Developing Purely Data-Driven Multi-Mode Process Controllers Using Inverse Reinforcement Learning

In recent years, process control researchers have been paying close attention to Deep Reinforcement Learning (DRL). DRL offers the potential for model-free controller design, but it is challenging to achieve satisfactory outcomes without accurate simulation models and well-designed reward functions,...

Full description

Saved in:
Bibliographic Details
Published inComputer Aided Chemical Engineering Vol. 53; pp. 2731 - 2736
Main Authors Lin, Runze, Chen, Junghui, Huang, Biao, Xie, Lei, Su, Hongye
Format Book Chapter
LanguageEnglish
Published 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, process control researchers have been paying close attention to Deep Reinforcement Learning (DRL). DRL offers the potential for model-free controller design, but it is challenging to achieve satisfactory outcomes without accurate simulation models and well-designed reward functions, particularly in multi-mode processes. To address this issue, this paper presents a novel approach that combines inverse RL (IRL) and multi-task learning to provide a purely data-driven solution for multi-mode control design, allowing for transfer learning and adaptation in different operating modes. The effectiveness of this novel approach is demonstrated through a CSTR continuous control case using multi-mode historical closed-loop data. The proposed method offers a promising solution to the challenges of designing controllers for multi-mode processes.
AbstractList In recent years, process control researchers have been paying close attention to Deep Reinforcement Learning (DRL). DRL offers the potential for model-free controller design, but it is challenging to achieve satisfactory outcomes without accurate simulation models and well-designed reward functions, particularly in multi-mode processes. To address this issue, this paper presents a novel approach that combines inverse RL (IRL) and multi-task learning to provide a purely data-driven solution for multi-mode control design, allowing for transfer learning and adaptation in different operating modes. The effectiveness of this novel approach is demonstrated through a CSTR continuous control case using multi-mode historical closed-loop data. The proposed method offers a promising solution to the challenges of designing controllers for multi-mode processes.
Author Lin, Runze
Xie, Lei
Chen, Junghui
Su, Hongye
Huang, Biao
Author_xml – sequence: 1
  givenname: Runze
  surname: Lin
  fullname: Lin, Runze
  organization: State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
– sequence: 2
  givenname: Junghui
  surname: Chen
  fullname: Chen, Junghui
  email: jason@wavenet.cycu.edu.tw
  organization: Department of Chemical Engineering, Chung-Yuan Christian University, Taoyuan 32023, Taiwan, R.O.C
– sequence: 3
  givenname: Biao
  surname: Huang
  fullname: Huang, Biao
  email: biao.huang@ualberta.ca
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
– sequence: 4
  givenname: Lei
  surname: Xie
  fullname: Xie, Lei
  organization: State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
– sequence: 5
  givenname: Hongye
  surname: Su
  fullname: Su, Hongye
  organization: State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
BookMark eNotkNtKAzEURQNWsGr_Ifiemkxuk0fteCm0WMQ-hzRzRgJjIsl0wL93Wn06bBZ7H1jXaBZTBITuGF0yytT9o9E1oUQITqq6rgRhS0mFVERfoMXE6ETOgM3QnElNiTZCXaFFKeFAmVHM1IbOkWtghD59h_iJd8cM_Q9u3OBIk8MIEW-P_RDINrWAdzl5KAWvUhxy6nvIBe_LqbeO4xQAv0OIXcoeviAOeAMuxwnfosvO9QUW__cG7Z-fPlavZPP2sl49bAgwzgbijayEkLU-dIpx3nVedJU0rRQcqDZSV7RSoFgrtaOiFZ7p1tVaOalFpWrOb1DztwvTkzFAtsUHiB7akMEPtk3BMmpP9uzJnqV2cmTPkiyzZ3tW818jtWV6
ContentType Book Chapter
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DOI 10.1016/B978-0-443-28824-1.50456-7
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 2736
ExternalDocumentID B9780443288241504567
GroupedDBID AABBV
ALMA_UNASSIGNED_HOLDINGS
BBABE
ID FETCH-LOGICAL-e131t-c95244587bf6133ffc4f259d543e079572026e61d57a04d4c17da876a57426833
ISBN 9780443288241
0443288240
ISSN 1570-7946
IngestDate Sat Jan 25 15:59:36 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords data-driven controller design
inverse reinforcement learning
multi-mode process control
multi-task reinforcement learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e131t-c95244587bf6133ffc4f259d543e079572026e61d57a04d4c17da876a57426833
PageCount 6
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_0_443_28824_1_50456_7
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Computer Aided Chemical Engineering
PublicationYear 2024
References Lin, Chen, Xie, Su (bb0015) 2021
Levine (bb0010) 2018; arXiv
J. Fu, K. Luo and S. Levine, 2017. Learning Robust Rewards with Adversarial Inverse Reinforcement Learning. arXiv:1710.11248 DOI: 10.48550/arXiv.1710.11248.
Yu, Yu, Finn, Ermon (bb0040) 2019
Lin, Luo, Wu, Chen, Huang, Su, Xie (bb0025) 2024; 356
Lin, Chen, Xie, Su (bb0020) 2023; 158
Nian, Liu, Huang (bb0030) 2020; 139
Shin, Badgwell, Liu, Lee (bb0035) 2019; 127
Ziebart, Maas, Bagnell, Dey (bb0045) 2008
References_xml – reference: J. Fu, K. Luo and S. Levine, 2017. Learning Robust Rewards with Adversarial Inverse Reinforcement Learning. arXiv:1710.11248 DOI: 10.48550/arXiv.1710.11248.
– volume: arXiv
  start-page: 1805
  year: 2018
  ident: bb0010
  article-title: Reinforcement Learning and Control as Probabilistic Inference
  publication-title: Tutorial and Review.
– volume: 356
  year: 2024
  ident: bb0025
  article-title: Surrogate empowered Sim2Real transfer of deep reinforcement learning for ORC superheat control
  publication-title: Applied Energy
– year: 2021
  ident: bb0015
  article-title: Accelerating Reinforcement Learning with Local Data Enhancement for Process Control. 2021 China Automation Congress (CAC)
– volume: 139
  year: 2020
  ident: bb0030
  article-title: A review On reinforcement learning: Introduction and applications in industrial process control
  publication-title: Computers & Chemical Engineering
– volume: 127
  start-page: 282
  year: 2019
  end-page: 294
  ident: bb0035
  article-title: Reinforcement Learning - Overview of recent progress and implications for process control
  publication-title: Computers & Chemical Engineering
– year: 2019
  ident: bb0040
  article-title: Meta-inverse reinforcement learning with probabilistic context variables. Advances in Neural Information Processing Systems (NeurIPS 2019)
– year: 2008
  ident: bb0045
  article-title: Maximum Entropy Inverse Reinforcement Learning
  publication-title: Proceedings of the 23rd national conference on Artificial intelligence (AAAI)
– volume: 158
  start-page: 197
  year: 2023
  end-page: 215
  ident: bb0020
  article-title: Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control
  publication-title: Neural Networks
SSID ssib019619890
ssib055836272
ssib056837921
ssib056258536
ssib045323371
Score 2.1428175
Snippet In recent years, process control researchers have been paying close attention to Deep Reinforcement Learning (DRL). DRL offers the potential for model-free...
SourceID elsevier
SourceType Publisher
StartPage 2731
SubjectTerms data-driven controller design
inverse reinforcement learning
multi-mode process control
multi-task reinforcement learning
Title Developing Purely Data-Driven Multi-Mode Process Controllers Using Inverse Reinforcement Learning
URI https://dx.doi.org/10.1016/B978-0-443-28824-1.50456-7
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXockFcQID4KvKBW-USr-04OfTQbUFVJRAfrbS3yLGdshJKpSp7oL-eGcdOvKgcgEu0iXY3iedp_Dya90zI265upTbKYA1gyWRrDKsNt8yUldHOoWMLaoc_firPLuX5Wq3nmm5Qlwztob29U1fyL1GFaxBXVMn-RWSnP4UL8BniC0eIMBx_I7-7ZdbRVyDux3BwvHFYpk3K_8xhcOq2GY0Cvm772ymOJ5Mso7_6vt3M4Y0F5NXGXKeL67gds9_kCDud9Vaf0Zb5J0BoMOz0BhPoQVD2MtxqLYkRUF2IbfE_UDOcWhWwKwS3jggGrjbUKpPn61VekVjKrCKRFqaFlGIJ5F3yPLfqgqGffZ58lcizp44zgk-n5Z1Zfiw4rEZzYLgTC7di_FAhQWV6ntumjsPVzkOF7-k9sqcrtSD3j8-_rL-lLAQpCfvIpiwmlViKzDRQqQom_VltjCtI4DzlfA5r_noU_KU3DlYI8eZFsn1KD5OscHn57s-vlHGljP9cPCIPURNDUawCr_uY3PP9E2JmANARADQDAJ0BQCMAaAYAGgBAIwDoDgBoAsBTcvnh_cXJGYs7djDPBR-YrRXQRVXptgOaKLrOyg7W105J4QtdKw1wKX3JndKmkE5arp2B-dgoDUyxEuIZWfTXvX9OqCudc5A76trAEtnyqrXa-aquRFEb6_wLcpQGpIlkcSSBDaCkSb2LOKBN0cCANmFAG96EAW30y__8_SvyYMb-a7IYbrZ-H_jp0L6JgPoF4cZ-KA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Lin%2C+Runze&rft.au=Chen%2C+Junghui&rft.au=Huang%2C+Biao&rft.au=Xie%2C+Lei&rft.atitle=Developing+Purely+Data-Driven+Multi-Mode+Process+Controllers+Using+Inverse+Reinforcement+Learning&rft.date=2024-01-01&rft.isbn=9780443288241&rft.issn=1570-7946&rft.volume=53&rft.spage=2731&rft.epage=2736&rft_id=info:doi/10.1016%2FB978-0-443-28824-1.50456-7&rft.externalDocID=B9780443288241504567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon