Tutorial on Using Regression Models with Count Outcomes using R

Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares) either with or without transforming the count variables. In either...

Full description

Saved in:
Bibliographic Details
Published inPractical assessment, research & evaluation Vol. 21; no. 2; pp. 2 - 19
Main Authors Beaujean, A Alexander, Grant, Morgan B
Format Journal Article
LanguageEnglish
Published College Park Practical Assessment, Research and Evaluation, Inc 2016
Center for Educational Assessment
Subjects
Online AccessGet full text
ISSN1531-7714
1531-7714

Cover

Abstract Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares) either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix.
AbstractList Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares) either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the "R" syntax used run the example analyses are included in the Appendix.
Author Beaujean, A Alexander
Grant, Morgan B
Author_xml – sequence: 1
  givenname: A
  surname: Beaujean
  middlename: Alexander
  fullname: Beaujean, A Alexander
– sequence: 2
  givenname: Morgan
  surname: Grant
  middlename: B
  fullname: Grant, Morgan B
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1090064$$DView record in ERIC
BookMark eNpNjk1Lw0AYhBdpwX74E4QFz4Hdd5NNchIJVSuVgrTnsEne1C3pbt0PxH9vIB48zTDPMMySzIw1eEMWPBM8yXOezv75W7L0_swYCAGwII-HGKzTaqDW0KPX5kQ_8OTQez0G77bDwdNvHT5pZaMJdB9Day_oaZy6azLv1eDx7k9X5Pi8OVSvyW7_sq2edglyYCFJAfseFRZt0bBUAjLeKISsYKXoQLWYtVJ0DYLsyvGqhDQrMe8kygJHlosVuZ920em2vjp9Ue6n3rxxVjIm05E_TPzq7FdEH-qzjc6Ml2oQUuYlkzITv8HDUSE
ContentType Journal Article
Copyright 2016. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://scholarworks.umass.edu/pare/policies.html
Copyright_xml – notice: 2016. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://scholarworks.umass.edu/pare/policies.html
DBID 0-V
3V.
7XB
88B
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
CJNVE
DWQXO
GNUQQ
M0P
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ERI
GA5
DatabaseName ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Education Collection
ProQuest Central
ProQuest Central Student
Education Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
ERIC
ERIC - Full Text Only (Discovery)
DatabaseTitle Publicly Available Content Database
ProQuest One Education
Social Science Premium Collection
Education Collection
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
ERIC
DatabaseTitleList ERIC
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 1531-7714
ERIC EJ1090064
ExternalDocumentID EJ1090064
GroupedDBID -W8
0-V
123
29O
2WC
3V.
5VS
7XB
8FK
AAFWJ
AAHSB
ABUWG
ADBBV
AEGXH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AZQEC
BCNDV
BENPR
CCPQU
CJNVE
DWQXO
E3Z
EJD
GNUQQ
IPNFZ
KQ8
M0P
OK1
OVT
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
Q9U
QF4
QN7
RIG
RNS
TR2
XSB
ABOPQ
ERI
GA5
ID FETCH-LOGICAL-e120t-42effeae8c8b0462e01bae258093d2ace5c63dbe26d915362459e7d6e68ee5c73
IEDL.DBID ERI
ISSN 1531-7714
IngestDate Tue Sep 02 19:12:34 EDT 2025
Sat Aug 23 12:51:42 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-e120t-42effeae8c8b0462e01bae258093d2ace5c63dbe26d915362459e7d6e68ee5c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1090064
PQID 2366790665
PQPubID 4582326
PageCount 18
ParticipantIDs eric_primary_EJ1090064
proquest_journals_2366790665
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Practical assessment, research & evaluation
PublicationYear 2016
Publisher Practical Assessment, Research and Evaluation, Inc
Center for Educational Assessment
Publisher_xml – name: Practical Assessment, Research and Evaluation, Inc
– name: Center for Educational Assessment
SSID ssj0023322
Score 2.2324088
Snippet Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study...
SourceID eric
proquest
SourceType Open Access Repository
Aggregation Database
StartPage 2
SubjectTerms Attendance
Data Analysis
Data Interpretation
Drug Use
Educational Objectives
Educational Research
Educational Researchers
Electronic Journals
Goodness of Fit
Inferences
Least Squares Statistics
Maximum Likelihood Statistics
Multiple Regression Analysis
Predictor Variables
Regression (Statistics)
Researchers
Statistical Bias
Syntax
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3BBvCYeA-XANaJrmjQ9TYA2TZMYaNqk3aomcbmgbtDu_2OvGYgL5_QQ2Y7t2p_9MXaPQdwWyirhfCpFgm9CZNI5UabWZCXGo1TRvPPLTE-WyXSlVqHgVgdY5d4n7hy1XzuqkT_EUus0o0bBcPMpiDWKuquBQuOQddEFG7Tz7tNo9jb_-eWSklhx_yKZ9852F0HGJ-w4pH78sdXVKTuA6oxYkwPC4pwNF7RQAA2Cryu-6-XzOby3QNWKE2vZR82pcMppkrzhr9sG7w4137bfXrDleLR4nohAcCBgEEcNioZAGwUYZywNiUKEgoNYmSiTPi4cKKeltxBrn6Fn0nGiMki9Bm0Az1LZY51qXcEl49ahNkpvpNW0MaY0UMaqsInxUTLISn_FeiSEfNPusMhHU0JkYj5yxfp7seTBfOv8V9jX_x_fsCPMIEJNos86zdcWbjFKN_YuqOIbq2iWZQ
  priority: 102
  providerName: ProQuest
Title Tutorial on Using Regression Models with Count Outcomes using R
URI https://www.proquest.com/docview/2366790665
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1090064
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLVgHMYF8TUxGFMOXCu1SZMmJwSIaRpiwLRJu1VN43JBHWLd_8fp2iEhIXHppc2htpPn2M82wA2BuM2klUHuEhHEtCcCI_I8KBKrTUF4lEhf7_w8VeNFPFnK5U_o4r-MyonnExKa7vsSRt3eepp7lhB18oD2ckTOYxR3obtb8JvW3J68NZyMjuGo8QPZ3VZxJ7CH5akfodzQLc7gdu67C5B1sFXJ6sQ-m-H7lrVaMj_C7GPNfBSV-bLyir1sKjIeXLffnsNi9Dh_GAfNtIMAIx5WJCfP4MhQ59r6ilEMSYrIpQ6NcDzLUeZKOItcOUO_pngsDSZOodJI7xLRg065KvECmM1JNYXTwirfPqbQWHCZ2Vi7MI5M4frQ80JIP7cNLdKddPowaMWSNra8TrlQKjE-RXP517orOCRHoglNDKBTfW3wmsC6skM4uH-cvs6GtYro-fSmvwG47ZTI
linkProvider ERIC Clearinghouse on Information & Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VdoAF8aooFPAAY0TrJE4yoIpHq75BVSt1C3HssKC0kFSIP8Vv5K5JQCxsnR1F9t35Xv7uDuASjbgMbGkboXJMw8I7YXhmGBqRI10vQnvk2FTvPBqL7szqz-15Cb6KWhiCVRY6ca2o1SKkHPk1N4VwPHooaC3fDJoaRa-rxQiNTCwG-vMDQ7bkpveA_L3ivNOe3neNfKqAoZu8keJ-CCkRaDd0JVVm6gbuVnPbxdhe8SDUdihMJTUXykN1ILhle9pRQgtX45pj4n-3oGJRRWsZKnft8dPkJ8QzTZrC-xc5XSj3tcXq7MFu7mqy20w29qGk4wOa0pwjOg6hNaUGBiiAbBGzNXaATfRLBoyNGU1Je00YJWoZVa6n7HGVIq10wlbZt0cw28jRq1COF7E-BiZD5H6kXFMK6lATuTridiAtVzWsphepGlSJCP4y65nht_uEAEX_pwb1gix-fl0S_5e5J_8vX8B2dzoa-sPeeHAKO-i95PmQOpTT95U-Qw8hlec5Wxg8b1oSvgGS6tRC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tutorial+on+Using+Regression+Models+with+Count+Outcomes+Using+R&rft.jtitle=Practical+assessment%2C+research+%26+evaluation&rft.au=Beaujean%2C+A.+Alexander&rft.au=Morgan%2C+Grant+B&rft.date=2016&rft.pub=Center+for+Educational+Assessment&rft.issn=1531-7714&rft.eissn=1531-7714&rft.volume=21&rft.issue=2&rft.externalDocID=EJ1090064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-7714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-7714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-7714&client=summon