm-7Apj3Y1G1pDzYdwKYAmwawaQCbRrDvkIuTF-fHy6TfZiOxTAqXYJCs1Aaeo5Sp5pqzqtESnrAGNa5B6OAheEfMiEpqDoLKi7oWtjDMaKuh1btkvtlu7D1C4fynJmMNOKTBYtCUWgvTiNpYuWZrVu6T53H4qmd4HXNTmBMqJhx69alUQX0qqE8xFdSn-D55DJ2pz10jFuVboy8Xr5S_B083gzuefWf3_1PIA3Jj-DMckLn78s0-BPN05lE_x_z57P3Hs19UUG8P
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Becker%2C+Per+Julian&rft.au=Celse%2C+Benoit&rft.atitle=Stepwise+Parameter+Fitting+to+Combine+Industrial+and+Pilot+Plant+Datasets&rft.date=2024-01-01&rft.isbn=9780443288241&rft.issn=1570-7946&rft.volume=53&rft.spage=901&rft.epage=906&rft_id=info:doi/10.1016%2FB978-0-443-28824-1.50151-4&rft.externalDocID=B9780443288241501514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon