基于Spearman相关性阈值寻优和VMD-LSTM的用户级综合能源系统超短期负荷预测

TK01%TM715; 由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难.为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimization,TO)和变分模态分解结合长短期记忆网络(variational mode decomposition based long short-term memory network,VMD-LSTM)的多元负荷预测方法.首先,使用斯皮尔曼等级(Spearman rank,SR)相关系数定量计算多元...

Full description

Saved in:
Bibliographic Details
Published in全球能源互联网 Vol. 7; no. 4; pp. 406 - 420
Main Authors 李鹏, 罗湘淳, 孟庆伟, 朱明晓, 陈继明
Format Journal Article
LanguageChinese
Published 中国石油大学(华东)新能源学院电气工程系,山东省 青岛市 266580 01.07.2024
Editorial Office of Journal of Global Energy Interconnection
Subjects
Online AccessGet full text
ISSN2096-5125
DOI10.19705/j.cnki.issn2096-5125.2024.04.006

Cover

Abstract TK01%TM715; 由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难.为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimization,TO)和变分模态分解结合长短期记忆网络(variational mode decomposition based long short-term memory network,VMD-LSTM)的多元负荷预测方法.首先,使用斯皮尔曼等级(Spearman rank,SR)相关系数定量计算多元负荷间以及负荷与其他气候因素间的相关关系并通过循环寻优确定最优相关阈值,然后采用VMD算法将以最优阈值筛选出的负荷特征序列分解成更简单、平稳、有规律性的本征模态函数(intrinsic mode function,IMF)后与最优气象特征一起输入LSTM模型进行负荷预测.通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提方法能有效提高IES的多元负荷预测精度.
AbstractList 由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimization,TO)和变分模态分解结合长短期记忆网络(variational mode decomposition based long short-term memory network,VMD-LSTM)的多元负荷预测方法。首先,使用斯皮尔曼等级(Spearman rank,SR)相关系数定量计算多元负荷间以及负荷与其他气候因素间的相关关系并通过循环寻优确定最优相关阈值,然后采用VMD算法将以最优阈值筛选出的负荷特征序列分解成更简单、平稳、有规律性的本征模态函数(intrinsic mode function,IMF)后与最优气象特征一起输入LSTM模型进行负荷预测。通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提方法能有效提高IES的多元负荷预测精度。
TK01%TM715; 由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难.为此,提出一种基于Spearman相关性分析阈值寻优(threshold optimization,TO)和变分模态分解结合长短期记忆网络(variational mode decomposition based long short-term memory network,VMD-LSTM)的多元负荷预测方法.首先,使用斯皮尔曼等级(Spearman rank,SR)相关系数定量计算多元负荷间以及负荷与其他气候因素间的相关关系并通过循环寻优确定最优相关阈值,然后采用VMD算法将以最优阈值筛选出的负荷特征序列分解成更简单、平稳、有规律性的本征模态函数(intrinsic mode function,IMF)后与最优气象特征一起输入LSTM模型进行负荷预测.通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提方法能有效提高IES的多元负荷预测精度.
Abstract_FL The integrated energy system(IES)faces great difficulties because of the strong complexity of the multivariate load series of IES at the user level,which is readily influenced by external factors.For that reason,this paper proposes a load forecasting way based on Spearman correlation threshold optimization,which integrates with variational mode decomposition(VMD)and long short-term memory network(LSTM).To start with,the Spearman rank(SR)correlation coefficient is used to quantitatively calculate the correlation between multiple loads and between loads and other climate factors,and the optimal correlation threshold is determined through cyclic optimization.Then,the VMD algorithm is used to decompose the load characteristic series screened based on the optimal threshold into simpler,more stable the regular intrinsic mode function(IMF)components are input into the LSTM model together with the optimal meteorological characteristics for load forecasting.The effectiveness of the proposed method is verified by the actual data of a user level IES,and the result was indicative of that the way can validly improve the accuracy of the multivariate load forecasting of IES.
Author 罗湘淳
孟庆伟
李鹏
陈继明
朱明晓
AuthorAffiliation 中国石油大学(华东)新能源学院电气工程系,山东省 青岛市 266580
AuthorAffiliation_xml – name: 中国石油大学(华东)新能源学院电气工程系,山东省 青岛市 266580
Author_FL MENG Qingwei
LI Peng
ZHU Mingxiao
LUO Xiangchun
CHEN Jiming
Author_FL_xml – sequence: 1
  fullname: LI Peng
– sequence: 2
  fullname: LUO Xiangchun
– sequence: 3
  fullname: MENG Qingwei
– sequence: 4
  fullname: ZHU Mingxiao
– sequence: 5
  fullname: CHEN Jiming
Author_xml – sequence: 1
  fullname: 李鹏
– sequence: 2
  fullname: 罗湘淳
– sequence: 3
  fullname: 孟庆伟
– sequence: 4
  fullname: 朱明晓
– sequence: 5
  fullname: 陈继明
BookMark eNo9kEtL5EAcxPugsL6-hx4Suzvp7vRRfMOIB4e9hn8nHc04djRRxJugwoC7IuJB3IXAXtyLePDJzPhtTDJ-C8cHQkFBHX5V1DAaMInRCE0QbBMpMJts2IFZj-04ywzFkluMUGZTTF0b94X5ABr6zn-gsSyLFWbE4dKTYghBkbdf2icrmxrSDTDVn6fi6Lbcv3q9aBX73eKm89K9KM5-_VyasWor9aXq8rA6_1-2Hqv2VdXpFqet3sFz2T6tbjtVJ-89HFX5dfk3793lvd-Pr_8Oy_vjUTQYQTPTY18-gupzs_XpBau2PL84PVWzQimF5QKVArDwgIaaM-xKobTyIsYDohwPIu1Ql0dMcmBBoBTRIVBHahaBwi4Wzgha_MSGCTT8zTTegHTPTyD2P4IkXfUh3Y6DpvYDHnhMKiwUD12HMcWJiGggCaUSNHlnjX-ydsFEYFb9RrKTmv54f2vL7K01d9_v7bf2a98ADriT7Q
ClassificationCodes TK01%TM715
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOA
DOI 10.19705/j.cnki.issn2096-5125.2024.04.006
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Ultra Short-term Load Forecasting of User Level Integrated Energy System Based on Spearman Threshold Optimization and Variational Mode Decomposition and Long Short-term Memory
EndPage 420
ExternalDocumentID oai_doaj_org_article_c6c859b07b6d4355b617f2c91229ae17
qqnyhlw202404007
GroupedDBID -0C
-SC
-S~
2B.
2RA
4A8
5VR
92I
92M
93N
9D9
9DC
AAITT
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEC
CQIGP
GROUPED_DOAJ
PB1
PB9
PSX
Q--
RT3
T8S
TCJ
U1F
U5C
ID FETCH-LOGICAL-d997-4a297a078a2de650497beb8f56c1b38afe3246f596a5ccbb1eda239e5fab04073
IEDL.DBID DOA
ISSN 2096-5125
IngestDate Wed Aug 27 00:48:37 EDT 2025
Thu May 29 04:05:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords correlation analysis
integrated energy system(IES)
相关性分析
变分模态分解
load forecasting
综合能源系统
负荷预测
阈值寻优
threshold optimization
variational mode decomposition(VMD)
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d997-4a297a078a2de650497beb8f56c1b38afe3246f596a5ccbb1eda239e5fab04073
OpenAccessLink https://doaj.org/article/c6c859b07b6d4355b617f2c91229ae17
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_c6c859b07b6d4355b617f2c91229ae17
wanfang_journals_qqnyhlw202404007
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle 全球能源互联网
PublicationTitle_FL Journal of Global Energy Interconnection
PublicationYear 2024
Publisher 中国石油大学(华东)新能源学院电气工程系,山东省 青岛市 266580
Editorial Office of Journal of Global Energy Interconnection
Publisher_xml – name: 中国石油大学(华东)新能源学院电气工程系,山东省 青岛市 266580
– name: Editorial Office of Journal of Global Energy Interconnection
SSID ssib051369897
ssib035218720
ssj0002857220
ssib036435998
ssib035757067
ssib038075987
Score 2.3586872
Snippet TK01%TM715; 由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难.为此,提出一种基于Spearman相关性分析阈值寻优(threshold...
由于用户级综合能源系统(integrated energy system,IES)的多元负荷序列之间复杂的耦合关系及易受外部因素影响等原因,综合能源系统多元负荷的精准预测面临很大困难。为此,提出一种基于Spearman相关性分析阈值寻优(threshold...
SourceID doaj
wanfang
SourceType Open Website
Aggregation Database
StartPage 406
SubjectTerms 变分模态分解
相关性分析
综合能源系统
负荷预测
阈值寻优
Title 基于Spearman相关性阈值寻优和VMD-LSTM的用户级综合能源系统超短期负荷预测
URI https://d.wanfangdata.com.cn/periodical/qqnyhlw202404007
https://doaj.org/article/c6c859b07b6d4355b617f2c91229ae17
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9VAFB2kC3EjShXrR6ngxkVsZpLJzCyttRTxuelTugszk4n1g9hqRXRVsIUHflDERVEh4KZuxEXVynvPf9Mkr__CO5PYZufGbQYyZHLunHOHuecidAkomfOUYI9Sk3ghNtLGnO8pH9CDTQBjtt65cyuavx3eWKSLrVZf9k5YbQ9cL9y0jjSnQvlMRQlQO1VAuSnRAhMipMGujtwXfiuZAiSBqsCcHQqhAEQJa_mUB8DDtJVoWNd1Kg6FCsWBbazIDk5rCKeMOI9HmCzygCXpUXTZFfsxn07fv6KzB_dc2B6MQ-5JQmej6v9tCOAKg7JUZndbHDZ3Ah1vxOfU1fqjT6IjL5bGkSzy_l7_7cKyO93Oqo-_io2dcm17f6tXrA2Lb4O94Vbx7vWdzqx3c6HbqT6sV--_lL3dqr9dDYbFZm_08nfZ36x2BtUgH_3cqPKv5ad89D0fvdnd_7xe_nh1CnXnrnevzXtN4wUvseasoSSCSdAOkiQGFFwomDKKpzTSWAVcpgZUWJRSEUmqtVLYJJIEwtBUKtgTWHAajWWPMnMGTRktE2EgJQp1EipKueY4NRL7yhCVBOkEmrELEy_X1hqxNbt2DwACcQOB-F8QmEAXm2WNmwB8Eq-sZM-XHj6z_8BuU-zs_5joHDpmX1jf1j2PxlYfPzUXQJOsqkkHvz_VufCU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ESpearman%E7%9B%B8%E5%85%B3%E6%80%A7%E9%98%88%E5%80%BC%E5%AF%BB%E4%BC%98%E5%92%8CVMD-LSTM%E7%9A%84%E7%94%A8%E6%88%B7%E7%BA%A7%E7%BB%BC%E5%90%88%E8%83%BD%E6%BA%90%E7%B3%BB%E7%BB%9F%E8%B6%85%E7%9F%AD%E6%9C%9F%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B&rft.jtitle=%E5%85%A8%E7%90%83%E8%83%BD%E6%BA%90%E4%BA%92%E8%81%94%E7%BD%91&rft.au=%E6%9D%8E%E9%B9%8F&rft.au=%E7%BD%97%E6%B9%98%E6%B7%B3&rft.au=%E5%AD%9F%E5%BA%86%E4%BC%9F&rft.au=%E6%9C%B1%E6%98%8E%E6%99%93&rft.date=2024-07-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%B3%E6%B2%B9%E5%A4%A7%E5%AD%A6%28%E5%8D%8E%E4%B8%9C%29%E6%96%B0%E8%83%BD%E6%BA%90%E5%AD%A6%E9%99%A2%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E5%B1%B1%E4%B8%9C%E7%9C%81+%E9%9D%92%E5%B2%9B%E5%B8%82+266580&rft.issn=2096-5125&rft.volume=7&rft.issue=4&rft.spage=406&rft.epage=420&rft_id=info:doi/10.19705%2Fj.cnki.issn2096-5125.2024.04.006&rft.externalDocID=qqnyhlw202404007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fqqnyhlw%2Fqqnyhlw.jpg