Learning reduced-order models for dynamic CO2 methanation using operator inference

The efficient modeling of dynamic systems in process engineering is becoming increasingly important in the modern industrial landscape. Our study addresses this challenge by employing reduced-order modeling and model order reduction techniques, with a focus on the non-intrusive operator inference me...

Full description

Saved in:
Bibliographic Details
Published inComputer Aided Chemical Engineering Vol. 53; pp. 3319 - 3324
Main Authors Peterson, Luisa, Goyal, Pawan, Gosea, Ion Victor, Bremer, Jens, Benner, Peter, Sundmacher, Kai
Format Book Chapter
LanguageEnglish
Published 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficient modeling of dynamic systems in process engineering is becoming increasingly important in the modern industrial landscape. Our study addresses this challenge by employing reduced-order modeling and model order reduction techniques, with a focus on the non-intrusive operator inference method. This method excels at handling the complexity of nonlinear dynamics, a key factor in ensuring both computational efficiency and accuracy of approximations. We demonstrate the potential of operator inference by applying it to a CO2 methanation reactor model within the power-to-x framework. The results show the ability of the reduced-order model to provide an accurate yet streamlined solution, which is essential for the analysis of dynamic systems in the Industry 4.0 era.
AbstractList The efficient modeling of dynamic systems in process engineering is becoming increasingly important in the modern industrial landscape. Our study addresses this challenge by employing reduced-order modeling and model order reduction techniques, with a focus on the non-intrusive operator inference method. This method excels at handling the complexity of nonlinear dynamics, a key factor in ensuring both computational efficiency and accuracy of approximations. We demonstrate the potential of operator inference by applying it to a CO2 methanation reactor model within the power-to-x framework. The results show the ability of the reduced-order model to provide an accurate yet streamlined solution, which is essential for the analysis of dynamic systems in the Industry 4.0 era.
Author Bremer, Jens
Peterson, Luisa
Sundmacher, Kai
Benner, Peter
Gosea, Ion Victor
Goyal, Pawan
Author_xml – sequence: 1
  givenname: Luisa
  surname: Peterson
  fullname: Peterson, Luisa
  organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany
– sequence: 2
  givenname: Pawan
  surname: Goyal
  fullname: Goyal, Pawan
  organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany
– sequence: 3
  givenname: Ion Victor
  surname: Gosea
  fullname: Gosea, Ion Victor
  organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany
– sequence: 4
  givenname: Jens
  surname: Bremer
  fullname: Bremer, Jens
  organization: Clausthal University of Technology, Leipnizstraße 17, Clausthal-Zellerfeld, 38678, Germany
– sequence: 5
  givenname: Peter
  surname: Benner
  fullname: Benner, Peter
  organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany
– sequence: 6
  givenname: Kai
  surname: Sundmacher
  fullname: Sundmacher, Kai
  email: sundmacher@mpi-magdeburg.mpg.de
  organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany
BookMark eNotkMtOwzAQRS1RJErpP0TsXWZsJ7GXUJ5SpEqoeyuxx2CpdZCTIvH3JIXVLM7M3KtzzRapT8TYLcIGAau7B1NrDlwpyYXWQnHclFCWiusLtp4YTOQMcMGWWNbAa6OqK7YehtgBmgqNNrBk7w21OcX0UWTyJ0ee99lTLo69p8NQhD4X_ie1x-iK7U4URxo_29SOsU_FaZjP-i_K7TitxRQoU3J0wy5Dexho_T9XbP_8tN--8mb38ra9bzihxJEHo5yQoCV06IPQigRQVbWkVSmCMUEYChKh9iiUBlDkO-E6aWpXl1LJFXv8ezv1pO9I2Q4uzvk-ZnKj9X20CHa2ZWdbFuzkxJ6lWLRnW1bLXykzYCI
ContentType Book Chapter
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DOI 10.1016/B978-0-443-28824-1.50554-8
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 3324
ExternalDocumentID B9780443288241505548
GroupedDBID AABBV
ALMA_UNASSIGNED_HOLDINGS
BBABE
ID FETCH-LOGICAL-e131t-f94c230830b1df284e20e66ae8452f99f29ef3107d1248004edb2cb397c75343
ISBN 9780443288241
0443288240
ISSN 1570-7946
IngestDate Sat Jan 25 15:59:36 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Methanation
Reactor modeling
Dynamic systems
Operator inference
Power-to-X
Model identification
Model order reduction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e131t-f94c230830b1df284e20e66ae8452f99f29ef3107d1248004edb2cb397c75343
PageCount 6
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_0_443_28824_1_50554_8
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Computer Aided Chemical Engineering
PublicationYear 2024
References Peherstorfer, Willcox (bb0040) 2016
Uy, Hartmann, Peherstorfer (bb0045) 2023; 145
Bremer, Goyal, Feng, Benner, Sundmacher (bb0010) 2017; 106
Goyal, Duff, Benner (bb0025) 2023
Bremer, Heiland, Benner, Sundmacher (bb0015) 2021; 54
Benner, Breiten, Faßbender, Hinze, Stykel, Zimmermann (bb0005) 2021
Güttel (bb0030) 2013; 36
Zimmermann, Bremer, Sundmacher (bb0050) 2022
Fischer, Freund (bb0020) 2020; 393
Kidger (bb0035) 2021
References_xml – volume: 106
  start-page: 777
  year: 2017
  end-page: 784
  ident: bb0010
  article-title: POD-DEIM for efficient reduction of a dynamic 2D catalytic reactor model
  publication-title: Computers & Chemical Engineering
– start-page: 196
  year: 2016
  end-page: 215
  ident: bb0040
  article-title: Data-driven operator inference for nonintrusive projection-based model reduction
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2022
  ident: bb0050
  article-title: Load-flexible fixed-bed reactors by multi-period design optimization
  publication-title: Chemical Engineering Journal
– volume: 145
  start-page: 224
  year: 2023
  end-page: 239
  ident: bb0045
  article-title: Operator inference with roll outs for learning reduced models from scarce and low-quality data
  publication-title: Computers & Mathematics with Applications
– volume: 393
  year: 2020
  ident: bb0020
  article-title: On the optimal design of load flexible fixed bed reactors: Integration of dynamics into the design problem
  publication-title: Chemical Engineering Journal
– year: 2023
  ident: bb0025
  article-title: Guaranteed Stable Quadratic Models and their applications in SINDy and Operator Inference
  publication-title: arXiv preprint
– volume: 36
  start-page: 1675
  year: 2013
  end-page: 1682
  ident: bb0030
  article-title: Study of unsteady-state operation of methanation by modeling and simulation
  publication-title: Chemical Engineering & Technology
– volume: 54
  start-page: 122
  year: 2021
  end-page: 127
  ident: bb0015
  article-title: Non-intrusive Time-POD for Optimal Control of a Fixed-Bed Reactor for CO2 Methanation
  publication-title: IFAC-PapersOnLine
– year: 2021
  ident: bb0035
  article-title: On Neural Differential Equations
– year: 2021
  ident: bb0005
  article-title: Model reduction of complex dynamical systems
SSID ssib019619890
ssib055836272
ssib056837921
ssib056258536
ssib045323371
Score 2.1431026
Snippet The efficient modeling of dynamic systems in process engineering is becoming increasingly important in the modern industrial landscape. Our study addresses...
SourceID elsevier
SourceType Publisher
StartPage 3319
SubjectTerms Dynamic systems
Methanation
Model identification
Model order reduction
Operator inference
Power-to-X
Reactor modeling
Title Learning reduced-order models for dynamic CO2 methanation using operator inference
URI https://dx.doi.org/10.1016/B978-0-443-28824-1.50554-8
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYckFcWAECFlY-cKu8OLaTOAcOuyvYVcVDQEG9WYntSL20q91UCH4941fi8jgAl6iJ2jqebzT5ZuL5jNBzLmxbaNYRJrUkoqOWtA0AUvNKVqa2VNeud_jtu-rys1isytVUVfLdJUN3or__tq_kX1CFa4Cr65L9C2THP4UL8BnwhSMgDMefyO9-mTXoCsT9GOana-PKtKnzP1MYnOLe4Im1T8J365sxFF-44kEgkl8nN7nYgv_74AGu8WWtgyBxzNpt3G5lYWOdL_rbm1RjuXZisNYQL-oZdtrxmg9z823TupX45--Z37i6DYXI-c6XK7ZX1r_x98vDfAtiXpBgIitIpLyUCsEZcHdR5KG1psTJ2eext-RZ8OQ8Rk8bT0N39S9BPtQbzoI2MIxE_FCkOAE2Vwoip0fbuODwbO-m_PfkATqoZTlDt08XH1afUhCCiOSWkY1BTJSc8UwzsCwlPPOnZmOXQALlqaZzSPmb0O-XZuyVEOLgNKk-pZtJSrhF9eLPU8qoUkZ_lvfQXdcSg12vCkz3EN2ym_voY0Ic7yGOA-IYEMcRcQyI4wxx7BHHCXE8Iv4ALV-_Wp5fkrhDB7EFLwbSN0JDDis57QrTA9OxjNqqaq0UJeubpmeN7SGBqA3QSEhNhDUd0x1wYA1psuAP0Wyz3dhHCFetASKtO7AsF33Lm76hFqhra3oDnJQ-Ri-TAVTkhoHzKfAKlZYqOgMqqsCAyhtQFcobUMkn__n7I3Rn8vWnaDZc7-wzoKNDdxwd6AcAG3fD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Peterson%2C+Luisa&rft.au=Goyal%2C+Pawan&rft.au=Gosea%2C+Ion+Victor&rft.au=Bremer%2C+Jens&rft.atitle=Learning+reduced-order+models+for+dynamic+CO2+methanation+using+operator+inference&rft.date=2024-01-01&rft.isbn=9780443288241&rft.issn=1570-7946&rft.volume=53&rft.spage=3319&rft.epage=3324&rft_id=info:doi/10.1016%2FB978-0-443-28824-1.50554-8&rft.externalDocID=B9780443288241505548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon