Cubic polynomial and cubic rational C1 sign, monotonicity and convexity preserving Hermite interpolation

The subject of this paper is C1 sign, monotonicity and convexity preserving spline interpolation to a set of ordered points from a real function of one real variable. Two solutions are proposed constructing, respectively, a Hermite parametric polynomial Cubic Spline (CS), and a Hermite Cubic Rationa...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 357; pp. 184 - 203
Main Authors Gabrielides, Nikolaos C., Sapidis, Nickolas S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2019
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2019.02.024

Cover

Loading…
Abstract The subject of this paper is C1 sign, monotonicity and convexity preserving spline interpolation to a set of ordered points from a real function of one real variable. Two solutions are proposed constructing, respectively, a Hermite parametric polynomial Cubic Spline (CS), and a Hermite Cubic Rational polynomial Spline (CRS). Both curves are based on the shape preserving Hermite Variable Degree Spline (VDS) Gabrielides and Sapidis (2018) (first introduced in Kaklis and Pandelis (1990)) and they use the Bézier representation of polynomials. Since the CS curve is parametric, the present problem also requires calculation of the y-component of CS for any specific x-value; a robust solution to this problem is discussed in detail. The CRS is non-parametric and it does solve the given interpolation-problem with its weights (which play the role of tension parameters) being directly computed using the properties of the VDS segments.
AbstractList The subject of this paper is C1 sign, monotonicity and convexity preserving spline interpolation to a set of ordered points from a real function of one real variable. Two solutions are proposed constructing, respectively, a Hermite parametric polynomial Cubic Spline (CS), and a Hermite Cubic Rational polynomial Spline (CRS). Both curves are based on the shape preserving Hermite Variable Degree Spline (VDS) Gabrielides and Sapidis (2018) (first introduced in Kaklis and Pandelis (1990)) and they use the Bézier representation of polynomials. Since the CS curve is parametric, the present problem also requires calculation of the y-component of CS for any specific x-value; a robust solution to this problem is discussed in detail. The CRS is non-parametric and it does solve the given interpolation-problem with its weights (which play the role of tension parameters) being directly computed using the properties of the VDS segments.
Author Sapidis, Nickolas S.
Gabrielides, Nikolaos C.
Author_xml – sequence: 1
  givenname: Nikolaos C.
  orcidid: 0000-0001-7323-4914
  surname: Gabrielides
  fullname: Gabrielides, Nikolaos C.
  email: nikolaos.gavriilidis@dnvgl.com
  organization: Principal Specialist in Geometric Modelling, DNV GL - Digital Solutions, Veritasveien 1, 1363, Høvik, Norway
– sequence: 2
  givenname: Nickolas S.
  surname: Sapidis
  fullname: Sapidis, Nickolas S.
  email: nsapidis@uowm.gr
  organization: Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera Str., GR 50132, Kozani, Greece
BookMark eNotkF1LwzAUhoNMcJv-AO_6A2w9-VjT4JUUdcLAG70OaXo6M9ZktHG4f2-6CS8czsvhOfAsyMwHj4TcUygo0PJxV1jTFwyoKoCliCsyp5VUOZWympE5cClzEEzekMU47gCgVFTMyXf90zibHcL-5EPvzD4zvs3suRxMdMGnqqbZ6Lb-IeuDDzF4Z108XQ6DP-LvtB0GHHE4Or_N1jj0LmLmfMQhkc-YW3Ldmf2Id_9zSb5eXz7rdb75eHuvnzc5Ui5jzrCrWka56lhTQSMEpYYLbsWqYU1jVAnKQAdihQitMlIwY0qpqKxQcZEYS_J04WJ6cnQ46NE69BZbN6CNug1OU9CTNL3TSZqepGlgKYL_AY-tZP4
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DOI 10.1016/j.cam.2019.02.024
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 203
ExternalDocumentID S0377042719300974
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
ID FETCH-LOGICAL-e137t-2ef8d2139f2b80b4411a343c45b2bba9609a0f045ee0d9a742aa679178e934e13
IEDL.DBID IXB
ISSN 0377-0427
IngestDate Fri Feb 23 02:31:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Composite Bézier curves
Shape preservation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e137t-2ef8d2139f2b80b4411a343c45b2bba9609a0f045ee0d9a742aa679178e934e13
ORCID 0000-0001-7323-4914
PageCount 20
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_cam_2019_02_024
PublicationCentury 2000
PublicationDate September 2019
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (Accessed 12.11.18).
Goodman (b45) 2001
Gabrielides, Sapidis (b18) 2018; 343
Zhao, Wang, Hong (b32) 2011; 46
Sarfraz (b47) 2003; 27
Aràndiga (b3) 2013; 51
Akima (b35) 1970; 17
Gregory, Sarfraz (b14) 1990; 7
Edelman, Micchelli (b28) 1987; 51
Pruess (b16) 1993; 13
Tan, Yao, Cao, Zhang (b10) 2014; 245
Hamad (b21) 2016
(Accessed: 12.11.18).
Foley (b43) 1988; 5
Dassault Systèmes, Spatial Support and Services, Personal communication by email on 21-08-2018.
Sarfraz, Hussain, Hussain (b6) 2012; 89
Brodlie (b36) 1985
Gabrielides (b7) 2012; 3
Gregory (b44) 1986; 18
Sapidis, Kaklis (b25) 1995
Lamberti, Manni (b15) 2001; 28
Hussain, Sarfraz (b38) 2008; 218
Costantini, Kaklis, Manni (b1) 2010; 27
Fuhr, Kallay (b46) 1992; 9
DNV-GL Digital Solutions. Conceptual modelling of offshore and maritime structures - GeniE, 2018.
Coduto (b33) 2001
Folland (b49) 1999
Kaklis, Pandelis (b19) 1990; 10
Costantini, Morandi (b42) 1984; 21
Manni (b30) 2001; 41
McAllister, Roulier (b40) 1978; 32
Schumaker (b41) 1983; 20
Hoschek (b23) 1990
Fritsch, Butland (b39) 1984; 5
Kvasov (b2) 2014; 40
Farin (b4) 2002
Delbourgo, Gregory (b13) 1985; 6
Costantini, Morandi (b26) 1984; 21
Madabhushi, Knappett, Haigh (b34) 2010
Solid Modeling Solutions Libraries, NLib Introduction, 2018.
Manni (b29) 1996; 69
I. Baydoun, Analytical formula for the roots of the general complex cubic polynomial, 2018.
Sarfraz (b17) 1993; 8
Mezentsev, Woehler (b24) 1999
Costantini (b27) 1986; 46
Pitolli (b9) 2014; 106
Abbas, Majid, Ali (b5) 2012; 219
Novara, Romani (b8) 2018; 147
Delbourgo (b48) 1989; 9
Conti, Morandi (b12) 1996; 56
Han, Ma, Huang (b37) 2009; 22
References_xml – volume: 56
  start-page: 323
  year: 1996
  end-page: 341
  ident: b12
  article-title: Piecewise
  publication-title: Computing
– volume: 106
  start-page: 185
  year: 2014
  end-page: 194
  ident: b9
  article-title: Ternary shape-preserving subdivision schemes
  publication-title: Math. Comput. Simulation
– volume: 69
  start-page: 143
  year: 1996
  end-page: 157
  ident: b29
  article-title: comonotone Hermite interpolation via parametric cubics
  publication-title: J. Comput. Appl. Math.
– reference: DNV-GL Digital Solutions. Conceptual modelling of offshore and maritime structures - GeniE, 2018.
– start-page: 285
  year: 1995
  end-page: 301
  ident: b25
  article-title: A hybrid method for shape-preserving interpolation with curvature-continuous quintic splines
  publication-title: Geometric Modelling
– volume: 51
  start-page: 2613
  year: 2013
  end-page: 2633
  ident: b3
  article-title: On the order of nonuniform monotone cubic Hermite interpolants
  publication-title: SIAM J. Numer. Anal.
– volume: 5
  start-page: 300
  year: 1984
  end-page: 304
  ident: b39
  article-title: A method for constructing local monotone piecewise cubic interpolants
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 147
  start-page: 194
  year: 2018
  end-page: 209
  ident: b8
  article-title: On the interpolating 5-point ternary subdivision scheme: A revised proof of convexity-preservation and an application-oriented extension
  publication-title: Math. Comput. Simulation
– volume: 3
  start-page: 1
  year: 2012
  end-page: 12
  ident: b7
  article-title: Hermite shape preserving polynomial splines in
  publication-title: 3D Res.
– year: 2010
  ident: b34
  article-title: Design of Pile Foundations in Liquefiable Soils
– volume: 20
  start-page: 854
  year: 1983
  end-page: 864
  ident: b41
  article-title: On shape preserving quadratic spline interpolation
  publication-title: SIAM J. Numer. Anal.
– volume: 21
  start-page: 295
  year: 1984
  end-page: 305
  ident: b42
  article-title: An algorithm for computing shape-preserving cubic spline interpolation to data
  publication-title: Calcolo
– volume: 32
  start-page: 1154
  year: 1978
  end-page: 1162
  ident: b40
  article-title: Interpolation by convex quadratic splines
  publication-title: Math. Comp.
– volume: 28
  start-page: 229
  year: 2001
  end-page: 254
  ident: b15
  article-title: Shape-preserving
  publication-title: Numer. Algorithms
– volume: 6
  start-page: 967
  year: 1985
  end-page: 976
  ident: b13
  article-title: Shape preserving piecewise rational interpolation
  publication-title: SIAM J. Sci. Stat. Comput.
– year: 1999
  ident: b49
  publication-title: Real Analysis
– volume: 27
  start-page: 592
  year: 2010
  end-page: 610
  ident: b1
  article-title: Polynomial cubic splines with tension properties
  publication-title: Comput. Aided Geom. Design
– volume: 40
  start-page: 91
  year: 2014
  end-page: 116
  ident: b2
  article-title: Monotone and convex interpolation by weighted quadratic splines
  publication-title: Adv. Comput. Math.
– volume: 9
  start-page: 313
  year: 1992
  end-page: 319
  ident: b46
  article-title: Monotone linear rational spline interpolation
  publication-title: Comput. Aided Geom. Design
– year: 2002
  ident: b4
  article-title: Curves and Surfaces for CAGD. A Practical Guide
– volume: 343
  start-page: 662
  year: 2018
  end-page: 707
  ident: b18
  article-title: sign, monotonicity and convexity preserving Hermite polynomial splines of variable degree
  publication-title: J. Comput. Appl. Math.
– volume: 219
  start-page: 2885
  year: 2012
  end-page: 2895
  ident: b5
  article-title: Monotonicity-preserving
  publication-title: Appl. Math. Comput.
– volume: 245
  start-page: 279
  year: 2014
  end-page: 288
  ident: b10
  article-title: Convexity preservation of five-point binary subdivision scheme with a parameter
  publication-title: Appl. Math. Comput.
– year: 2016
  ident: b21
  article-title: AutoCAD 2016. Beginning and intermediate
– volume: 9
  start-page: 123
  year: 1989
  end-page: 136
  ident: b48
  article-title: Shape preserving interpolation to convex data by rational functions with quadratic numerator and linear denominator
  publication-title: IMA J. Numer. Anal.
– start-page: 303
  year: 1985
  end-page: 323
  ident: b36
  article-title: Methods for drawing curves
  publication-title: Fundamental Algorithms for Computer Graphics
– reference: Solid Modeling Solutions Libraries, NLib Introduction, 2018.
– volume: 8
  start-page: 106
  year: 1993
  end-page: 111
  ident: b17
  article-title: Shape preserving rational cubic interpolation
  publication-title: Extracta Math.
– volume: 13
  start-page: 493
  year: 1993
  end-page: 507
  ident: b16
  article-title: Shape preserving
  publication-title: IMA J. Numer. Anal.
– volume: 21
  start-page: 281
  year: 1984
  end-page: 294
  ident: b26
  article-title: Monotone and convex cubic spline interpolation
  publication-title: Calcolo
– volume: 27
  start-page: 107
  year: 2003
  end-page: 121
  ident: b47
  article-title: A rational cubic spline for the visualization of monotonic data: an alternate approach
  publication-title: Comput. Graph.
– volume: 41
  start-page: 127
  year: 2001
  end-page: 148
  ident: b30
  article-title: On shape preserving
  publication-title: BIT
– reference: (Accessed 12.11.18).
– reference: I. Baydoun, Analytical formula for the roots of the general complex cubic polynomial, 2018.
– volume: 10
  start-page: 223
  year: 1990
  end-page: 234
  ident: b19
  article-title: Convexity-preserving polynomial splines of non-uniform degree
  publication-title: IMA J. Numer. Anal.
– volume: 18
  start-page: 53
  year: 1986
  end-page: 57
  ident: b44
  article-title: Shape preserving spline interpolation
  publication-title: Comput.-Aided Des.
– start-page: 73
  year: 1990
  end-page: 116
  ident: b23
  article-title: Exact and approximate conversion of spline curves and spline surfaces
  publication-title: Computation of Curves and Surfaces. NATO ASI Series (Series C: Mathematical and Physical Sciences)
– volume: 51
  start-page: 441
  year: 1987
  end-page: 458
  ident: b28
  article-title: Admissible slopes for monotone and convex interpolation
  publication-title: Numer. Math.
– volume: 89
  start-page: 35
  year: 2012
  end-page: 53
  ident: b6
  article-title: Shape-preserving curve interpolation
  publication-title: Int. J. Comput. Math.
– volume: 7
  start-page: 1
  year: 1990
  end-page: 13
  ident: b14
  article-title: A rational cubic spline with tension
  publication-title: Comput. Aided Geom. Design
– year: 2001
  ident: b33
  article-title: Foundation Design Principles and Practices
– start-page: 24
  year: 2001
  end-page: 35
  ident: b45
  article-title: Shape preserving interpolation by curves
  publication-title: Algorithms for Approximation, Vol. IV
– volume: 22
  start-page: 226
  year: 2009
  end-page: 231
  ident: b37
  article-title: The cubic trigonometric Bézier curve with two shape parameters
  publication-title: Appl. Math. Lett.
– volume: 46
  start-page: 904
  year: 2011
  end-page: 918
  ident: b32
  article-title: Solution formulas for cubic equations without or with constraints
  publication-title: J. Symbolic Comput.
– volume: 218
  start-page: 446
  year: 2008
  end-page: 458
  ident: b38
  article-title: Positivity-preserving interpolation of positive data by rational cubics
  publication-title: J. Comput. Appl. Math.
– volume: 5
  start-page: 105
  year: 1988
  end-page: 118
  ident: b43
  article-title: A shape preserving interpolant with tension controls
  publication-title: Comput. Aided Geom. Design
– start-page: 299
  year: 1999
  end-page: 309
  ident: b24
  article-title: Methods and algorithms of automated cad repair for incremental surface meshing
  publication-title: Proc. 8 th Int. Meshing Roundtable, Sandia report SAND 99-2288
– reference: Dassault Systèmes, Spatial Support and Services, Personal communication by email on 21-08-2018.
– volume: 46
  start-page: 203
  year: 1986
  end-page: 214
  ident: b27
  article-title: On monotone and convex spline interpolation
  publication-title: Math. Comp.
– volume: 17
  start-page: 589
  year: 1970
  end-page: 602
  ident: b35
  article-title: A new method for interpolation and smooth curve fitting based on local procedures
  publication-title: J. ACM
– reference: (Accessed: 12.11.18).
SSID ssj0006914
Score 2.2997792
Snippet The subject of this paper is C1 sign, monotonicity and convexity preserving spline interpolation to a set of ordered points from a real function of one real...
SourceID elsevier
SourceType Publisher
StartPage 184
SubjectTerms Composite Bézier curves
Shape preservation
Title Cubic polynomial and cubic rational C1 sign, monotonicity and convexity preserving Hermite interpolation
URI https://dx.doi.org/10.1016/j.cam.2019.02.024
Volume 357
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfOKz7MGjazfJ5nWswRIfLaIWegu7ya5GJC01Bb34253Jo-hVCITdTEKYbGa_Sb5vlpBzk2UAQl3DXKMcJmweMsl5xmzIfACPKy-ryJijsRdPxO3UnXZI1GphkFbZxP46plfRuunpN97sz_O8_8Qd38eVIgCCoBoBa4I6IqhEfNOrVTT2wrq-NxgztG7_bFYcr1SiGN0Kq7KdKHpfTUi_JpnhNtlq0CEd1DewQzq62CWbo1Vp1Y898hotVZ7S-ez9CxXFYC2LjKZV56L5skcjiyIx44LCIJuVWP0WwHZtiCzzT2whAxYDRfFCY2TElJrm9aJbNT1un0yG189RzJrlEpi2HL9ktjZBBj4Oja0CrgDnWNIRTipcZSslsbSc5AYgnNY8CyXkxFJ6PqRrgQ4dAdc4IN1iVuhDQlUAh6VWqaeM8NNAytSBRM_gCywhCTkionVU8udpJRCIk5Y49paAfxP0b8Jt2MTx_047IRvYqpldp6RbLpb6DKBAqXpk7fLb6pH1QfR4_4D7m7t43KtGwA874LdR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UelAPxmd8uwePbrrA8joqsaHa9mKb9EZ2YVdpDG0qTfTfO8Oj0asJF9iBkFn49hv4ZoaQO5NlQEJdw1yjHCZsHjLJecZsiHyAjysvq8SYo7EXT8XzzJ11SNTmwqCsssH-GtMrtG6O9Bpv9pZ53nvlju9jpwigIJiNILbINrABH_s3DGaPGzj2wrrAN1gzNG9_bVYir1RiNroVVnU7Met9syL9WmX6B2S_oYf0ob6DQ9LRxRHZG21qq34ek_dorfKULhcf35hSDNayyGhaHVw1n_ZoZFFUZtxTeMoWJZa_BbZdG6LM_Av3UAKLSFG80RglMaWmed11q9bHnZBp_2kSxazpl8C05fgls7UJMnByaGwVcAVEx5KOcFLhKlspibXlJDfA4bTmWSghKJbS8yFeC3ToCLjGKekWi0KfEaoCGJZapZ4ywk8DKVMHIj2Db7CEKOSciNZRyZ_pSgCJk1Y5Nk_Avwn6N-E2bOLif6fdkp14Mhomw8H45ZLs4kgt87oi3XK11tfAC0p1U837D71ktk8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubic+polynomial+and+cubic+rational+C1+sign%2C+monotonicity+and+convexity+preserving+Hermite+interpolation&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Gabrielides%2C+Nikolaos+C.&rft.au=Sapidis%2C+Nickolas+S.&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=357&rft.spage=184&rft.epage=203&rft_id=info:doi/10.1016%2Fj.cam.2019.02.024&rft.externalDocID=S0377042719300974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon