Stepwise Parameter Fitting to Combine Industrial and Pilot Plant Datasets
In kinetic model development for hydrotreatment processes industrial data are generally not used because deactivation must be taken into account, which is very difficult due to the high complexity of chemical phenomena. This is unfortunate because industrial data contains far larger feedstocks varia...
Saved in:
Published in | Computer Aided Chemical Engineering Vol. 53; pp. 901 - 906 |
---|---|
Main Authors | , |
Format | Book Chapter Journal Article |
Language | English |
Published |
Elsevier
2024
|
Series | Computer Aided Chemical Engineering |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In kinetic model development for hydrotreatment processes industrial data are generally not used because deactivation must be taken into account, which is very difficult due to the high complexity of chemical phenomena. This is unfortunate because industrial data contains far larger feedstocks variation compared to pilot plant tests. The aim of this work is to propose an innovative method to include industrial data in kinetic model fitting. A stepwise parameter fitting method is proposed to use both pilot plant and industrial data. Pilot plant experiments provide robust data but with small feed variations, on the contrary industrial plant data provide huge feed variation. To obtain more robust models, a combined modeling framework for the kinetic reactor and deactivation models, solved simultaneously, is proposed for the HDN reaction in a hydrotreatment reactor. The kinetic parameters (reaction orders, activation energy) are calibrated on pilot plant points, while the empirical feedstock parameters as well as the deactivation model is calibrated on industrial points. This methodology leverages the strengths of each of the two datasets which results in more robust predictive models. |
---|---|
AbstractList | In kinetic model development for hydrotreatment processes industrial data are generally not used because deactivation must be taken into account, which is very difficult due to the high complexity of chemical phenomena. This is unfortunate because industrial data contains far larger feedstocks variation compared to pilot plant tests. The aim of this work is to propose an innovative method to include industrial data in kinetic model fitting. A stepwise parameter fitting method is proposed to use both pilot plant and industrial data. Pilot plant experiments provide robust data but with small feed variations, on the contrary industrial plant data provide huge feed variation. To obtain more robust models, a combined modeling framework for the kinetic reactor and deactivation models, solved simultaneously, is proposed for the HDN reaction in a hydrotreatment reactor. The kinetic parameters (reaction orders, activation energy) are calibrated on pilot plant points, while the empirical feedstock parameters as well as the deactivation model is calibrated on industrial points. This methodology leverages the strengths of each of the two datasets which results in more robust predictive models. |
Author | Celse, Benoit Becker, Per Julian |
Author_xml | – sequence: 1 givenname: Per Julian surname: Becker fullname: Becker, Per Julian email: per.becker@ifpen.fr organization: IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France – sequence: 2 givenname: Benoit surname: Celse fullname: Celse, Benoit organization: IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France |
BackLink | https://ifp.hal.science/hal-04920962$$DView record in HAL |
BookMark | eNotkF1Lw0AQRResYK39D4tvPqzuJPuRfayttYWCBfV5mSSjLqSbkqwV_71p69PAnMvlcq7ZKLaRGLsFeQ8SzMOjs4WQQqlcZEWRKQH3WoIGoS7YdGByICcAIzYGbaWwTpkrNu37UEpwBlzh5JitXxPtf0JPfIsd7ihRx5chpRA_eWr5vN2VIRJfx_q7T13AhmOs-TY0beLbBmPiC0zYU-pv2OUHNj1N_--EvS-f3uYrsXl5Xs9nG0FgdBIuAyiwNFYbI1GhAlejUc6hyfKqgMJaJYfhpXYGlcm1slWlyZZQImGe5RN2d-79wsbvu7DD7te3GPxqtvHHn1Quk85kBxiyi3OWhkGHQJ3vq0Cxojp0VCVft8GD9Eej_mjUSz948ydxHvzJqFf5H0Gqadk |
ContentType | Book Chapter Journal Article |
Copyright | 2024 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 1XC |
DOI | 10.1016/B978-0-443-28824-1.50151-4 |
DatabaseName | Hyper Article en Ligne (HAL) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 906 |
ExternalDocumentID | oai_HAL_hal_04920962v1 B9780443288241501514 |
GroupedDBID | AABBV ALMA_UNASSIGNED_HOLDINGS BBABE 1XC ADWVC |
ID | FETCH-LOGICAL-e165t-92118ab675660a4a419da6499a623c8187740882b596a463547cc5e7b1baea323 |
ISBN | 9780443288241 0443288240 |
ISSN | 1570-7946 |
IngestDate | Fri May 09 12:18:08 EDT 2025 Sat Jan 25 15:59:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Catalyst Deactivation Industrial Data Hydrotreatment Modeling |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-e165t-92118ab675660a4a419da6499a623c8187740882b596a463547cc5e7b1baea323 |
PageCount | 6 |
ParticipantIDs | hal_primary_oai_HAL_hal_04920962v1 elsevier_sciencedirect_doi_10_1016_B978_0_443_28824_1_50151_4 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationSeriesTitle | Computer Aided Chemical Engineering |
PublicationTitle | Computer Aided Chemical Engineering |
PublicationYear | 2024 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Chehadeh, Ma, Al Bazzaz (bb0010) 2023; 334 Rodriguez (bb0015) 2018; 225 Forzatti, Lietti (bb0005) 1999; 52 Becker, Celse, Guillaume, Costa, Bertier, Guillon, Pirngruber (bb0020) 2016 Pang (bb0030) 2024; 1193386 Becker, Serrand, Celse, Guillaume, Dulot (bb0025) 2016; 165 |
References_xml | – volume: 334 year: 2023 ident: bb0010 article-title: Recent progress in hydrotreating kinetics and modeling of heavy oil and residue: A review publication-title: Fuel – volume: 1193386 year: 2024 ident: bb0030 article-title: Data-driven prediction of product yields and control framework of hydrocracking unit publication-title: Chemical Engineering Science – volume: 225 start-page: 118 year: 2018 end-page: 133 ident: bb0015 article-title: Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons publication-title: Fuel. – volume: 165 start-page: 306 year: 2016 end-page: 315 ident: bb0025 article-title: Comparing hydrocracking models: Continuous lumping vs. single events publication-title: Fuel – volume: 52 start-page: 165 year: 1999 end-page: 181 ident: bb0005 article-title: Catalyst deactivation publication-title: Catalysis Today – start-page: 73 year: 2016 end-page: 82 ident: bb0020 article-title: A continuous lumping model for hydrocracking on a zeolite catalysts: model development and parameter identification publication-title: Fuel |
SSID | ssib019619890 ssib055836272 ssib056837921 ssib056258536 ssib045323371 |
Score | 2.2829385 |
Snippet | In kinetic model development for hydrotreatment processes industrial data are generally not used because deactivation must be taken into account, which is very... |
SourceID | hal elsevier |
SourceType | Open Access Repository Publisher |
StartPage | 901 |
SubjectTerms | Catalyst Deactivation Chemical engineering Chemical Sciences Hydrotreatment Industrial Data Modeling |
Title | Stepwise Parameter Fitting to Combine Industrial and Pilot Plant Datasets |
URI | https://dx.doi.org/10.1016/B978-0-443-28824-1.50151-4 https://ifp.hal.science/hal-04920962 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXY5YK4FAGiUJCFuKGUOLGd5MBhW1EtLSA-WrE3y068aiS0i8CAxK_n2Yk3CSoH4JJsoigTz_OO34xmxoQ8YWlT1FklErEuqoSXep3oXNukNhp8Q2a61D7e8fqNXF7w05VYDdvcheoSZw7rn1fWlfwLqrgHXH2V7F8gu3spbuA38MURCOP4G_mdhlm7vgL9fgxPF23jw7Sx8n_UYXDna9uYPPEWz_uS6GFOHPvFMaBsN9vWjaeQzwD70X61oJk-hcvLOmm7PGkwVsg3nqKONv8IlQftp60LeyE5TCmHRdJNQgsZH4UWooeZcp5nYOGcjY1kkSa-Mf3Yiop8ZAar_i22v5JXGusubnDU9fiFnCQIStihAEdhffHPtBn20eSTwnN8RmZFKebk-uL03epDNCawLD4dbGeMuMizfNT7T4gSa_dQNOwdQVAXOVzDda-6ur043tDRoBeexu5N8WNiR1smn_15SBPKM7uMwftAZs73yE1f4EJ95QkGfYtcs5vb5GUEm-7Apj3Y1G1pDzYdwKYAmwawaQCbRrDvkIuTF-fHy6TfZiOxTAqXYJCs1Aaeo5Sp5pqzqtESnrAGNa5B6OAheEfMiEpqDoLKi7oWtjDMaKuh1btkvtlu7D1C4fynJmMNOKTBYtCUWgvTiNpYuWZrVu6T53H4qmd4HXNTmBMqJhx69alUQX0qqE8xFdSn-D55DJ2pz10jFuVboy8Xr5S_B083gzuefWf3_1PIA3Jj-DMckLn78s0-BPN05lE_x_z57P3Hs19UUG8P |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Becker%2C+Per+Julian&rft.au=Celse%2C+Benoit&rft.atitle=Stepwise+Parameter+Fitting+to+Combine+Industrial+and+Pilot+Plant+Datasets&rft.date=2024-01-01&rft.isbn=9780443288241&rft.issn=1570-7946&rft.volume=53&rft.spage=901&rft.epage=906&rft_id=info:doi/10.1016%2FB978-0-443-28824-1.50151-4&rft.externalDocID=B9780443288241501514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon |