Tutorial on Using Regression Models with Count Outcomes using R
Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares) either with or without transforming the count variables. In either...
Saved in:
Published in | Practical assessment, research & evaluation Vol. 21; no. 2; pp. 2 - 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
College Park
Practical Assessment, Research and Evaluation, Inc
2016
Center for Educational Assessment |
Subjects | |
Online Access | Get full text |
ISSN | 1531-7714 1531-7714 |
Cover
Abstract | Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares) either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix. |
---|---|
AbstractList | Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares) either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the "R" syntax used run the example analyses are included in the Appendix. |
Author | Beaujean, A Alexander Grant, Morgan B |
Author_xml | – sequence: 1 givenname: A surname: Beaujean middlename: Alexander fullname: Beaujean, A Alexander – sequence: 2 givenname: Morgan surname: Grant middlename: B fullname: Grant, Morgan B |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1090064$$DView record in ERIC |
BookMark | eNpNjk1Lw0AYhBdpwX74E4QFz4Hdd5NNchIJVSuVgrTnsEne1C3pbt0PxH9vIB48zTDPMMySzIw1eEMWPBM8yXOezv75W7L0_swYCAGwII-HGKzTaqDW0KPX5kQ_8OTQez0G77bDwdNvHT5pZaMJdB9Day_oaZy6azLv1eDx7k9X5Pi8OVSvyW7_sq2edglyYCFJAfseFRZt0bBUAjLeKISsYKXoQLWYtVJ0DYLsyvGqhDQrMe8kygJHlosVuZ920em2vjp9Ue6n3rxxVjIm05E_TPzq7FdEH-qzjc6Ml2oQUuYlkzITv8HDUSE |
ContentType | Journal Article |
Copyright | 2016. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://scholarworks.umass.edu/pare/policies.html |
Copyright_xml | – notice: 2016. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://scholarworks.umass.edu/pare/policies.html |
DBID | 0-V 3V. 7XB 88B 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU CJNVE DWQXO GNUQQ M0P PHGZM PHGZT PIMPY PKEHL PQEDU PQEST PQQKQ PQUKI PRINS Q9U ERI GA5 |
DatabaseName | ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Education Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One Community College Education Collection ProQuest Central ProQuest Central Student Education Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic ERIC ERIC - Full Text Only (Discovery) |
DatabaseTitle | Publicly Available Content Database ProQuest One Education Social Science Premium Collection Education Collection ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Education Journals ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest Education Journals (Alumni Edition) ProQuest One Academic (New) ProQuest Central (Alumni) ERIC |
DatabaseTitleList | ERIC Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education |
EISSN | 1531-7714 |
ERIC | EJ1090064 |
ExternalDocumentID | EJ1090064 |
GroupedDBID | -W8 0-V 123 29O 2WC 3V. 5VS 7XB 8FK AAFWJ AAHSB ABUWG ADBBV AEGXH AFKRA ALMA_UNASSIGNED_HOLDINGS ALSLI AZQEC BCNDV BENPR CCPQU CJNVE DWQXO E3Z EJD GNUQQ IPNFZ KQ8 M0P OK1 OVT PHGZM PHGZT PIMPY PKEHL PQEDU PQEST PQQKQ PQUKI PRINS PUEGO Q9U QF4 QN7 RIG RNS TR2 XSB ABOPQ ERI GA5 |
ID | FETCH-LOGICAL-e120t-42effeae8c8b0462e01bae258093d2ace5c63dbe26d915362459e7d6e68ee5c73 |
IEDL.DBID | ERI |
ISSN | 1531-7714 |
IngestDate | Tue Sep 02 19:12:34 EDT 2025 Sat Aug 23 12:51:42 EDT 2025 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-e120t-42effeae8c8b0462e01bae258093d2ace5c63dbe26d915362459e7d6e68ee5c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1090064 |
PQID | 2366790665 |
PQPubID | 4582326 |
PageCount | 18 |
ParticipantIDs | eric_primary_EJ1090064 proquest_journals_2366790665 |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Practical assessment, research & evaluation |
PublicationYear | 2016 |
Publisher | Practical Assessment, Research and Evaluation, Inc Center for Educational Assessment |
Publisher_xml | – name: Practical Assessment, Research and Evaluation, Inc – name: Center for Educational Assessment |
SSID | ssj0023322 |
Score | 2.2324088 |
Snippet | Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study... |
SourceID | eric proquest |
SourceType | Open Access Repository Aggregation Database |
StartPage | 2 |
SubjectTerms | Attendance Data Analysis Data Interpretation Drug Use Educational Objectives Educational Research Educational Researchers Electronic Journals Goodness of Fit Inferences Least Squares Statistics Maximum Likelihood Statistics Multiple Regression Analysis Predictor Variables Regression (Statistics) Researchers Statistical Bias Syntax Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3BBvCYeA-XANaJrmjQ9TYA2TZMYaNqk3aomcbmgbtDu_2OvGYgL5_QQ2Y7t2p_9MXaPQdwWyirhfCpFgm9CZNI5UabWZCXGo1TRvPPLTE-WyXSlVqHgVgdY5d4n7hy1XzuqkT_EUus0o0bBcPMpiDWKuquBQuOQddEFG7Tz7tNo9jb_-eWSklhx_yKZ9852F0HGJ-w4pH78sdXVKTuA6oxYkwPC4pwNF7RQAA2Cryu-6-XzOby3QNWKE2vZR82pcMppkrzhr9sG7w4137bfXrDleLR4nohAcCBgEEcNioZAGwUYZywNiUKEgoNYmSiTPi4cKKeltxBrn6Fn0nGiMki9Bm0Az1LZY51qXcEl49ahNkpvpNW0MaY0UMaqsInxUTLISn_FeiSEfNPusMhHU0JkYj5yxfp7seTBfOv8V9jX_x_fsCPMIEJNos86zdcWbjFKN_YuqOIbq2iWZQ priority: 102 providerName: ProQuest |
Title | Tutorial on Using Regression Models with Count Outcomes using R |
URI | https://www.proquest.com/docview/2366790665 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1090064 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLVgHMYF8TUxGFMOXCu1SZMmJwSIaRpiwLRJu1VN43JBHWLd_8fp2iEhIXHppc2htpPn2M82wA2BuM2klUHuEhHEtCcCI_I8KBKrTUF4lEhf7_w8VeNFPFnK5U_o4r-MyonnExKa7vsSRt3eepp7lhB18oD2ckTOYxR3obtb8JvW3J68NZyMjuGo8QPZ3VZxJ7CH5akfodzQLc7gdu67C5B1sFXJ6sQ-m-H7lrVaMj_C7GPNfBSV-bLyir1sKjIeXLffnsNi9Dh_GAfNtIMAIx5WJCfP4MhQ59r6ilEMSYrIpQ6NcDzLUeZKOItcOUO_pngsDSZOodJI7xLRg065KvECmM1JNYXTwirfPqbQWHCZ2Vi7MI5M4frQ80JIP7cNLdKddPowaMWSNra8TrlQKjE-RXP517orOCRHoglNDKBTfW3wmsC6skM4uH-cvs6GtYro-fSmvwG47ZTI |
linkProvider | ERIC Clearinghouse on Information & Technology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VdoAF8aooFPAAY0TrJE4yoIpHq75BVSt1C3HssKC0kFSIP8Vv5K5JQCxsnR1F9t35Xv7uDuASjbgMbGkboXJMw8I7YXhmGBqRI10vQnvk2FTvPBqL7szqz-15Cb6KWhiCVRY6ca2o1SKkHPk1N4VwPHooaC3fDJoaRa-rxQiNTCwG-vMDQ7bkpveA_L3ivNOe3neNfKqAoZu8keJ-CCkRaDd0JVVm6gbuVnPbxdhe8SDUdihMJTUXykN1ILhle9pRQgtX45pj4n-3oGJRRWsZKnft8dPkJ8QzTZrC-xc5XSj3tcXq7MFu7mqy20w29qGk4wOa0pwjOg6hNaUGBiiAbBGzNXaATfRLBoyNGU1Je00YJWoZVa6n7HGVIq10wlbZt0cw28jRq1COF7E-BiZD5H6kXFMK6lATuTridiAtVzWsphepGlSJCP4y65nht_uEAEX_pwb1gix-fl0S_5e5J_8vX8B2dzoa-sPeeHAKO-i95PmQOpTT95U-Qw8hlec5Wxg8b1oSvgGS6tRC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tutorial+on+Using+Regression+Models+with+Count+Outcomes+Using+R&rft.jtitle=Practical+assessment%2C+research+%26+evaluation&rft.au=Beaujean%2C+A.+Alexander&rft.au=Morgan%2C+Grant+B&rft.date=2016&rft.pub=Center+for+Educational+Assessment&rft.issn=1531-7714&rft.eissn=1531-7714&rft.volume=21&rft.issue=2&rft.externalDocID=EJ1090064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-7714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-7714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-7714&client=summon |