Ultra‐High Performance Amorphous Ga2O3 Photodetector Arrays for Solar‐Blind Imaging
The growing demand for scalable solar‐blind image sensors with remarkable photosensitive properties has stimulated the research on more advanced solar‐blind photodetector (SBPD) arrays. In this work, the authors demonstrate ultrahigh‐performance metal‐semiconductor‐metal (MSM) SBPDs based on amorpho...
Saved in:
Published in | Advanced science Vol. 8; no. 20 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.10.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The growing demand for scalable solar‐blind image sensors with remarkable photosensitive properties has stimulated the research on more advanced solar‐blind photodetector (SBPD) arrays. In this work, the authors demonstrate ultrahigh‐performance metal‐semiconductor‐metal (MSM) SBPDs based on amorphous (a‐) Ga2O3 via a post‐annealing process. The post‐annealed MSM a‐Ga2O3 SBPDs exhibit superhigh sensitivity of 733 A/W and high response speed of 18 ms, giving a high gain‐bandwidth product over 104 at 5 V. The SBPDs also show ultrahigh photo‐to‐dark current ratio of 3.9 × 107. Additionally, the PDs demonstrate super‐high specific detectivity of 3.9 × 1016 Jones owing to the extremely low noise down to 3.5 fW Hz−1/2, suggesting high signal‐to‐noise ratio. Underlying mechanism for such superior photoelectric properties is revealed by Kelvin probe force microscopy and first principles calculation. Furthermore, for the first time, a large‐scale, high‐uniformity 32 × 32 image sensor array based on the post‐annealed a‐Ga2O3 SBPDs is fabricated. Clear image of target object with high contrast can be obtained thanks to the high sensitivity and uniformity of the array. These results demonstrate the feasibility and practicality of the Ga2O3 PDs for applications in solar‐blind imaging, environmental monitoring, artificial intelligence and machine vision.
Ultraviolet imaging technology is widely used in meteorology, medical science, and military science. For the first time, a high‐uniformity 32 × 32 solar‐blind image sensor array with outstanding imaging capability is demonstrated based on high‐performance Ga2O3 photodetectors. Schottky barrier lowering effect is experimentally revealed to attribute to the internal gain mechanism. |
---|---|
AbstractList | The growing demand for scalable solar‐blind image sensors with remarkable photosensitive properties has stimulated the research on more advanced solar‐blind photodetector (SBPD) arrays. In this work, the authors demonstrate ultrahigh‐performance metal‐semiconductor‐metal (MSM) SBPDs based on amorphous (a‐) Ga2O3 via a post‐annealing process. The post‐annealed MSM a‐Ga2O3 SBPDs exhibit superhigh sensitivity of 733 A/W and high response speed of 18 ms, giving a high gain‐bandwidth product over 104 at 5 V. The SBPDs also show ultrahigh photo‐to‐dark current ratio of 3.9 × 107. Additionally, the PDs demonstrate super‐high specific detectivity of 3.9 × 1016 Jones owing to the extremely low noise down to 3.5 fW Hz−1/2, suggesting high signal‐to‐noise ratio. Underlying mechanism for such superior photoelectric properties is revealed by Kelvin probe force microscopy and first principles calculation. Furthermore, for the first time, a large‐scale, high‐uniformity 32 × 32 image sensor array based on the post‐annealed a‐Ga2O3 SBPDs is fabricated. Clear image of target object with high contrast can be obtained thanks to the high sensitivity and uniformity of the array. These results demonstrate the feasibility and practicality of the Ga2O3 PDs for applications in solar‐blind imaging, environmental monitoring, artificial intelligence and machine vision. The growing demand for scalable solar‐blind image sensors with remarkable photosensitive properties has stimulated the research on more advanced solar‐blind photodetector (SBPD) arrays. In this work, the authors demonstrate ultrahigh‐performance metal‐semiconductor‐metal (MSM) SBPDs based on amorphous ( a ‐) Ga 2 O 3 via a post‐annealing process. The post‐annealed MSM a ‐Ga 2 O 3 SBPDs exhibit superhigh sensitivity of 733 A/W and high response speed of 18 ms, giving a high gain‐bandwidth product over 10 4 at 5 V. The SBPDs also show ultrahigh photo‐to‐dark current ratio of 3.9 × 10 7 . Additionally, the PDs demonstrate super‐high specific detectivity of 3.9 × 10 16 Jones owing to the extremely low noise down to 3.5 fW Hz −1/2 , suggesting high signal‐to‐noise ratio. Underlying mechanism for such superior photoelectric properties is revealed by Kelvin probe force microscopy and first principles calculation. Furthermore, for the first time, a large‐scale, high‐uniformity 32 × 32 image sensor array based on the post‐annealed a ‐Ga 2 O 3 SBPDs is fabricated. Clear image of target object with high contrast can be obtained thanks to the high sensitivity and uniformity of the array. These results demonstrate the feasibility and practicality of the Ga 2 O 3 PDs for applications in solar‐blind imaging, environmental monitoring, artificial intelligence and machine vision. Ultraviolet imaging technology is widely used in meteorology, medical science, and military science. For the first time, a high‐uniformity 32 × 32 solar‐blind image sensor array with outstanding imaging capability is demonstrated based on high‐performance Ga 2 O 3 photodetectors. Schottky barrier lowering effect is experimentally revealed to attribute to the internal gain mechanism. The growing demand for scalable solar‐blind image sensors with remarkable photosensitive properties has stimulated the research on more advanced solar‐blind photodetector (SBPD) arrays. In this work, the authors demonstrate ultrahigh‐performance metal‐semiconductor‐metal (MSM) SBPDs based on amorphous (a‐) Ga2O3 via a post‐annealing process. The post‐annealed MSM a‐Ga2O3 SBPDs exhibit superhigh sensitivity of 733 A/W and high response speed of 18 ms, giving a high gain‐bandwidth product over 104 at 5 V. The SBPDs also show ultrahigh photo‐to‐dark current ratio of 3.9 × 107. Additionally, the PDs demonstrate super‐high specific detectivity of 3.9 × 1016 Jones owing to the extremely low noise down to 3.5 fW Hz−1/2, suggesting high signal‐to‐noise ratio. Underlying mechanism for such superior photoelectric properties is revealed by Kelvin probe force microscopy and first principles calculation. Furthermore, for the first time, a large‐scale, high‐uniformity 32 × 32 image sensor array based on the post‐annealed a‐Ga2O3 SBPDs is fabricated. Clear image of target object with high contrast can be obtained thanks to the high sensitivity and uniformity of the array. These results demonstrate the feasibility and practicality of the Ga2O3 PDs for applications in solar‐blind imaging, environmental monitoring, artificial intelligence and machine vision. Ultraviolet imaging technology is widely used in meteorology, medical science, and military science. For the first time, a high‐uniformity 32 × 32 solar‐blind image sensor array with outstanding imaging capability is demonstrated based on high‐performance Ga2O3 photodetectors. Schottky barrier lowering effect is experimentally revealed to attribute to the internal gain mechanism. Abstract The growing demand for scalable solar‐blind image sensors with remarkable photosensitive properties has stimulated the research on more advanced solar‐blind photodetector (SBPD) arrays. In this work, the authors demonstrate ultrahigh‐performance metal‐semiconductor‐metal (MSM) SBPDs based on amorphous (a‐) Ga2O3 via a post‐annealing process. The post‐annealed MSM a‐Ga2O3 SBPDs exhibit superhigh sensitivity of 733 A/W and high response speed of 18 ms, giving a high gain‐bandwidth product over 104 at 5 V. The SBPDs also show ultrahigh photo‐to‐dark current ratio of 3.9 × 107. Additionally, the PDs demonstrate super‐high specific detectivity of 3.9 × 1016 Jones owing to the extremely low noise down to 3.5 fW Hz−1/2, suggesting high signal‐to‐noise ratio. Underlying mechanism for such superior photoelectric properties is revealed by Kelvin probe force microscopy and first principles calculation. Furthermore, for the first time, a large‐scale, high‐uniformity 32 × 32 image sensor array based on the post‐annealed a‐Ga2O3 SBPDs is fabricated. Clear image of target object with high contrast can be obtained thanks to the high sensitivity and uniformity of the array. These results demonstrate the feasibility and practicality of the Ga2O3 PDs for applications in solar‐blind imaging, environmental monitoring, artificial intelligence and machine vision. |
Author | Wu, Feihong Miao, Xiangshui Qin, Yuan Yuan, Jun‐Hui Dong, Danian Guo, Wei Xue, Kan‐Hao Zhang, Zhongfang Yu, Zhaoan Long, Shibing Li, Li‐Heng |
AuthorAffiliation | 2 School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China 1 Key Laboratory of Microelectronics Devices & Integration Technology Institute of Microelectronics of Chinese Academy of Sciences Beijing 100029 China 3 Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China |
AuthorAffiliation_xml | – name: 2 School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China – name: 1 Key Laboratory of Microelectronics Devices & Integration Technology Institute of Microelectronics of Chinese Academy of Sciences Beijing 100029 China – name: 3 Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China |
Author_xml | – sequence: 1 givenname: Yuan surname: Qin fullname: Qin, Yuan organization: University of Science and Technology of China – sequence: 2 givenname: Li‐Heng surname: Li fullname: Li, Li‐Heng organization: Huazhong University of Science and Technology – sequence: 3 givenname: Zhaoan surname: Yu fullname: Yu, Zhaoan organization: Institute of Microelectronics of Chinese Academy of Sciences – sequence: 4 givenname: Feihong surname: Wu fullname: Wu, Feihong organization: University of Science and Technology of China – sequence: 5 givenname: Danian surname: Dong fullname: Dong, Danian organization: Institute of Microelectronics of Chinese Academy of Sciences – sequence: 6 givenname: Wei surname: Guo fullname: Guo, Wei organization: University of Science and Technology of China – sequence: 7 givenname: Zhongfang surname: Zhang fullname: Zhang, Zhongfang organization: University of Science and Technology of China – sequence: 8 givenname: Jun‐Hui surname: Yuan fullname: Yuan, Jun‐Hui organization: Huazhong University of Science and Technology – sequence: 9 givenname: Kan‐Hao surname: Xue fullname: Xue, Kan‐Hao email: xkh@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 10 givenname: Xiangshui surname: Miao fullname: Miao, Xiangshui organization: Huazhong University of Science and Technology – sequence: 11 givenname: Shibing orcidid: 0000-0001-6220-4461 surname: Long fullname: Long, Shibing email: shibinglong@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNpV0cFO3DAQBmCroiqUcu05Us9LZ2zHsS-VtrTASkggAe3RcpxxNqsk3jpZ0N76CH1GnoTQRQhOtuzfnzT-P7K9PvbE2GeEYwTgX111Nxxz4AiIoN6xA45Gz4SWcu_Vfp8dDcMKADAXhUT9ge0LKcz0rDhgv2_bMbmHv__Om3qZXVEKMXWu95TNu5jWy7gZsjPHL0V2tYxjrGgkP8aUzVNy2yGb0tl1bF2ahO9t01fZonN109ef2Pvg2oGOntdDdnv68-bkfHZxebY4mV_MKqENnxGZPIgCFSEWGPJcKQWKCtKylKXxhkMoodLgykBBYRVKF3yuNAX0xnBxyBY7t4puZdep6Vza2uga-_8gptq6NDa-JRuQgyy1zgX3Ekg7CMrz3Ac0qL3Ayfq2s9absqPKUz99TfsGfXvTN0tbxzurc26k1hPw5RlI8c-GhtGu4ib10_yW51oUWggwU0ruUvdNS9sXHsE-lWqfSrUvpdr5j1_X3CAXj8p3mVs |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 5PM DOA |
DOI | 10.1002/advs.202101106 |
DatabaseName | Wiley Online Library Open Access ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_f1204b88532c40e8a0f6c25cf1918c31 PMC8529488 ADVS2912 |
Genre | article |
GrantInformation_xml | – fundername: Chinese Academy of Sciences funderid: XDB44000000 – fundername: Institute of Microelectronics of CAS – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2018YFB0406504; 2016YFA0201803 – fundername: Key Area Research and Development Program of Guangdong Province funderid: 2020B010174002 – fundername: Key Laboratory of Microelectronics Devices & Integration Technology – fundername: National Natural Science Foundation of China funderid: 61925110; U20A20207; 11704134; 61821091; 51961145110 – fundername: Key Laboratory of Nanodevices and Applications in Suzhou Institute of Nano‐Tech and Nano‐Bionics of CAS – fundername: CAS Key Laboratory of Receptor Research funderid: QYZDB‐SSW‐JSC048 – fundername: Key Area Research and Development Program of Guangdong Province grantid: 2020B010174002 – fundername: ; grantid: 61925110; U20A20207; 11704134; 61821091; 51961145110 – fundername: ; grantid: 2018YFB0406504; 2016YFA0201803 – fundername: ; grantid: QYZDB‐SSW‐JSC048 – fundername: ; grantid: XDB44000000 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN 3V. 7XB 8FK AAMMB ADMLS AEFGJ AFPKN AGXDD AIDQK AIDYY IGS MBDVC PHGZM PHGZT PKEHL PQEST PQUKI PRINS Q9U 5PM PUEGO |
ID | FETCH-LOGICAL-d3892-ee95f3716e1171f5566606e7e84b4b9c920fb0d80abfef61dfbafc568ef1c9923 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:30:20 EDT 2025 Thu Aug 21 18:26:00 EDT 2025 Fri Jul 25 06:20:26 EDT 2025 Wed Jan 22 16:27:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d3892-ee95f3716e1171f5566606e7e84b4b9c920fb0d80abfef61dfbafc568ef1c9923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6220-4461 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101106 |
PMID | 34390217 |
PQID | 2583783309 |
PQPubID | 4365299 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f1204b88532c40e8a0f6c25cf1918c31 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8529488 proquest_journals_2583783309 wiley_primary_10_1002_advs_202101106_ADVS2912 |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 5 2021; 8 2019; 7 2013; 25 2017; 2 2021; 42 2019; 6 2019; 5 2017; 4 2019; 31 2020; 41 2019; 11 2017; 27 2010; 464 2007; 91 2020; 14 2014; 24 2017; 29 1962; 33 2013; 7 2008; 1 2021; 72 2014; 297 2007; 75 2013; 8 2017; 9 2011; 110 2020; 8 2018; 6 2020; 7 2014; 105 2015; 27 2014; 4 2018; 5 2019; 40 2020 2019; 29 2018; 30 1999; 74 2017; 121 2018; 12 2010; 2 2017; 542 2001; 79 2012; 85 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 41 start-page: 997 year: 2020 publication-title: IEEE Electron Device Lett. – volume: 24 start-page: 53 year: 2014 publication-title: Adv. Funct. Mater. – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 105 year: 2014 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 812 year: 2020 publication-title: ACS Photonics – volume: 464 start-page: 80 year: 2010 publication-title: Nature – volume: 6 start-page: 1026 year: 2019 publication-title: ACS Photonics – volume: 110 year: 2011 publication-title: J. Appl. Phys. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 27 start-page: 6575 year: 2015 publication-title: Adv. Mater. – volume: 542 start-page: 324 year: 2017 publication-title: Nature – volume: 74 start-page: 3401 year: 1999 publication-title: Appl. Phys. Lett. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 33 start-page: 205 year: 1962 publication-title: J. Appl. Phys. – volume: 8 start-page: 952 year: 2013 publication-title: Nat. Nanotechnol. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 9 start-page: 1 year: 2017 publication-title: IEEE Photonics J. – volume: 33 start-page: 1733 year: 1962 publication-title: J. Appl. Phys. – volume: 42 start-page: 383 year: 2021 publication-title: IEEE Electron Device Lett. – volume: 297 start-page: 125 year: 2014 publication-title: Appl. Surf. Sci. – volume: 25 start-page: 867 year: 2013 publication-title: Adv. Mater. – volume: 27 start-page: 3921 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 752 year: 2013 publication-title: Nat. Photonics – volume: 1 year: 2008 publication-title: Appl. Phys. Express – volume: 40 start-page: 1483 year: 2019 publication-title: IEEE Electron Device Lett. – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 557 year: 2021 publication-title: ACS Photonics – volume: 42 start-page: 545 year: 2021 publication-title: IEEE Electron Device Lett. – volume: 85 year: 2012 publication-title: Phys. Rev. B – volume: 5 start-page: 2391 year: 2018 publication-title: ACS Photonics – volume: 31 start-page: 923 year: 2019 publication-title: IEEE Photonics Technol. Lett. – volume: 7 start-page: 2557 year: 2019 publication-title: J. Mater. Chem. C – volume: 30 start-page: 2025 year: 2018 publication-title: IEEE Photonics Technol. Lett. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 2 start-page: 1973 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 993 year: 2018 publication-title: IEEE Photonics Technol. Lett. – volume: 40 start-page: 742 year: 2019 publication-title: IEEE Electron Device Lett. – volume: 4 start-page: 1067 year: 2014 publication-title: Opt. Mater. Express – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – year: 2020 publication-title: ACS Appl. Electron. Mater. – volume: 7 year: 2019 publication-title: APL Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 79 start-page: 1417 year: 2001 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 2203 year: 2017 publication-title: ACS Photonics – volume: 14 year: 2020 publication-title: Mater. Today Phys. – volume: 40 start-page: 1475 year: 2019 publication-title: IEEE Electron Device Lett. – volume: 72 start-page: 189 year: 2021 publication-title: J. Mater. Sci. Technol. – volume: 121 year: 2017 publication-title: J. Appl. Phys. |
SSID | ssj0001537418 |
Score | 2.5677104 |
Snippet | The growing demand for scalable solar‐blind image sensors with remarkable photosensitive properties has stimulated the research on more advanced solar‐blind... Abstract The growing demand for scalable solar‐blind image sensors with remarkable photosensitive properties has stimulated the research on more advanced... |
SourceID | doaj pubmedcentral proquest wiley |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
SubjectTerms | Ga2O3 high detectivity image sensors Light Molecular beam epitaxy Morphology Organic chemicals photodetector arrays Scanning electron microscopy Semiconductors Sensors solar‐blind imaging Spectrum analysis uniformity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQT1wQZRFlkw8c4BDhjJ3UOQJilVgkqOBmOV5UJNqitiBx4xP4Rr6EsZNCy4UL1ySeJDN25r1o5pmQHc4Ft94WiUVwkQjtRSIFL5G1Wq7B5FZGdf3Lq_ysIy4esoeprb5CTVglD1w5bt-nwEQpMauAEcxJzXxuIDMeiYY0sYMaMOdNkamqP5gHWZaJSiODfW1fgzo3MhxMeBOF_hlY-bsochqsxmxzskgWaphID6rHa5I5118izXohjuhurRa9t0zuO09o6PP9I1Rs0JufPgB60BugE5HZ01MN15zedAfjgXXj-J8eTQ_124ji1fQ20Fu0cIiQ09LzXty4aIV0To7vjs6SereExCLogMS5IvMc6Y9L03bqM8RpSE5c20lRirIwBTBfMiuZLr3zeWp9qb3Jcul8agrEeauk0R_03RqhufDoQACMrxbSSm2Z8CGR41DgzrTIYfCeeq4EMVSQqI4HMHCqDpz6K3AtsjnxvarXzUhBFgTuOWdFi7Rn4jFzs9kz_cdu1MWWGRT4PWqRJEbue0SlzAwqTAH1PQUU5v1bKFJY_4-32SDzwXJV5rdJGuPhi9tCuDIut-PM_AKkmOm9 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXLggnmK8lAMHOFS0SdqlJ8QQTwmYgAluUZoHIMEK20Dixk_gN_JLcLqMMQ5c2yatbNf-7LqfATYZ48w4k0cGwUXEleOR4KzArNUwRXVmRMWuf3aeHbf56W16GwpuvdBWOfSJlaM2pfY18h2aeupzzL7z3eeXyE-N8l9XwwiNSZhCFyxEDaaaB-ety1GVJWWenmXI1hjTHWXePEs3ZjoY-IZM_WPw8m9z5G_QWkWdw1mYCXCR7A30OwcTtjMPc-GF7JGtwBq9vQA37Ufc6Ovj03dukNbofwCy91SiMDHDJ0eKXjDSui_7pbH9ql6PW3fVe4_g1eTKp7m4QxOhpyEnT9UAo0VoHx5c7x9HYWpCZBB80MjaPHUM0yCbJI3EpYjXMEmxDSt4wYtc5zR2RWxErApnXZYYVyin00xYl-gc8d4S1Dplxy4DybhDAVKKelZcGKFMzJ0P6LiUMqvr0PTSk88DYgzpqaqrA2X3TgbLly6hMS8EwgKqeWyFil2maaodZopCs6QOa0PZy_D-9ORI23VojOlj7GbjZzoP9xU_tkhpjn6pDlGluZ8VA4ZmKr0JyB8TkBj_r2ie0JX_H2QVpv2aQSPfGtT63Ve7joCkX2wEq_sGLszjbQ priority: 102 providerName: ProQuest |
Title | Ultra‐High Performance Amorphous Ga2O3 Photodetector Arrays for Solar‐Blind Imaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101106 https://www.proquest.com/docview/2583783309 https://pubmed.ncbi.nlm.nih.gov/PMC8529488 https://doaj.org/article/f1204b88532c40e8a0f6c25cf1918c31 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagvXBBLQ8RaCMfOJTDqt6xd-M9Jn1QUFsiQkRvlp8tEs1WSVqJGz-B38gv6di7TbrcOK3ktWelGc_6-6zxZ0Lecy64C67KHIKLTOggMim4QdbquAZbOpnU9c_Oy5Op-HxRXDw6xd_oQ6w23GJmpP91THBtFvtr0VDt7qLcNlIWXMHKp2Qznq-NRX0gxutdloJHeZZ4wxyy64xLIR6UGxnsd020qv0dqPlvoeRjAJtWoOMt8ryFjnTYxHqbPPGzF2S7Tc4F3WsVpD-8JN-nP9HQ399_YhUHHa_PBtDhdY2ORbZPP2r4wun4ql7Wzi_T3j2anutfC4q96SRSXrQwQkc5-uk6XWb0ikyPj74dnGTtDQqZQyACmfdVEThSIp_ngzwUiN2QsPiBl8IIU9kKWDDMSaZN8KHMXTA62KKUPuS2Quz3mmzM6pl_Q2gpAjoTAGOuhXRSOyZCXNxxKHBve2QUvaduGpEMFWWrU0M9v1RtFqiQAxNGIkQAK5iXmoXSQmEDskZped4jOw--V20uLRQUUfSec1b1yKATj87Hum9mP66SVrYsoMJ_VI9kKXKrEY1aM6g4BdRqCijEAhOocnj7n_3fkWexsany2yEby_mt30W0sjT9NCH7ZHN4eHY6wefo6Hz8tZ-4_z3mZ-qF |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V2wNcEOVHLBTwASQ4RE3GTtY5INSFll3aLivaFb0Zxz8UiW7K7hbUG4_Ak_BQPAnj_HRZDtx6TWInGn8Zf2OPvwF4wrng1ts8skQuIqG9iKTgBUWtlms0mZWVuv7BKBtMxNvj9HgNfrVnYUJaZesTK0dtSxPWyLcwDdLnFH3nL8--RqFqVNhdbUto1LDYcxffKWSbvxi-pvF9iri7c_RqEDVVBSJLkzNGzuWp5xQmuCTpJT4lPkMk3vWcFIUocpNj7IvYylgX3vkssb7Q3qSZdD4xeR6EDsjlrwuexdiB9f7OaPx-uaqT8iAH06pDxril7begCk6RFU20bWWAFTr7bzLm3yS5muV2b8KNhp6y7RpPG7Dmprdgo3EAc_asUal-fhs-TL5QR79__AyZImy8PH_Atk9LGrzyfM7eaHzH2fikXJTWLar9Aep6pi_mjJ5mhyGsph76RHUtG55WBZPuwORK7HkXOtNy6u4By4QnAyISrrSQVmobCx8IBDVF7kwX-sF66qwW4lBBGru6UM4-qeZPUz7BWBSSaAgaETupY58ZTI2nyFQannRhs7W9av7XuVqiqwu9lfFYednqnennk0qPW6aYkx_sQlSN3GWLWhEaVYCAuoSAIr5xiHmC9___IY_h2uDoYF_tD0d7D-B6aF8nEW5CZzE7dw-JDC2KRw0CGXy8atD_AWv8IP0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VW6nigigFsVDAB5DgEG1iO1n7gFCXdulSWFaUFb0Zxz8UiW7KZgvqjUfo8_RxeBLG-emyHLj1msRONP4y_sYefwPwhDHOrLcyskguIq49jwRnOUatlmlqMisqdf1342x_yt8cpUdrcNmehQlpla1PrBy1LUxYI-_RNEifY_Qte75Ji5jsDl-efo9CBamw09qW06ghcuDOf2L4Vr4Y7eJYP6V0uPfx1X7UVBiILE7UNHJOpp5hyOCSpJ_4FLkNEnrXd4LnPJdG0tjnsRWxzr3zWWJ9rr1JM-F8YqQMogfo_tf7ISrqwPpgbzz5sFzhSVmQhmmVImPa0_ZHUAjHKAsn3bZKwAq1_Tcx82_CXM14w1tws6GqZKfG1iasudlt2GycQUmeNYrVz7fg0_QbdvT710XIGiGT5VkEsnNS4EAWZyV5rel7RibHxaKwblHtFWDXc31eEnyaHIYQG3sYIO21ZHRSFU-6A9Nrsedd6MyKmbsHJOMeDUgpYkxzYYW2MfeBTGBTypzpwiBYT53WohwqyGRXF4r5F9X8dconNOa5QEpCDY-d0LHPDE2NxyhVGJZ0Ybu1vWr-3VItkdaF_sp4rLxs9c7s63GlzS1SKtEndiGqRu6qRa0OTVWAgLqCgELucUhlQu___0MewwaCXb0djQ8ewI3QvM4n3IbOYn7mHiIvWuSPGgAS-HzdmP8DeeolMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra%E2%80%90High+Performance+Amorphous+Ga2O3+Photodetector+Arrays+for+Solar%E2%80%90Blind+Imaging&rft.jtitle=Advanced+science&rft.au=Qin%2C+Yuan&rft.au=Li%2C+Li%E2%80%90Heng&rft.au=Yu%2C+Zhaoan&rft.au=Wu%2C+Feihong&rft.date=2021-10-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=8&rft.issue=20&rft_id=info:doi/10.1002%2Fadvs.202101106&rft_id=info%3Apmid%2F34390217&rft.externalDocID=PMC8529488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |