Learning reduced-order models for dynamic CO2 methanation using operator inference
The efficient modeling of dynamic systems in process engineering is becoming increasingly important in the modern industrial landscape. Our study addresses this challenge by employing reduced-order modeling and model order reduction techniques, with a focus on the non-intrusive operator inference me...
Saved in:
Published in | Computer Aided Chemical Engineering Vol. 53; pp. 3319 - 3324 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficient modeling of dynamic systems in process engineering is becoming increasingly important in the modern industrial landscape. Our study addresses this challenge by employing reduced-order modeling and model order reduction techniques, with a focus on the non-intrusive operator inference method. This method excels at handling the complexity of nonlinear dynamics, a key factor in ensuring both computational efficiency and accuracy of approximations. We demonstrate the potential of operator inference by applying it to a CO2 methanation reactor model within the power-to-x framework. The results show the ability of the reduced-order model to provide an accurate yet streamlined solution, which is essential for the analysis of dynamic systems in the Industry 4.0 era. |
---|---|
AbstractList | The efficient modeling of dynamic systems in process engineering is becoming increasingly important in the modern industrial landscape. Our study addresses this challenge by employing reduced-order modeling and model order reduction techniques, with a focus on the non-intrusive operator inference method. This method excels at handling the complexity of nonlinear dynamics, a key factor in ensuring both computational efficiency and accuracy of approximations. We demonstrate the potential of operator inference by applying it to a CO2 methanation reactor model within the power-to-x framework. The results show the ability of the reduced-order model to provide an accurate yet streamlined solution, which is essential for the analysis of dynamic systems in the Industry 4.0 era. |
Author | Bremer, Jens Peterson, Luisa Sundmacher, Kai Benner, Peter Gosea, Ion Victor Goyal, Pawan |
Author_xml | – sequence: 1 givenname: Luisa surname: Peterson fullname: Peterson, Luisa organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany – sequence: 2 givenname: Pawan surname: Goyal fullname: Goyal, Pawan organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany – sequence: 3 givenname: Ion Victor surname: Gosea fullname: Gosea, Ion Victor organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany – sequence: 4 givenname: Jens surname: Bremer fullname: Bremer, Jens organization: Clausthal University of Technology, Leipnizstraße 17, Clausthal-Zellerfeld, 38678, Germany – sequence: 5 givenname: Peter surname: Benner fullname: Benner, Peter organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany – sequence: 6 givenname: Kai surname: Sundmacher fullname: Sundmacher, Kai email: sundmacher@mpi-magdeburg.mpg.de organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany |
BookMark | eNotkMtOwzAQRS1RJErpP0TsXWZsJ7GXUJ5SpEqoeyuxx2CpdZCTIvH3JIXVLM7M3KtzzRapT8TYLcIGAau7B1NrDlwpyYXWQnHclFCWiusLtp4YTOQMcMGWWNbAa6OqK7YehtgBmgqNNrBk7w21OcX0UWTyJ0ee99lTLo69p8NQhD4X_ie1x-iK7U4URxo_29SOsU_FaZjP-i_K7TitxRQoU3J0wy5Dexho_T9XbP_8tN--8mb38ra9bzihxJEHo5yQoCV06IPQigRQVbWkVSmCMUEYChKh9iiUBlDkO-E6aWpXl1LJFXv8ezv1pO9I2Q4uzvk-ZnKj9X20CHa2ZWdbFuzkxJ6lWLRnW1bLXykzYCI |
ContentType | Book Chapter |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DOI | 10.1016/B978-0-443-28824-1.50554-8 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 3324 |
ExternalDocumentID | B9780443288241505548 |
GroupedDBID | AABBV ALMA_UNASSIGNED_HOLDINGS BBABE |
ID | FETCH-LOGICAL-e131t-f94c230830b1df284e20e66ae8452f99f29ef3107d1248004edb2cb397c75343 |
ISBN | 9780443288241 0443288240 |
ISSN | 1570-7946 |
IngestDate | Sat Jan 25 15:59:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Methanation Reactor modeling Dynamic systems Operator inference Power-to-X Model identification Model order reduction |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-e131t-f94c230830b1df284e20e66ae8452f99f29ef3107d1248004edb2cb397c75343 |
PageCount | 6 |
ParticipantIDs | elsevier_sciencedirect_doi_10_1016_B978_0_443_28824_1_50554_8 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computer Aided Chemical Engineering |
PublicationYear | 2024 |
References | Peherstorfer, Willcox (bb0040) 2016 Uy, Hartmann, Peherstorfer (bb0045) 2023; 145 Bremer, Goyal, Feng, Benner, Sundmacher (bb0010) 2017; 106 Goyal, Duff, Benner (bb0025) 2023 Bremer, Heiland, Benner, Sundmacher (bb0015) 2021; 54 Benner, Breiten, Faßbender, Hinze, Stykel, Zimmermann (bb0005) 2021 Güttel (bb0030) 2013; 36 Zimmermann, Bremer, Sundmacher (bb0050) 2022 Fischer, Freund (bb0020) 2020; 393 Kidger (bb0035) 2021 |
References_xml | – volume: 106 start-page: 777 year: 2017 end-page: 784 ident: bb0010 article-title: POD-DEIM for efficient reduction of a dynamic 2D catalytic reactor model publication-title: Computers & Chemical Engineering – start-page: 196 year: 2016 end-page: 215 ident: bb0040 article-title: Data-driven operator inference for nonintrusive projection-based model reduction publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2022 ident: bb0050 article-title: Load-flexible fixed-bed reactors by multi-period design optimization publication-title: Chemical Engineering Journal – volume: 145 start-page: 224 year: 2023 end-page: 239 ident: bb0045 article-title: Operator inference with roll outs for learning reduced models from scarce and low-quality data publication-title: Computers & Mathematics with Applications – volume: 393 year: 2020 ident: bb0020 article-title: On the optimal design of load flexible fixed bed reactors: Integration of dynamics into the design problem publication-title: Chemical Engineering Journal – year: 2023 ident: bb0025 article-title: Guaranteed Stable Quadratic Models and their applications in SINDy and Operator Inference publication-title: arXiv preprint – volume: 36 start-page: 1675 year: 2013 end-page: 1682 ident: bb0030 article-title: Study of unsteady-state operation of methanation by modeling and simulation publication-title: Chemical Engineering & Technology – volume: 54 start-page: 122 year: 2021 end-page: 127 ident: bb0015 article-title: Non-intrusive Time-POD for Optimal Control of a Fixed-Bed Reactor for CO2 Methanation publication-title: IFAC-PapersOnLine – year: 2021 ident: bb0035 article-title: On Neural Differential Equations – year: 2021 ident: bb0005 article-title: Model reduction of complex dynamical systems |
SSID | ssib019619890 ssib055836272 ssib056837921 ssib056258536 ssib045323371 |
Score | 2.1431026 |
Snippet | The efficient modeling of dynamic systems in process engineering is becoming increasingly important in the modern industrial landscape. Our study addresses... |
SourceID | elsevier |
SourceType | Publisher |
StartPage | 3319 |
SubjectTerms | Dynamic systems Methanation Model identification Model order reduction Operator inference Power-to-X Reactor modeling |
Title | Learning reduced-order models for dynamic CO2 methanation using operator inference |
URI | https://dx.doi.org/10.1016/B978-0-443-28824-1.50554-8 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYckFcWAECFlY-cKu8OLaTOAcOuyvYVcVDQEG9WYntSL20q91UCH4941fi8jgAl6iJ2jqebzT5ZuL5jNBzLmxbaNYRJrUkoqOWtA0AUvNKVqa2VNeud_jtu-rys1isytVUVfLdJUN3or__tq_kX1CFa4Cr65L9C2THP4UL8BnwhSMgDMefyO9-mTXoCsT9GOana-PKtKnzP1MYnOLe4Im1T8J365sxFF-44kEgkl8nN7nYgv_74AGu8WWtgyBxzNpt3G5lYWOdL_rbm1RjuXZisNYQL-oZdtrxmg9z823TupX45--Z37i6DYXI-c6XK7ZX1r_x98vDfAtiXpBgIitIpLyUCsEZcHdR5KG1psTJ2eext-RZ8OQ8Rk8bT0N39S9BPtQbzoI2MIxE_FCkOAE2Vwoip0fbuODwbO-m_PfkATqoZTlDt08XH1afUhCCiOSWkY1BTJSc8UwzsCwlPPOnZmOXQALlqaZzSPmb0O-XZuyVEOLgNKk-pZtJSrhF9eLPU8qoUkZ_lvfQXdcSg12vCkz3EN2ym_voY0Ic7yGOA-IYEMcRcQyI4wxx7BHHCXE8Iv4ALV-_Wp5fkrhDB7EFLwbSN0JDDis57QrTA9OxjNqqaq0UJeubpmeN7SGBqA3QSEhNhDUd0x1wYA1psuAP0Wyz3dhHCFetASKtO7AsF33Lm76hFqhra3oDnJQ-Ri-TAVTkhoHzKfAKlZYqOgMqqsCAyhtQFcobUMkn__n7I3Rn8vWnaDZc7-wzoKNDdxwd6AcAG3fD |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Peterson%2C+Luisa&rft.au=Goyal%2C+Pawan&rft.au=Gosea%2C+Ion+Victor&rft.au=Bremer%2C+Jens&rft.atitle=Learning+reduced-order+models+for+dynamic+CO2+methanation+using+operator+inference&rft.date=2024-01-01&rft.isbn=9780443288241&rft.issn=1570-7946&rft.volume=53&rft.spage=3319&rft.epage=3324&rft_id=info:doi/10.1016%2FB978-0-443-28824-1.50554-8&rft.externalDocID=B9780443288241505548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon |