Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning

Delimitation of areas subject to flooding is crucial to understand water dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic Aperture Radar (SAR) images acquired by the Sentinel-1 satellite in 2017, 2018, and 2019 to delineate flooded areas in the Central Amazon. The...

Full description

Saved in:
Bibliographic Details
Published inFinisterra Vol. 58; no. 123; pp. 87 - 109
Main Authors , Ivo Augusto Lopes Magalhães, de Carvalho Junior, Osmar Abilio, Eyji Sano, Edson
Format Journal Article
LanguageEnglish
Published Centro de Estudos Geográficos 16.08.2023
CEG
Subjects
Online AccessGet full text
ISSN0430-5027
2182-2905
DOI10.18055/Finis30884

Cover

Abstract Delimitation of areas subject to flooding is crucial to understand water dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic Aperture Radar (SAR) images acquired by the Sentinel-1 satellite in 2017, 2018, and 2019 to delineate flooded areas in the Central Amazon. The images were processed by the Artificial Neural Network Multi-Layer Perceptron (ANN-MLP) and two K-Nearest Neighbor (KNN-7 and KNN-11) machine learning (ML) classifiers. Pre-processing of Single Look Complex (SLC) SAR images involved the following methodological steps: orbit-file application; radiometric calibration (σ0); Range-Doppler terrain correction; speckle noise filtering; and conversion of linear data to backscattering coefficients (units in dB). We applied the Lee filter, with a window size of 3x3, for speckle filtering. A set of 6000 randomly distributed samples for training (70%), validation (20%), and test (10%) was obtained based on visual interpretation of Sentinel-2 optical satellite image acquired in the same years of SAR images. We found the largest flooded areas in 2019 in the study area (municipality of Parintins and Urucará, Amazonas River, Brazil): 6244km2 by the ANN-MLP classifier; 6268km2 by KNN- 7; and 6290km2 by KNN-11, while the smallest flooded areas were found in 2018: 5364km2 by ANN-MLP; 5412km2 by KNN-7; and 5535km2 by KNN-11. The three classifiers presented Kappa coefficients between 0.77 and 0.91. ANN-MLP showed the best accuracy. The presence of shadow effects in the SAR images increased the commission errors. La delimitación de áreas sujetas a inundaciones es crucial para comprender la dinámica del agua y los cambios fluviales. Este estudio analizó el potencial de las imágenes de radar de apertura sintética (SAR) adquiridas en la banda-C por el satélite Sentinel-1 en 2017, 2018 y 2019 para delinear áreas inundadas en la Amazonía Central. Las imágenes fueron procesadas por la Red Neuronal Artificial de Perceptrón Multicapa (RNA-MLP) y dos clasificadores de aprendizaje automático (ML) K-Nearest Neighbor (KNN-7 y KNN-11). El preprocesamiento de imágenes SAR complejas de una sola mirada (SLC) involucró los siguientes pasos metodológicos: aplicación del archivo de órbita; calibración radiométrica (σ0); corrección del terreno Range-Doppler; filtrado de ruido moteado; y conversión de datos lineales en coeficientes de retrodispersión (unidades en dB). Se aplicó El filtro Lee con un tamaño de ventana de 3×3 para filtrar el ruido moteado. Se obtuvo un conjunto de 6000 muestras asignadas aleatoriamente para entrenamiento (70%), validación (20%) y prueba (10%) en base a la interpretación visual de la imagen del satélite óptico Sentinel-2 adquirida el mismo año que las imágenes de radar. Los humedales más grandes se encontraron en 2019 en el área de estudio (municipio de Parintins y Urucará, Rió Amazonas, Brasil): 6244km2 por el clasificador RNA-MLP; 6268km2 por KNN-7; y, 6290km2 por KNN-11, mientras que, los humedales más pequeños se encontraron en 2018: 5364km2 por el clasificador RNA-MLP; 5412km2 por KNN-7; y 5535km2 por KNN-11. Los tres clasificadores presentaron coeficientes Kappa entre 0,77 y 0,91. RNA- -MLP mostró la mejor precisión. La presencia de efectos de sombra en las imágenes SAR aumentó los errores de comisión. A delimitação de áreas sujeitas a inundações é crucial para entender a dinâmica hídrica e as mudanças fluviais. Este estudo analisou o potencial de imagens de radar de abertura sintética (SAR) adquiridas na banda-C pelo satélite Sentinel-1 em 2017, 2018 e 2019 para delinear áreas inundadas na Amazónia Central. As imagens foram processadas pela Rede Neural Artificial Multi-Layer Perceptron (RNA-MLP) e dois classificadores de aprendizagem de máquina (ML) K-Nearest Neighbor (KNN-7 e KNN-11). O pré-processamento de imagens SAR Single Look Complex (SLC) envolveu as seguintes etapas metodológicas: aplicação do orbit-file; calibração radiométrica (σ0); correção de terreno Range-Doppler; filtragem de ruído speckle; e conversão de dados lineares para coeficientes de retroespalhamento (unidades em dB). O filtro de Lee com tamanho de janela de 3×3 foi aplicado para filtragem do ruído speckle. Um conjunto de 6000 amostras distribuídas aleatoriamente para treino (70%), validação (20%) e teste (10%) foi obtido com base na interpretação visual da imagem do satélite óptico Sentinel-2 adquiridas no mesmo ano das imagens de radar. As maiores áreas alagadas foram encontradas em 2019 na área de estudo (municípios de Parintins e Urucará, Rio Amazonas, Brasil): 6244km2 pelo classificador RNA-MLP; 6268km2 pelo KNN-7; e 6290km2 pelo KNN-11, enquanto as menores áreas alagadas foram encontradas em 2018: 5364km2 pelo classificador RNA-MLP; 5412km2 pelo KNN-7; e 5535km2 pelo KNN-11. Os três classificadores apresentaram coeficientes Kappa entre 0,77 e 0,91. A RNA-MLP apresentou a melhor precisão. A presença de efeitos de sombra nas imagens SAR aumentou os erros de comissão.
AbstractList Delimitation of areas subject to flooding is crucial to understand water dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic Aperture Radar (SAR) images acquired by the Sentinel-1 satellite in 2017, 2018, and 2019 to delineate flooded areas in the Central Amazon. The images were processed by the Artificial Neural Network Multi-Layer Perceptron (ANN-MLP) and two K-Nearest Neighbor (KNN-7 and KNN-11) machine learning (ML) classifiers. Pre-processing of Single Look Complex (SLC) SAR images involved the following methodological steps: orbit-file application; radiometric calibration (σ0); Range-Doppler terrain correction; speckle noise filtering; and conversion of linear data to backscattering coefficients (units in dB). We applied the Lee filter, with a window size of 3x3, for speckle filtering. A set of 6000 randomly distributed samples for training (70%), validation (20%), and test (10%) was obtained based on visual interpretation of Sentinel-2 optical satellite image acquired in the same years of SAR images. We found the largest flooded areas in 2019 in the study area (municipality of Parintins and Urucará, Amazonas River, Brazil): 6244km2 by the ANN-MLP classifier; 6268km2 by KNN-7; and 6290km2 by KNN-11, while the smallest flooded areas were found in 2018: 5364km2 by ANN-MLP; 5412km2 by KNN-7; and 5535km2 by KNN-11. The three classifiers presented Kappa coefficients between 0.77 and 0.91. ANN-MLP showed the best accuracy. The presence of shadow effects in the SAR images increased the commission errors.
Delimitation of areas subject to flooding is crucial to understand water dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic Aperture Radar (SAR) images acquired by the Sentinel-1 satellite in 2017, 2018, and 2019 to delineate flooded areas in the Central Amazon. The images were processed by the Artificial Neural Network Multi-Layer Perceptron (ANN-MLP) and two K-Nearest Neighbor (KNN-7 and KNN-11) machine learning (ML) classifiers. Pre-processing of Single Look Complex (SLC) SAR images involved the following methodological steps: orbit-file application; radiometric calibration (σ0); Range-Doppler terrain correction; speckle noise filtering; and conversion of linear data to backscattering coefficients (units in dB). We applied the Lee filter, with a window size of 3x3, for speckle filtering. A set of 6000 randomly distributed samples for training (70%), validation (20%), and test (10%) was obtained based on visual interpretation of Sentinel-2 optical satellite image acquired in the same years of SAR images. We found the largest flooded areas in 2019 in the study area (municipality of Parintins and Urucará, Amazonas River, Brazil): 6244km2 by the ANN-MLP classifier; 6268km2 by KNN- 7; and 6290km2 by KNN-11, while the smallest flooded areas were found in 2018: 5364km2 by ANN-MLP; 5412km2 by KNN-7; and 5535km2 by KNN-11. The three classifiers presented Kappa coefficients between 0.77 and 0.91. ANN-MLP showed the best accuracy. The presence of shadow effects in the SAR images increased the commission errors. La delimitación de áreas sujetas a inundaciones es crucial para comprender la dinámica del agua y los cambios fluviales. Este estudio analizó el potencial de las imágenes de radar de apertura sintética (SAR) adquiridas en la banda-C por el satélite Sentinel-1 en 2017, 2018 y 2019 para delinear áreas inundadas en la Amazonía Central. Las imágenes fueron procesadas por la Red Neuronal Artificial de Perceptrón Multicapa (RNA-MLP) y dos clasificadores de aprendizaje automático (ML) K-Nearest Neighbor (KNN-7 y KNN-11). El preprocesamiento de imágenes SAR complejas de una sola mirada (SLC) involucró los siguientes pasos metodológicos: aplicación del archivo de órbita; calibración radiométrica (σ0); corrección del terreno Range-Doppler; filtrado de ruido moteado; y conversión de datos lineales en coeficientes de retrodispersión (unidades en dB). Se aplicó El filtro Lee con un tamaño de ventana de 3×3 para filtrar el ruido moteado. Se obtuvo un conjunto de 6000 muestras asignadas aleatoriamente para entrenamiento (70%), validación (20%) y prueba (10%) en base a la interpretación visual de la imagen del satélite óptico Sentinel-2 adquirida el mismo año que las imágenes de radar. Los humedales más grandes se encontraron en 2019 en el área de estudio (municipio de Parintins y Urucará, Rió Amazonas, Brasil): 6244km2 por el clasificador RNA-MLP; 6268km2 por KNN-7; y, 6290km2 por KNN-11, mientras que, los humedales más pequeños se encontraron en 2018: 5364km2 por el clasificador RNA-MLP; 5412km2 por KNN-7; y 5535km2 por KNN-11. Los tres clasificadores presentaron coeficientes Kappa entre 0,77 y 0,91. RNA- -MLP mostró la mejor precisión. La presencia de efectos de sombra en las imágenes SAR aumentó los errores de comisión. A delimitação de áreas sujeitas a inundações é crucial para entender a dinâmica hídrica e as mudanças fluviais. Este estudo analisou o potencial de imagens de radar de abertura sintética (SAR) adquiridas na banda-C pelo satélite Sentinel-1 em 2017, 2018 e 2019 para delinear áreas inundadas na Amazónia Central. As imagens foram processadas pela Rede Neural Artificial Multi-Layer Perceptron (RNA-MLP) e dois classificadores de aprendizagem de máquina (ML) K-Nearest Neighbor (KNN-7 e KNN-11). O pré-processamento de imagens SAR Single Look Complex (SLC) envolveu as seguintes etapas metodológicas: aplicação do orbit-file; calibração radiométrica (σ0); correção de terreno Range-Doppler; filtragem de ruído speckle; e conversão de dados lineares para coeficientes de retroespalhamento (unidades em dB). O filtro de Lee com tamanho de janela de 3×3 foi aplicado para filtragem do ruído speckle. Um conjunto de 6000 amostras distribuídas aleatoriamente para treino (70%), validação (20%) e teste (10%) foi obtido com base na interpretação visual da imagem do satélite óptico Sentinel-2 adquiridas no mesmo ano das imagens de radar. As maiores áreas alagadas foram encontradas em 2019 na área de estudo (municípios de Parintins e Urucará, Rio Amazonas, Brasil): 6244km2 pelo classificador RNA-MLP; 6268km2 pelo KNN-7; e 6290km2 pelo KNN-11, enquanto as menores áreas alagadas foram encontradas em 2018: 5364km2 pelo classificador RNA-MLP; 5412km2 pelo KNN-7; e 5535km2 pelo KNN-11. Os três classificadores apresentaram coeficientes Kappa entre 0,77 e 0,91. A RNA-MLP apresentou a melhor precisão. A presença de efeitos de sombra nas imagens SAR aumentou os erros de comissão.
Author Eyji Sano, Edson
Ivo Augusto Lopes Magalhães
de Carvalho Junior, Osmar Abilio
Author_xml – sequence: 1
  orcidid: 0000-0003-4136-1972
  fullname: , Ivo Augusto Lopes Magalhães
  organization: Universidade de Brasilia
– sequence: 2
  givenname: Osmar Abilio
  surname: de Carvalho Junior
  fullname: de Carvalho Junior, Osmar Abilio
– sequence: 3
  givenname: Edson
  surname: Eyji Sano
  fullname: Eyji Sano, Edson
BookMark eNo9kE1LAzEYhINUsK2e_AMBz6vJ5mOTY6lWCwXB9irLu9k3bcp2U5JV8N9brXiaYWZ4DjMhoz72SMgtZ_fcMKUeFqEPWTBj5AUZl9yURWmZGpExk4IVipXVFZnkvGdMa8XZmLw_YhcOYYAhxJ5GT30XY4sthYSQaQP55E_NGvsh9NgVnK5nb7SFAegxRYf5ZzDsUvzY7ugB3O60oh1C6kO_vSaXHrqMN386JZvF02b-Uqxen5fz2aporZSFRqycB1DcsoYbQCGsdd6hd55DI3SjKkDpLcOyRCiZ8lXFOHCuWSUbLaZkeca2Efb1MYUDpK86Qqh_g5i2NaQhuA5rY43lqvHaYytRGiucR2w5eqW05OLEujuzkgM41gk_Qx4g_wN-zxXfwTBw4w
ContentType Journal Article
DBID RCLKO
DOA
DOI 10.18055/Finis30884
DatabaseName RCAAP open access repository
DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2182-2905
EndPage 109
ExternalDocumentID oai_doaj_org_article_898915bf6fed4e4893cfeed1ef556413
article_30884
GroupedDBID 29H
2WC
AAFWJ
ABDBF
ABDHV
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
BCNDV
ESX
F5P
GROUPED_DOAJ
OK1
P2P
RCLKO
RNS
RTN
SCD
~02
ID FETCH-LOGICAL-d944-6ee7cfaa5190b18ae3399cfcefcf1ab36b57ae4f90e22ea205f7701a116074b63
IEDL.DBID DOA
ISSN 0430-5027
IngestDate Wed Aug 27 01:14:42 EDT 2025
Fri Aug 01 16:28:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 123
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d944-6ee7cfaa5190b18ae3399cfcefcf1ab36b57ae4f90e22ea205f7701a116074b63
ORCID 0000-0003-4136-1972
OpenAccessLink https://doaj.org/article/898915bf6fed4e4893cfeed1ef556413
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_898915bf6fed4e4893cfeed1ef556413
rcaap_revistas_article_30884
PublicationCentury 2000
PublicationDate 2023-08-16
PublicationDateYYYYMMDD 2023-08-16
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-16
  day: 16
PublicationDecade 2020
PublicationTitle Finisterra
PublicationYear 2023
Publisher Centro de Estudos Geográficos
CEG
Publisher_xml – name: Centro de Estudos Geográficos
– name: CEG
SSID ssj0066510
Score 2.2425776
Snippet Delimitation of areas subject to flooding is crucial to understand water dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic...
SourceID doaj
rcaap
SourceType Open Website
Publisher
StartPage 87
SubjectTerms Artigos
Title Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning
URI http://hdl.handle.net/article/30884
https://doaj.org/article/898915bf6fed4e4893cfeed1ef556413
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQDLAgPkWhVB5Yo8aJ7SRjS4kqJBhokbqgyHbuYChtVcrAv8fnBNSNhTXfuot9z9a79xi7kZnBFJQfSL6YRbKwKrK1pG046SwqBTpQ_h8e9fhZ3s_UbMvqizhhjTxwE7g-2RsKZVEj1BJIKsWhn9cF-AdpGfxqk7iIfxZTzRystQo6BCRoFSm_8mo78_JYqX5Jmh2pH12y1en3uHTtjFltFZbyiB22iJAPmi85ZjuwOGH7rTn529cpexnBnNqQQgz5EjkS2RxqbohQzqkO1dyfmRDxZwHzSPDJ4IkT95Ovmj4Af0FryMPfA3sSeGsX8XrGpuXd9HYcta4IUV1IGWmAzKExHnnFVuQGUg8xHDpAh8LYVFuVGZBYxJAkYJJYYZbFwghSkpNWp-dsd7FcwAXjQmWooKitR33SL8xy1C5TIkNpMZeIHTak8FSrRveiIiXqcMDnp2rzU_2Vnw7rhuBWxFr2gPfj986Qgsv_eMcVOyAXeNrqFbrLdjfrT7j2WGFje2xvMBwNy174Pb4Bfx2-zA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delimitation+of+flooded+areas+based+on+Sentinel-1+SAR+data+processed+through+machine+learning&rft.jtitle=Finisterra&rft.au=%2C+Ivo+Augusto+Lopes+Magalh%C3%A3es&rft.au=de+Carvalho+Junior%2C+Osmar+Abilio&rft.au=Eyji+Sano%2C+Edson&rft.date=2023-08-16&rft.pub=Centro+de+Estudos+Geogr%C3%A1ficos&rft.issn=0430-5027&rft.eissn=2182-2905&rft.volume=58&rft.issue=123&rft.spage=87&rft.epage=109&rft_id=info:doi/10.18055%2FFinis30884&rft.externalDBID=n%2Fa&rft.externalDocID=article_30884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0430-5027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0430-5027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0430-5027&client=summon