Industrial Data Science for Batch Manufacturing

Batch processes are the main production methodology for a large number of manufacturing industries: e.g., chemicals, food and beverage, pharma, Levenspiel (1998). However, these processes are subject to high variability: raw material composition, initial condition, unit degradation, and their intrin...

Full description

Saved in:
Bibliographic Details
Published inComputer Aided Chemical Engineering Vol. 53; pp. 2965 - 2970
Main Authors Vallerio, Mattia, Perez-Galvan, Carlos, Navarro-Brull, Francisco J.
Format Book Chapter
LanguageEnglish
Published 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Batch processes are the main production methodology for a large number of manufacturing industries: e.g., chemicals, food and beverage, pharma, Levenspiel (1998). However, these processes are subject to high variability: raw material composition, initial condition, unit degradation, and their intrinsic nonlinear and dynamic nature. All these reasons make batch processes challenging to analyse, control and optimize, Kourti (2005), Rawlings (2017). Nowadays, data can be considered an additional asset of all manufacturing processes and with the introduction of IoT devices, the economic burden to capture even more data has dropped. This data overload does not help on its own. It generates an added value when it is turned into actionable information (e.g., reduce batch time, increased first-time-right production). This contribution aims at introducing the need to establish the field of industrial data science (Mowbray et al. (2022)), and by doing so it highlights the use of two well-established data analytics methods in the context of batch manufacturing analysis. A well-known industrial example will be used to demonstrate the newly defined workflows to apply these two machine learning methods to convert this high variability and apparent excess of data into valuable information. The first method involves AutoML analysis, Wilson (2017). We will present how to automatically summarize its properties into features and identify the most relevant ones via non-linear correlation analysis (e.g. random forest) for a batch process. Then, trajectory analysis and functional data exploration will be covered. However, before doing so, we will discuss the need to align the data time-wise to effectively use these techniques (Dynamic Time Warping). In this last step, we will use the Functional Data Explorer in JMP Pro to monitor and identify deviations, Silverman (2002). These two novel workflows show how to apply ML method to industrial data successfully.
AbstractList Batch processes are the main production methodology for a large number of manufacturing industries: e.g., chemicals, food and beverage, pharma, Levenspiel (1998). However, these processes are subject to high variability: raw material composition, initial condition, unit degradation, and their intrinsic nonlinear and dynamic nature. All these reasons make batch processes challenging to analyse, control and optimize, Kourti (2005), Rawlings (2017). Nowadays, data can be considered an additional asset of all manufacturing processes and with the introduction of IoT devices, the economic burden to capture even more data has dropped. This data overload does not help on its own. It generates an added value when it is turned into actionable information (e.g., reduce batch time, increased first-time-right production). This contribution aims at introducing the need to establish the field of industrial data science (Mowbray et al. (2022)), and by doing so it highlights the use of two well-established data analytics methods in the context of batch manufacturing analysis. A well-known industrial example will be used to demonstrate the newly defined workflows to apply these two machine learning methods to convert this high variability and apparent excess of data into valuable information. The first method involves AutoML analysis, Wilson (2017). We will present how to automatically summarize its properties into features and identify the most relevant ones via non-linear correlation analysis (e.g. random forest) for a batch process. Then, trajectory analysis and functional data exploration will be covered. However, before doing so, we will discuss the need to align the data time-wise to effectively use these techniques (Dynamic Time Warping). In this last step, we will use the Functional Data Explorer in JMP Pro to monitor and identify deviations, Silverman (2002). These two novel workflows show how to apply ML method to industrial data successfully.
Author Perez-Galvan, Carlos
Vallerio, Mattia
Navarro-Brull, Francisco J.
Author_xml – sequence: 1
  givenname: Mattia
  surname: Vallerio
  fullname: Vallerio, Mattia
  email: mattia.vallerio@solvay.com
  organization: SOLVAY, SA, Belgium
– sequence: 2
  givenname: Carlos
  surname: Perez-Galvan
  fullname: Perez-Galvan, Carlos
  organization: SOLVAY, SA, Belgium
– sequence: 3
  givenname: Francisco J.
  surname: Navarro-Brull
  fullname: Navarro-Brull, Francisco J.
  organization: Department of Chemical Engineering, Imperial College London
BookMark eNotkMtOwzAQRS1RJErJP0Ts3Xpqx48lbXlUKmIBrC3HngFLVSLlwfeTPlZ3caQ7c889mzVtg4w9gliCAL3aOGO54EpJvrZ2rTgsK6FcxfUNKyYmJnIGMGNzqIzgxil9x4q-z7UAp8FZJ-ZstW_S2A9dDsdyF4ZQfsaMTcSS2q7chCH-lu-hGSnEYexy8_PAbikceyyuuWDfL89f2zd--Hjdb58OHEHCwK0LUDshpQFEbeqgSBlD0YGiaJ1VQImSTkESUQKSiKQsyiRdNEE5uWC7Sy9OR_4ydr6_PJZyh3Hwqc0ehD-58CcXXvhpsT9P9uDPLryW_0egVL0
ContentType Book Chapter
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DOI 10.1016/B978-0-443-28824-1.50495-6
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 2970
ExternalDocumentID B9780443288241504956
GroupedDBID AABBV
ALMA_UNASSIGNED_HOLDINGS
BBABE
ID FETCH-LOGICAL-e131t-89a1b903371ee67ba4f477fc914fc89841fdfd6da3fffd1f3eef48e3d39c7a493
ISBN 9780443288241
0443288240
ISSN 1570-7946
IngestDate Sat Jan 25 15:59:36 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords FPCA
Data Analytics
AutoML
Machine Learning
Batch Manufacturing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-e131t-89a1b903371ee67ba4f477fc914fc89841fdfd6da3fffd1f3eef48e3d39c7a493
PageCount 6
ParticipantIDs elsevier_sciencedirect_doi_10_1016_B978_0_443_28824_1_50495_6
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Computer Aided Chemical Engineering
PublicationYear 2024
References Beck (bb0005) 2016; 62
Sansana (bb0045) 2021; 151
Wilson, Sahinidis (bb0080) 2017; 106
Chiang (bb0010) 2022; 68
Garcia-Munoz, Kourti, MacGregor (bb0020) 2004; 43
Shang, You (bb0055) 2019; 5
Silverman, Ramsay (bb0060) 2002
Spooner (bb0070) 2018; 117
Spooner (bb0065) 2017; 167
Kourti (bb0025) 2005; 19
Srivastava, Klassen (bb0075) 2016; 1
Levenspiel (bb0030) 1998
Garcia-Munoz (bb0015) 2003; 42
Rawlings, Mayne, Diehl (bb0040) 2017; 2
Schweidtmann (bb0050) 2021; 93
Zuecco (bb0085) 2020
Mowbray (bb0035) 2022; 7
References_xml – volume: 43
  start-page: 5929
  year: 2004
  end-page: 5941
  ident: bb0020
  article-title: Model predictive monitoring for batch processes
  publication-title: Industrial & Engineering Chemistry Research
– volume: 1
  year: 2016
  ident: bb0075
  article-title: Functional and shape data analysis
– volume: 167
  start-page: 161
  year: 2017
  end-page: 170
  ident: bb0065
  article-title: Selecting local constraint for alignment of batch process data with dynamictime warping
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 117
  start-page: 32
  year: 2018
  end-page: 41
  ident: bb0070
  article-title: Harvest time prediction for batch processes
  publication-title: Computers & Chemical Engineering
– volume: 106
  start-page: 785
  year: 2017
  end-page: 795
  ident: bb0080
  article-title: The alamo approach to machine learning
  publication-title: Computers & Chemical Engineering
– volume: 7
  start-page: 1471
  year: 2022
  end-page: 1509
  ident: bb0035
  article-title: Industrial data science - a review of machine learning applications for chemical and process industries
  publication-title: React. Chem. Eng.
– year: 2002
  ident: bb0060
  article-title: Applied functional data analysis: methods and case studies
– volume: 93
  start-page: 2029
  year: 2021
  end-page: 2039
  ident: bb0050
  article-title: Machine learning in chemical engineering: A perspective
  publication-title: Chemie Ingenieur Technik
– volume: 5
  start-page: 1010
  year: 2019
  end-page: 1016
  ident: bb0055
  article-title: Data analytics and machine learning for smart process manufacturing: Recent advances and perspectives in the big data era
  publication-title: Engineering
– volume: 42
  start-page: 3592
  year: 2003
  end-page: 3601
  ident: bb0015
  article-title: Troubleshooting of an industrial batch process using multivariate methods
  publication-title: Industrial & Engineering Chemistry Research
– start-page: 1129
  year: 2020
  end-page: 1134
  ident: bb0085
  article-title: Troubleshooting an industrial batch process for the manufacturing of specialty chemicals using data analytics
  publication-title: 30th ESCAPE. Vol. 48 of CACE
– volume: 19
  start-page: 213
  year: 2005
  end-page: 246
  ident: bb0025
  article-title: Application of latent variable methods to process control and multivariate statistical process control in industry
  publication-title: International Journal of Adaptive Control and Signal Processing
– volume: 2
  year: 2017
  ident: bb0040
  article-title: Model predictive control: theory, computation, and design
– volume: 68
  year: 2022
  ident: bb0010
  article-title: Towards artificial intelligence at scale in the chemical industry
  publication-title: AIChE Journal
– volume: 151
  year: 2021
  ident: bb0045
  article-title: Recent trends on hybrid modeling for industry 4.0
  publication-title: Computers & Chemical Engineering
– volume: 62
  start-page: 1402
  year: 2016
  end-page: 1416
  ident: bb0005
  article-title: Data science: Acc-elerating innovation and discovery in chemical engineering
  publication-title: AIChE Journal
– year: 1998
  ident: bb0030
  article-title: Chemical Reaction Engineering
SSID ssib019619890
ssib055836272
ssib056837921
ssib056258536
ssib045323371
Score 2.136277
Snippet Batch processes are the main production methodology for a large number of manufacturing industries: e.g., chemicals, food and beverage, pharma, Levenspiel...
SourceID elsevier
SourceType Publisher
StartPage 2965
SubjectTerms AutoML
Batch Manufacturing
Data Analytics
FPCA
Machine Learning
Title Industrial Data Science for Batch Manufacturing
URI https://dx.doi.org/10.1016/B978-0-443-28824-1.50495-6
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELXYckFcQICABZQDt5W7cTxO4gOH7fKxqsRKiF3UW-TEtqi0aqUq5bC_nnFsJ-4CB-ASpVFSe-ZZ4-exZ4aQtwraFkQLVOW6pGCgoNJwSzuG3LbWXLFhK-bzZXlxDcuVWE3lrYbokr6dd7e_jSv5F1TxGeLqomT_AtnxT_EB3iO-eEWE8XqH_B66WX1egVCP4eRsrZ2bNkb-JxkGoza_uYIpu_XWB-f0_VpNFnFnbukndRP2g87V7mY70uxL9cPlaKQ4APzuRCjD0W1PlvN0sCUFQN6rXo0Ww51hXKCx_-6O2exdEMV-7FdwNRSQuBriijMH4AWycmCp0axy6hLVp1ZV8NQsSl8QIkyxhfTFQn4x396TsPBZf7ElOjRF2VzgQkbQOzmzh1l4cdCp4b3yiBxVtZiR-2fLL6uv0bygrXEHxEbzBIIXPMkGKESNs_kURuyWhkhmyuk3Lualj-SLEg85DkLjecznFDsTc9yy8vTPIiUkKCE2V4_IQxfskrkoFBT3MblnNk_I6QRn5uDMApwZwpkNcGYHcD4l1x8_XJ1f0FBYgxrGWU9rqVgrcye8MWXVKrBQVbaTDGxXyxqY1VaXWnFrrWaWG2OhNlxz2VUKJH9GZpvtxjwnWV1bcBtsojISZIf0EipeaFtxJXOtixfkXRSvCZzOc7UGMW_iEUOnniZvUD3NoJ6GNYN6mvLlf35_TB5MI_kVmfW7vXmNNLJv34Th8RP-uF2J
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Aided+Chemical+Engineering&rft.au=Vallerio%2C+Mattia&rft.au=Perez-Galvan%2C+Carlos&rft.au=Navarro-Brull%2C+Francisco+J.&rft.atitle=Industrial+Data+Science+for+Batch+Manufacturing&rft.date=2024-01-01&rft.isbn=9780443288241&rft.issn=1570-7946&rft.volume=53&rft.spage=2965&rft.epage=2970&rft_id=info:doi/10.1016%2FB978-0-443-28824-1.50495-6&rft.externalDocID=B9780443288241504956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7946&client=summon