Cubic polynomial and cubic rational C1 sign, monotonicity and convexity preserving Hermite interpolation
The subject of this paper is C1 sign, monotonicity and convexity preserving spline interpolation to a set of ordered points from a real function of one real variable. Two solutions are proposed constructing, respectively, a Hermite parametric polynomial Cubic Spline (CS), and a Hermite Cubic Rationa...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 357; pp. 184 - 203 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0377-0427 1879-1778 |
DOI | 10.1016/j.cam.2019.02.024 |
Cover
Loading…
Abstract | The subject of this paper is C1 sign, monotonicity and convexity preserving spline interpolation to a set of ordered points from a real function of one real variable. Two solutions are proposed constructing, respectively, a Hermite parametric polynomial Cubic Spline (CS), and a Hermite Cubic Rational polynomial Spline (CRS). Both curves are based on the shape preserving Hermite Variable Degree Spline (VDS) Gabrielides and Sapidis (2018) (first introduced in Kaklis and Pandelis (1990)) and they use the Bézier representation of polynomials. Since the CS curve is parametric, the present problem also requires calculation of the y-component of CS for any specific x-value; a robust solution to this problem is discussed in detail. The CRS is non-parametric and it does solve the given interpolation-problem with its weights (which play the role of tension parameters) being directly computed using the properties of the VDS segments. |
---|---|
AbstractList | The subject of this paper is C1 sign, monotonicity and convexity preserving spline interpolation to a set of ordered points from a real function of one real variable. Two solutions are proposed constructing, respectively, a Hermite parametric polynomial Cubic Spline (CS), and a Hermite Cubic Rational polynomial Spline (CRS). Both curves are based on the shape preserving Hermite Variable Degree Spline (VDS) Gabrielides and Sapidis (2018) (first introduced in Kaklis and Pandelis (1990)) and they use the Bézier representation of polynomials. Since the CS curve is parametric, the present problem also requires calculation of the y-component of CS for any specific x-value; a robust solution to this problem is discussed in detail. The CRS is non-parametric and it does solve the given interpolation-problem with its weights (which play the role of tension parameters) being directly computed using the properties of the VDS segments. |
Author | Sapidis, Nickolas S. Gabrielides, Nikolaos C. |
Author_xml | – sequence: 1 givenname: Nikolaos C. orcidid: 0000-0001-7323-4914 surname: Gabrielides fullname: Gabrielides, Nikolaos C. email: nikolaos.gavriilidis@dnvgl.com organization: Principal Specialist in Geometric Modelling, DNV GL - Digital Solutions, Veritasveien 1, 1363, Høvik, Norway – sequence: 2 givenname: Nickolas S. surname: Sapidis fullname: Sapidis, Nickolas S. email: nsapidis@uowm.gr organization: Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera Str., GR 50132, Kozani, Greece |
BookMark | eNotkF1LwzAUhoNMcJv-AO_6A2w9-VjT4JUUdcLAG70OaXo6M9ZktHG4f2-6CS8czsvhOfAsyMwHj4TcUygo0PJxV1jTFwyoKoCliCsyp5VUOZWympE5cClzEEzekMU47gCgVFTMyXf90zibHcL-5EPvzD4zvs3suRxMdMGnqqbZ6Lb-IeuDDzF4Z108XQ6DP-LvtB0GHHE4Or_N1jj0LmLmfMQhkc-YW3Ldmf2Id_9zSb5eXz7rdb75eHuvnzc5Ui5jzrCrWka56lhTQSMEpYYLbsWqYU1jVAnKQAdihQitMlIwY0qpqKxQcZEYS_J04WJ6cnQ46NE69BZbN6CNug1OU9CTNL3TSZqepGlgKYL_AY-tZP4 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DOI | 10.1016/j.cam.2019.02.024 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
EndPage | 203 |
ExternalDocumentID | S0377042719300974 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- |
ID | FETCH-LOGICAL-e137t-2ef8d2139f2b80b4411a343c45b2bba9609a0f045ee0d9a742aa679178e934e13 |
IEDL.DBID | IXB |
ISSN | 0377-0427 |
IngestDate | Fri Feb 23 02:31:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Composite Bézier curves Shape preservation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-e137t-2ef8d2139f2b80b4411a343c45b2bba9609a0f045ee0d9a742aa679178e934e13 |
ORCID | 0000-0001-7323-4914 |
PageCount | 20 |
ParticipantIDs | elsevier_sciencedirect_doi_10_1016_j_cam_2019_02_024 |
PublicationCentury | 2000 |
PublicationDate | September 2019 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | (Accessed 12.11.18). Goodman (b45) 2001 Gabrielides, Sapidis (b18) 2018; 343 Zhao, Wang, Hong (b32) 2011; 46 Sarfraz (b47) 2003; 27 Aràndiga (b3) 2013; 51 Akima (b35) 1970; 17 Gregory, Sarfraz (b14) 1990; 7 Edelman, Micchelli (b28) 1987; 51 Pruess (b16) 1993; 13 Tan, Yao, Cao, Zhang (b10) 2014; 245 Hamad (b21) 2016 (Accessed: 12.11.18). Foley (b43) 1988; 5 Dassault Systèmes, Spatial Support and Services, Personal communication by email on 21-08-2018. Sarfraz, Hussain, Hussain (b6) 2012; 89 Brodlie (b36) 1985 Gabrielides (b7) 2012; 3 Gregory (b44) 1986; 18 Sapidis, Kaklis (b25) 1995 Lamberti, Manni (b15) 2001; 28 Hussain, Sarfraz (b38) 2008; 218 Costantini, Kaklis, Manni (b1) 2010; 27 Fuhr, Kallay (b46) 1992; 9 DNV-GL Digital Solutions. Conceptual modelling of offshore and maritime structures - GeniE, 2018. Coduto (b33) 2001 Folland (b49) 1999 Kaklis, Pandelis (b19) 1990; 10 Costantini, Morandi (b42) 1984; 21 Manni (b30) 2001; 41 McAllister, Roulier (b40) 1978; 32 Schumaker (b41) 1983; 20 Hoschek (b23) 1990 Fritsch, Butland (b39) 1984; 5 Kvasov (b2) 2014; 40 Farin (b4) 2002 Delbourgo, Gregory (b13) 1985; 6 Costantini, Morandi (b26) 1984; 21 Madabhushi, Knappett, Haigh (b34) 2010 Solid Modeling Solutions Libraries, NLib Introduction, 2018. Manni (b29) 1996; 69 I. Baydoun, Analytical formula for the roots of the general complex cubic polynomial, 2018. Sarfraz (b17) 1993; 8 Mezentsev, Woehler (b24) 1999 Costantini (b27) 1986; 46 Pitolli (b9) 2014; 106 Abbas, Majid, Ali (b5) 2012; 219 Novara, Romani (b8) 2018; 147 Delbourgo (b48) 1989; 9 Conti, Morandi (b12) 1996; 56 Han, Ma, Huang (b37) 2009; 22 |
References_xml | – volume: 56 start-page: 323 year: 1996 end-page: 341 ident: b12 article-title: Piecewise publication-title: Computing – volume: 106 start-page: 185 year: 2014 end-page: 194 ident: b9 article-title: Ternary shape-preserving subdivision schemes publication-title: Math. Comput. Simulation – volume: 69 start-page: 143 year: 1996 end-page: 157 ident: b29 article-title: comonotone Hermite interpolation via parametric cubics publication-title: J. Comput. Appl. Math. – reference: DNV-GL Digital Solutions. Conceptual modelling of offshore and maritime structures - GeniE, 2018. – start-page: 285 year: 1995 end-page: 301 ident: b25 article-title: A hybrid method for shape-preserving interpolation with curvature-continuous quintic splines publication-title: Geometric Modelling – volume: 51 start-page: 2613 year: 2013 end-page: 2633 ident: b3 article-title: On the order of nonuniform monotone cubic Hermite interpolants publication-title: SIAM J. Numer. Anal. – volume: 5 start-page: 300 year: 1984 end-page: 304 ident: b39 article-title: A method for constructing local monotone piecewise cubic interpolants publication-title: SIAM J. Sci. Stat. Comput. – volume: 147 start-page: 194 year: 2018 end-page: 209 ident: b8 article-title: On the interpolating 5-point ternary subdivision scheme: A revised proof of convexity-preservation and an application-oriented extension publication-title: Math. Comput. Simulation – volume: 3 start-page: 1 year: 2012 end-page: 12 ident: b7 article-title: Hermite shape preserving polynomial splines in publication-title: 3D Res. – year: 2010 ident: b34 article-title: Design of Pile Foundations in Liquefiable Soils – volume: 20 start-page: 854 year: 1983 end-page: 864 ident: b41 article-title: On shape preserving quadratic spline interpolation publication-title: SIAM J. Numer. Anal. – volume: 21 start-page: 295 year: 1984 end-page: 305 ident: b42 article-title: An algorithm for computing shape-preserving cubic spline interpolation to data publication-title: Calcolo – volume: 32 start-page: 1154 year: 1978 end-page: 1162 ident: b40 article-title: Interpolation by convex quadratic splines publication-title: Math. Comp. – volume: 28 start-page: 229 year: 2001 end-page: 254 ident: b15 article-title: Shape-preserving publication-title: Numer. Algorithms – volume: 6 start-page: 967 year: 1985 end-page: 976 ident: b13 article-title: Shape preserving piecewise rational interpolation publication-title: SIAM J. Sci. Stat. Comput. – year: 1999 ident: b49 publication-title: Real Analysis – volume: 27 start-page: 592 year: 2010 end-page: 610 ident: b1 article-title: Polynomial cubic splines with tension properties publication-title: Comput. Aided Geom. Design – volume: 40 start-page: 91 year: 2014 end-page: 116 ident: b2 article-title: Monotone and convex interpolation by weighted quadratic splines publication-title: Adv. Comput. Math. – volume: 9 start-page: 313 year: 1992 end-page: 319 ident: b46 article-title: Monotone linear rational spline interpolation publication-title: Comput. Aided Geom. Design – year: 2002 ident: b4 article-title: Curves and Surfaces for CAGD. A Practical Guide – volume: 343 start-page: 662 year: 2018 end-page: 707 ident: b18 article-title: sign, monotonicity and convexity preserving Hermite polynomial splines of variable degree publication-title: J. Comput. Appl. Math. – volume: 219 start-page: 2885 year: 2012 end-page: 2895 ident: b5 article-title: Monotonicity-preserving publication-title: Appl. Math. Comput. – volume: 245 start-page: 279 year: 2014 end-page: 288 ident: b10 article-title: Convexity preservation of five-point binary subdivision scheme with a parameter publication-title: Appl. Math. Comput. – year: 2016 ident: b21 article-title: AutoCAD 2016. Beginning and intermediate – volume: 9 start-page: 123 year: 1989 end-page: 136 ident: b48 article-title: Shape preserving interpolation to convex data by rational functions with quadratic numerator and linear denominator publication-title: IMA J. Numer. Anal. – start-page: 303 year: 1985 end-page: 323 ident: b36 article-title: Methods for drawing curves publication-title: Fundamental Algorithms for Computer Graphics – reference: Solid Modeling Solutions Libraries, NLib Introduction, 2018. – volume: 8 start-page: 106 year: 1993 end-page: 111 ident: b17 article-title: Shape preserving rational cubic interpolation publication-title: Extracta Math. – volume: 13 start-page: 493 year: 1993 end-page: 507 ident: b16 article-title: Shape preserving publication-title: IMA J. Numer. Anal. – volume: 21 start-page: 281 year: 1984 end-page: 294 ident: b26 article-title: Monotone and convex cubic spline interpolation publication-title: Calcolo – volume: 27 start-page: 107 year: 2003 end-page: 121 ident: b47 article-title: A rational cubic spline for the visualization of monotonic data: an alternate approach publication-title: Comput. Graph. – volume: 41 start-page: 127 year: 2001 end-page: 148 ident: b30 article-title: On shape preserving publication-title: BIT – reference: (Accessed 12.11.18). – reference: I. Baydoun, Analytical formula for the roots of the general complex cubic polynomial, 2018. – volume: 10 start-page: 223 year: 1990 end-page: 234 ident: b19 article-title: Convexity-preserving polynomial splines of non-uniform degree publication-title: IMA J. Numer. Anal. – volume: 18 start-page: 53 year: 1986 end-page: 57 ident: b44 article-title: Shape preserving spline interpolation publication-title: Comput.-Aided Des. – start-page: 73 year: 1990 end-page: 116 ident: b23 article-title: Exact and approximate conversion of spline curves and spline surfaces publication-title: Computation of Curves and Surfaces. NATO ASI Series (Series C: Mathematical and Physical Sciences) – volume: 51 start-page: 441 year: 1987 end-page: 458 ident: b28 article-title: Admissible slopes for monotone and convex interpolation publication-title: Numer. Math. – volume: 89 start-page: 35 year: 2012 end-page: 53 ident: b6 article-title: Shape-preserving curve interpolation publication-title: Int. J. Comput. Math. – volume: 7 start-page: 1 year: 1990 end-page: 13 ident: b14 article-title: A rational cubic spline with tension publication-title: Comput. Aided Geom. Design – year: 2001 ident: b33 article-title: Foundation Design Principles and Practices – start-page: 24 year: 2001 end-page: 35 ident: b45 article-title: Shape preserving interpolation by curves publication-title: Algorithms for Approximation, Vol. IV – volume: 22 start-page: 226 year: 2009 end-page: 231 ident: b37 article-title: The cubic trigonometric Bézier curve with two shape parameters publication-title: Appl. Math. Lett. – volume: 46 start-page: 904 year: 2011 end-page: 918 ident: b32 article-title: Solution formulas for cubic equations without or with constraints publication-title: J. Symbolic Comput. – volume: 218 start-page: 446 year: 2008 end-page: 458 ident: b38 article-title: Positivity-preserving interpolation of positive data by rational cubics publication-title: J. Comput. Appl. Math. – volume: 5 start-page: 105 year: 1988 end-page: 118 ident: b43 article-title: A shape preserving interpolant with tension controls publication-title: Comput. Aided Geom. Design – start-page: 299 year: 1999 end-page: 309 ident: b24 article-title: Methods and algorithms of automated cad repair for incremental surface meshing publication-title: Proc. 8 th Int. Meshing Roundtable, Sandia report SAND 99-2288 – reference: Dassault Systèmes, Spatial Support and Services, Personal communication by email on 21-08-2018. – volume: 46 start-page: 203 year: 1986 end-page: 214 ident: b27 article-title: On monotone and convex spline interpolation publication-title: Math. Comp. – volume: 17 start-page: 589 year: 1970 end-page: 602 ident: b35 article-title: A new method for interpolation and smooth curve fitting based on local procedures publication-title: J. ACM – reference: (Accessed: 12.11.18). |
SSID | ssj0006914 |
Score | 2.2997792 |
Snippet | The subject of this paper is C1 sign, monotonicity and convexity preserving spline interpolation to a set of ordered points from a real function of one real... |
SourceID | elsevier |
SourceType | Publisher |
StartPage | 184 |
SubjectTerms | Composite Bézier curves Shape preservation |
Title | Cubic polynomial and cubic rational C1 sign, monotonicity and convexity preserving Hermite interpolation |
URI | https://dx.doi.org/10.1016/j.cam.2019.02.024 |
Volume | 357 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfOKz7MGjazfJ5nWswRIfLaIWegu7ya5GJC01Bb34253Jo-hVCITdTEKYbGa_Sb5vlpBzk2UAQl3DXKMcJmweMsl5xmzIfACPKy-ryJijsRdPxO3UnXZI1GphkFbZxP46plfRuunpN97sz_O8_8Qd38eVIgCCoBoBa4I6IqhEfNOrVTT2wrq-NxgztG7_bFYcr1SiGN0Kq7KdKHpfTUi_JpnhNtlq0CEd1DewQzq62CWbo1Vp1Y898hotVZ7S-ez9CxXFYC2LjKZV56L5skcjiyIx44LCIJuVWP0WwHZtiCzzT2whAxYDRfFCY2TElJrm9aJbNT1un0yG189RzJrlEpi2HL9ktjZBBj4Oja0CrgDnWNIRTipcZSslsbSc5AYgnNY8CyXkxFJ6PqRrgQ4dAdc4IN1iVuhDQlUAh6VWqaeM8NNAytSBRM_gCywhCTkionVU8udpJRCIk5Y49paAfxP0b8Jt2MTx_047IRvYqpldp6RbLpb6DKBAqXpk7fLb6pH1QfR4_4D7m7t43KtGwA874LdR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UelAPxmd8uwePbrrA8joqsaHa9mKb9EZ2YVdpDG0qTfTfO8Oj0asJF9iBkFn49hv4ZoaQO5NlQEJdw1yjHCZsHjLJecZsiHyAjysvq8SYo7EXT8XzzJ11SNTmwqCsssH-GtMrtG6O9Bpv9pZ53nvlju9jpwigIJiNILbINrABH_s3DGaPGzj2wrrAN1gzNG9_bVYir1RiNroVVnU7Met9syL9WmX6B2S_oYf0ob6DQ9LRxRHZG21qq34ek_dorfKULhcf35hSDNayyGhaHVw1n_ZoZFFUZtxTeMoWJZa_BbZdG6LM_Av3UAKLSFG80RglMaWmed11q9bHnZBp_2kSxazpl8C05fgls7UJMnByaGwVcAVEx5KOcFLhKlspibXlJDfA4bTmWSghKJbS8yFeC3ToCLjGKekWi0KfEaoCGJZapZ4ywk8DKVMHIj2Db7CEKOSciNZRyZ_pSgCJk1Y5Nk_Avwn6N-E2bOLif6fdkp14Mhomw8H45ZLs4kgt87oi3XK11tfAC0p1U837D71ktk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubic+polynomial+and+cubic+rational+C1+sign%2C+monotonicity+and+convexity+preserving+Hermite+interpolation&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Gabrielides%2C+Nikolaos+C.&rft.au=Sapidis%2C+Nickolas+S.&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=357&rft.spage=184&rft.epage=203&rft_id=info:doi/10.1016%2Fj.cam.2019.02.024&rft.externalDocID=S0377042719300974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |