Hybrid Artificial Intelligence-based Process Flowsheet Synthesis and Design using Extended SFILES Representation

Process flowsheet synthesis and design involves simultaneously solving several problems, including determining the unit operations and their sequence, underlying reactions and reaction stoichiometry, downstream separation design and operation parameters, sustainability factors, and many more. Natura...

Full description

Saved in:
Bibliographic Details
Published inComputer Aided Chemical Engineering Vol. 53; pp. 1279 - 1284
Main Authors Mann, Vipul, Sales-Cruz, Mauricio, Gani, Rafiqul, Venkatasubramanian, Venkat
Format Book Chapter
LanguageEnglish
Published 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Process flowsheet synthesis and design involves simultaneously solving several problems, including determining the unit operations and their sequence, underlying reactions and reaction stoichiometry, downstream separation design and operation parameters, sustainability factors, and many more. Naturally, this results in a large amount of data being associated with a given process flowsheet that captures the relevant process context and should be readily accessible. This data is useful for solving related problems both using data-driven and process knowledge-based methods. A hierarchical framework, called the extended SFILES (or eSFILES), proposed recently stores this information using a combination of text-based, graph-based, and ontology-based representations. Here, we provide details on a prototype software for automated flowsheet representation and generation across various levels in the eSFILES framework. The underlying methods include a novel flowsheet grammar, a set of inferencing algorithms, and interfacing with a commercial process simulator facilitating rigorous flowsheet simulation.
AbstractList Process flowsheet synthesis and design involves simultaneously solving several problems, including determining the unit operations and their sequence, underlying reactions and reaction stoichiometry, downstream separation design and operation parameters, sustainability factors, and many more. Naturally, this results in a large amount of data being associated with a given process flowsheet that captures the relevant process context and should be readily accessible. This data is useful for solving related problems both using data-driven and process knowledge-based methods. A hierarchical framework, called the extended SFILES (or eSFILES), proposed recently stores this information using a combination of text-based, graph-based, and ontology-based representations. Here, we provide details on a prototype software for automated flowsheet representation and generation across various levels in the eSFILES framework. The underlying methods include a novel flowsheet grammar, a set of inferencing algorithms, and interfacing with a commercial process simulator facilitating rigorous flowsheet simulation.
Author Gani, Rafiqul
Mann, Vipul
Venkatasubramanian, Venkat
Sales-Cruz, Mauricio
Author_xml – sequence: 1
  givenname: Vipul
  surname: Mann
  fullname: Mann, Vipul
  organization: Columbia University, New York 10027, USA
– sequence: 2
  givenname: Mauricio
  surname: Sales-Cruz
  fullname: Sales-Cruz, Mauricio
  organization: Universidad Autónoma Metropolitana-Cuajimalpa, Ciudad de México, México
– sequence: 3
  givenname: Rafiqul
  surname: Gani
  fullname: Gani, Rafiqul
  organization: PSE for SPEED Company, DK-2920, Charlottenlund, Denmark
– sequence: 4
  givenname: Venkat
  surname: Venkatasubramanian
  fullname: Venkatasubramanian, Venkat
  organization: Columbia University, New York 10027, USA
BookMark eNotkNtKAzEQQAMqWLX_EHxPzWzS3c1j7UULBcXqc8gms21gyZZNvPTvTatPM8yZC3NuyGXoAxJyD3wCHMqHR1XVjDMpBSvqupAMJlNegGTigowz45mcAVySEUwrzioly2syjtE3HFQJqlZ8RA7Px2bwjs6G5FtvvenoOiTsOr_DYJE1JqKjr0NvMUa66vrvuEdMdHsMaY_RR2qCo4uc7QL9jD7s6PInYXB5artab5Zb-oaHASOGZJLvwx25ak0Xcfwfb8nHavk-f2abl6f1fLZhCAISM3UzbeqCu9JUHFBIFEJVire1RMxFgwCttcqhEVbKEgthuUXTQgMmt4hbsvjbi_nIl8dBR-tPLzk_oE3a9V4D1yeZ-iRTc52V6bMzDfosUwvxC_ORbSQ
ContentType Book Chapter
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DOI 10.1016/B978-0-443-28824-1.50214-3
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 1284
ExternalDocumentID B9780443288241502143
GroupedDBID AABBV
ALMA_UNASSIGNED_HOLDINGS
BBABE
ID FETCH-LOGICAL-e131t-a8b5b820d6a701e34e339790f84eed6aae11fcc9dea3c446e23c0ceaf1b1a4ee3
ISBN 9780443288241
0443288240
ISSN 1570-7946
IngestDate Sat Jan 25 15:59:36 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords flowsheet modeling
artificial intelligence
process design
computer-aided flowsheet synthesis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e131t-a8b5b820d6a701e34e339790f84eed6aae11fcc9dea3c446e23c0ceaf1b1a4ee3
PageCount 6
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_0_443_28824_1_50214_3
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Computer Aided Chemical Engineering
PublicationYear 2024
References Mann, Gani, Venkatasubramanian (bb0025) 2023; 52
Tula, Eden, Gani (bb0035) 2015
Bommareddy, Eden, Gani (bb0005) 2011
D'Anterroches (bb0010) 2005
Mann, Sales-Cruz, Gani, Venkatasubramanian (bb0030) 2024
Venkatasubramanian, Mann (bb0040) 2022
Vogel, Balhorn, Schweidtmann (bb0045) 2022
Mann, Gani, Venkatasubramanian (bb0020) 2023
Hirtreiter, Balhorn, Schweidtmann (bb0015) 2022
References_xml – start-page: 108505
  year: 2024
  ident: bb0030
  article-title: eSFILES: Intelligent process flowsheet synthesis using process knowledge, symbolic AI, and machine learning
  publication-title: Computers & Chemical Engineering
– start-page: 245
  year: 2015
  end-page: 259
  ident: bb0035
  article-title: Process synthesis, design and analysis using a process-group contribution method
  publication-title: Computers & Chemical Engineering
– start-page: 321
  year: 2011
  end-page: 325
  ident: bb0005
  article-title: Computer Aided Flowsheet Design using Group Contribution Methods
– year: 2005
  ident: bb0010
  article-title: Process flowsheet generation & design through a group contribution approach
– volume: 52
  start-page: 221
  year: 2023
  end-page: 226
  ident: bb0025
  article-title: Intelligent Process Flowsheet Synthesis and Design using Extended SFILES Representation
  publication-title: Computer Aided Chemical Engineering
– year: 2022
  ident: bb0015
  article-title: Towards automatic generation of Piping and Instrumentation Diagrams (P&IDs) with Artificial Intelligence
– year: 2023
  ident: bb0020
  article-title: Group contribution-based property modeling for chemical product design: A perspective in the AI era
  publication-title: Fluid Phase Equilibria
– start-page: 100749
  year: 2022
  ident: bb0040
  article-title: Artificial intelligence in reaction prediction and chemical synthesis
  publication-title: Current Opinion in Chemical Engineering
– year: 2022
  ident: bb0045
  article-title: Learning from flowsheets: A generative transformer model for autocompletion of flowsheets
SSID ssib019619890
ssib055836272
ssib056837921
ssib056258536
ssib045323371
Score 2.1498883
Snippet Process flowsheet synthesis and design involves simultaneously solving several problems, including determining the unit operations and their sequence,...
SourceID elsevier
SourceType Publisher
StartPage 1279
SubjectTerms artificial intelligence
computer-aided flowsheet synthesis
flowsheet modeling
process design
Title Hybrid Artificial Intelligence-based Process Flowsheet Synthesis and Design using Extended SFILES Representation
URI https://dx.doi.org/10.1016/B978-0-443-28824-1.50214-3
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELa2ywVxAQHiLR-4RS5x_Ehy4NBWu9pWgARpq71FTuKIFSgt3V2h9s_wV5mJ8_BCOQCXKGsl69j-4hlP5vtMyGubxFWaloJFhRRMxkozMAqSRaoqqtomqtLIRn7_QS_O5MlSLSeTH17W0nZT7Jc3t_JK_mVUoQzGFVmyfzGyw59CAZzD-MIRRhiOvzi_u2FWpyvQ7ccQHKwqDNP2zH9PYXAMNzsv9Xx1OeYBZmAa1uzoanvjODsoL-SSstp8HLfXU_DJ1Ktv403ntvliNma9hUU2Kme48Kkr9dG3uEYmGIb-V51ExbGn_cnQdg4khWD-9eL7-jN-HM-uG3BIUSPFZUhjdkmwbcMZsy5aH2Tz43ezDFcOI3Oq8YMXkfSCF_0aNpRSRODnS-5Pw3HIUPren6eV8CZaHrk9aDqjjVb2VoPgYhOHTkcYamJtVYzvKxSLY2I0g0Ny4uHOQ7XXiT2yFydqSu4cnHxcZv2EBbMXppwNE55UIhKevqBSCfgHIzEZF5vwJujxdyLi1HED-xa3qgld5WGvENU_TK-ay_WbPzfJc6s8V-n0PrmH9BmKvBZo7gMysc1DcunwQEc80N_xQDs80AEPdMADBTxQhwfa4oH2eKAOD3QXD4_I2Xx2erRg3V4fzHLBN8wkhSrAG620iUNuhbQCvziHdSLBi9PGWM7rskwra0QppbaRKMPSmpoX3MAl4jGZNheNfUKoSVNTFWVk6lrL0JpCW6uj0uqipZWnT8nbvn_yzs107mMOoMn7rEfs3zzMoX_ztn9znrf9m4tn_3n_c3J3fBVekOnmamtfgme7KV51-PoJNWWWLw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Mann%2C+Vipul&rft.au=Sales-Cruz%2C+Mauricio&rft.au=Gani%2C+Rafiqul&rft.au=Venkatasubramanian%2C+Venkat&rft.atitle=Hybrid+Artificial+Intelligence-based+Process+Flowsheet+Synthesis+and+Design+using+Extended+SFILES+Representation&rft.date=2024-01-01&rft.isbn=9780443288241&rft.issn=1570-7946&rft.volume=53&rft.spage=1279&rft.epage=1284&rft_id=info:doi/10.1016%2FB978-0-443-28824-1.50214-3&rft.externalDocID=B9780443288241502143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon