Enhanced Electrochemical Performance of Vanadium Redox Flow Batteries Using Li4Ti5O12/TiO2 Nanocomposite‐Modified Graphite Felt Electrodes
In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadiu...
Saved in:
Published in | ChemElectroChem Vol. 12; no. 2 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
14.01.2025
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadium redox flow battery (VRFB) systems. The cyclic voltammetry (CV) curves of the LTO/TiO2@HGF show higher peak current densities and smaller peak separation than TiO2@HGF, HGF, and pristine graphite felt (PGF) for catalyzing V2+/V3+ and VO₂+/VO2+, indicating superior electrochemical activity of LTO/TiO2@HGF. The VRFB using LTO/TiO2@HGF as the positive and negative electrodes demonstrates an energy efficiency of 82.89 % at 80 mA cm−2. When the VRFB using LTO/TiO2@HGF is applied by a high current density of 200 mA cm−2, it still shows an energy efficiency of 62.22 %. However, the VRFB using PGF cannot perform any performance, and the VRFB using HGF only performs 51.94 %. This improvement can be attributed to the uniform distribution of LTO/TiO2 nanowires on the surface of the graphite felt and the presence of oxygen vacancies on LTO/TiO2, which increased the number of active sites for vanadium ion absorption.
The study synthesizes LTO/TiO2 nanocomposites on heat‐treated graphite felt (LTO/TiO2@HGF) for the VRFB. This composite demonstrates superior electrochemical activity compared to TiO2@HGF, HGF, and pristine graphite felt. The VRFB using LTO/TiO2@HGF achieves 82.89 % energy efficiency at 80 mA cm−2 and 62.22 % at 200 mA cm−2. Improved performance is attributed to uniform nanowire distribution and oxygen vacancies, enhancing vanadium ion absorption. |
---|---|
AbstractList | Abstract In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadium redox flow battery (VRFB) systems. The cyclic voltammetry (CV) curves of the LTO/TiO2@HGF show higher peak current densities and smaller peak separation than TiO2@HGF, HGF, and pristine graphite felt (PGF) for catalyzing V2+/V3+ and VO₂+/VO2+, indicating superior electrochemical activity of LTO/TiO2@HGF. The VRFB using LTO/TiO2@HGF as the positive and negative electrodes demonstrates an energy efficiency of 82.89 % at 80 mA cm−2. When the VRFB using LTO/TiO2@HGF is applied by a high current density of 200 mA cm−2, it still shows an energy efficiency of 62.22 %. However, the VRFB using PGF cannot perform any performance, and the VRFB using HGF only performs 51.94 %. This improvement can be attributed to the uniform distribution of LTO/TiO2 nanowires on the surface of the graphite felt and the presence of oxygen vacancies on LTO/TiO2, which increased the number of active sites for vanadium ion absorption. In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadium redox flow battery (VRFB) systems. The cyclic voltammetry (CV) curves of the LTO/TiO2@HGF show higher peak current densities and smaller peak separation than TiO2@HGF, HGF, and pristine graphite felt (PGF) for catalyzing V2+/V3+ and VO₂+/VO2+, indicating superior electrochemical activity of LTO/TiO2@HGF. The VRFB using LTO/TiO2@HGF as the positive and negative electrodes demonstrates an energy efficiency of 82.89 % at 80 mA cm−2. When the VRFB using LTO/TiO2@HGF is applied by a high current density of 200 mA cm−2, it still shows an energy efficiency of 62.22 %. However, the VRFB using PGF cannot perform any performance, and the VRFB using HGF only performs 51.94 %. This improvement can be attributed to the uniform distribution of LTO/TiO2 nanowires on the surface of the graphite felt and the presence of oxygen vacancies on LTO/TiO2, which increased the number of active sites for vanadium ion absorption. In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadium redox flow battery (VRFB) systems. The cyclic voltammetry (CV) curves of the LTO/TiO2@HGF show higher peak current densities and smaller peak separation than TiO2@HGF, HGF, and pristine graphite felt (PGF) for catalyzing V2+/V3+ and VO₂+/VO2+, indicating superior electrochemical activity of LTO/TiO2@HGF. The VRFB using LTO/TiO2@HGF as the positive and negative electrodes demonstrates an energy efficiency of 82.89 % at 80 mA cm−2. When the VRFB using LTO/TiO2@HGF is applied by a high current density of 200 mA cm−2, it still shows an energy efficiency of 62.22 %. However, the VRFB using PGF cannot perform any performance, and the VRFB using HGF only performs 51.94 %. This improvement can be attributed to the uniform distribution of LTO/TiO2 nanowires on the surface of the graphite felt and the presence of oxygen vacancies on LTO/TiO2, which increased the number of active sites for vanadium ion absorption. The study synthesizes LTO/TiO2 nanocomposites on heat‐treated graphite felt (LTO/TiO2@HGF) for the VRFB. This composite demonstrates superior electrochemical activity compared to TiO2@HGF, HGF, and pristine graphite felt. The VRFB using LTO/TiO2@HGF achieves 82.89 % energy efficiency at 80 mA cm−2 and 62.22 % at 200 mA cm−2. Improved performance is attributed to uniform nanowire distribution and oxygen vacancies, enhancing vanadium ion absorption. |
Author | Huang, Zih‐Jhong Manaye Kabtamu, Daniel Mebreku Demeku, Aknachew Ku, Hung‐Hsien Hsu, Ning‐Yih Chen, Guan‐Cheng Wang, Yao‐Ming Wang, Chen‐Hao Chiang, Tai‐Chin |
Author_xml | – sequence: 1 givenname: Zih‐Jhong surname: Huang fullname: Huang, Zih‐Jhong organization: National Taiwan University of Science and Technology – sequence: 2 givenname: Daniel surname: Manaye Kabtamu fullname: Manaye Kabtamu, Daniel organization: National Taiwan University of Science and Technology – sequence: 3 givenname: Aknachew surname: Mebreku Demeku fullname: Mebreku Demeku, Aknachew organization: National Taiwan University of Science and Technology – sequence: 4 givenname: Guan‐Cheng surname: Chen fullname: Chen, Guan‐Cheng organization: National Taiwan University of Science and Technology – sequence: 5 givenname: Ning‐Yih surname: Hsu fullname: Hsu, Ning‐Yih organization: National Atomic Research Institute – sequence: 6 givenname: Hung‐Hsien surname: Ku fullname: Ku, Hung‐Hsien organization: National Atomic Research Institute – sequence: 7 givenname: Yao‐Ming surname: Wang fullname: Wang, Yao‐Ming organization: Metal Industries Research & Development Centre – sequence: 8 givenname: Tai‐Chin surname: Chiang fullname: Chiang, Tai‐Chin organization: Chung-Hua Institution for Economic Research – sequence: 9 givenname: Chen‐Hao orcidid: 0000-0003-2350-3287 surname: Wang fullname: Wang, Chen‐Hao email: chwang@mail.ntust.edu.tw organization: Academia Sinica |
BookMark | eNpNUctu2zAQJIoUaJrk2jOBnp0sHxKpY2vYaQA3DgqnV4KPVUxDEl1KRppbP6CHfmO_pHKcGD3t7uzszALznpx0qUNCPjC4ZAD8ymPjLzlwCSCVekNOOavKCXBWnvzXvyMXfb8BAMagELo8Jb9n3dp2HgOdNeiHnPwa2-htQ-8w1ym3-yVNNf1uOxvirqXfMKSfdN6kR_rZDgPmiD2972P3QBdRrmKxZPxqFZec3tou-dRuUx8H_Pvrz9cUYh1Hq-tst-sRo3NshlfjgP05eVvbpseLl3pG7uez1fTLZLG8vpl-WkyCEJWaBAVQiVB5bT24ShUlV7ZAzWtppdNecwfSj0AoJWoNwumC1YVyI7-0rhRn5OagG5LdmG2Orc1PJtlonoGUH4zNQ_QNGsbUqGvLotBSOlBaa6mE866uBaigR62PB61tTj922A9mk3a5G983go1XCrTYO1YH1mNs8OloycDs0zP79MwxPTOdLabHSfwDM_GSgw |
ContentType | Journal Article |
Copyright | 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P 7SR 8BQ 8FD JG9 DOA |
DOI | 10.1002/celc.202400477 |
DatabaseName | Wiley Online Library Open Access Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database DOAJ Directory of Open Access Journals |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_11782fa655844b07888473bcbff307d8 CELC202400477 |
Genre | article |
GrantInformation_xml | – fundername: National Science and Technology Council funderid: 110-2221-E-011-074-MY3 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAMMB AAXRX AAZKR ABCUV ABJCF ACAHQ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BBNVY BENPR BGLVJ BHPHI BMXJE BRXPI CCPQU DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7P MEWTI MY~ O9- P2W PDBOC PHGZM PHGZT R.K ROL TUS WBKPD WOHZO WXSBR ZZTAW 7SR 8BQ 8FD JG9 PQGLB PUEGO |
ID | FETCH-LOGICAL-d3397-d70093d9c8ac0b975627a5e82f4a4b8c82b04c5e8d64e8803b851f57b8ac6ab63 |
IEDL.DBID | 24P |
ISSN | 2196-0216 |
IngestDate | Wed Aug 27 01:32:02 EDT 2025 Fri Jul 25 12:09:07 EDT 2025 Sun Jul 06 04:45:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d3397-d70093d9c8ac0b975627a5e82f4a4b8c82b04c5e8d64e8803b851f57b8ac6ab63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2350-3287 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400477 |
PQID | 3155870836 |
PQPubID | 2034587 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_11782fa655844b07888473bcbff307d8 proquest_journals_3155870836 wiley_primary_10_1002_celc_202400477_CELC202400477 |
PublicationCentury | 2000 |
PublicationDate | January 14, 2025 |
PublicationDateYYYYMMDD | 2025-01-14 |
PublicationDate_xml | – month: 01 year: 2025 text: January 14, 2025 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2017; 5 2017; 7 2017; 1 2013; 3 2017; 4 2023; 6 2021; 126 2021; 885 2016; 222 2021; 283 2011; 56 2014; 250 2024; 102 2014; 132 2019; 240 2016; 180 2020; 8 2018; 6 2014; 4 2012; 134 2013; 13 2023; 332 2017; 32 2007; 9 2013; 60 2022; 32 2019; 437 2021; 40 2014; 6 1985; 15 2012; 218 2022; 443 2018; 462 2021; 5 2018; 140 2011; 1 2015; 3 2017; 26 2019; 2 2021; 269 2021; 301 2015; 286 2018; 268 2015; 10 1992; 39 1992; 37 1987; 19 2024; 16 2017; 139 2016; 4 2016; 6 2021; 11 2020; 30 2019; 44 2016; 218 2009; 192 2020; 473 2021; 378 2017; 10 2021; 415 2016; 332 2016; 215 2022; 10 2017; 341 2017; 344 2016; 8 2016; 9 |
References_xml | – volume: 7 start-page: 15292 year: 2017 publication-title: Sci. Rep. – volume: 6 start-page: 6625 year: 2018 end-page: 6632 publication-title: J. Mater. Chem. A – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 443 year: 2022 publication-title: Chem. Eng. J. – volume: 473 year: 2020 publication-title: J. Power Sources – volume: 6 start-page: 24128 year: 2016 publication-title: Sci. Rep. – volume: 283 year: 2021 publication-title: Appl. Catal. B – volume: 10 start-page: 2089 year: 2017 end-page: 2098 publication-title: ChemSusChem – volume: 341 start-page: 318 year: 2017 end-page: 326 publication-title: J. Power Sources – volume: 44 start-page: 24485 year: 2019 end-page: 24509 publication-title: Int. J. Hydrog. Energy – volume: 3 start-page: 3490 year: 2013 publication-title: Sci. Rep. – volume: 140 start-page: 16676 year: 2018 end-page: 16684 publication-title: J. Am. Chem. Soc. – volume: 250 start-page: 274 year: 2014 end-page: 278 publication-title: J. Power Sources – volume: 56 start-page: 9152 year: 2011 end-page: 9158 publication-title: Electrochim. Acta – volume: 11 start-page: 1188 year: 2021 publication-title: Catalysts – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 218 start-page: 15 year: 2016 end-page: 23 publication-title: Electrochim. Acta – volume: 5 start-page: 1668 year: 2021 end-page: 1707 publication-title: Sustain. Energ. Fuels – volume: 344 start-page: 223 year: 2017 end-page: 232 publication-title: J. Power Sources – volume: 8 start-page: 15369 year: 2016 end-page: 15378 publication-title: ACS Appl. Mater. Interfaces – volume: 286 start-page: 73 year: 2015 end-page: 81 publication-title: J. Power Sources – volume: 268 start-page: 59 year: 2018 end-page: 65 publication-title: Electrochim. Acta – volume: 5 start-page: 6368 year: 2017 end-page: 6381 publication-title: J. Mater. Chem. A – volume: 3 start-page: 10107 year: 2015 end-page: 10113 publication-title: J. Mater. Chem. A – volume: 269 year: 2021 publication-title: Mater. Chem. Phys. – volume: 885 year: 2021 publication-title: J. Alloys Compd. – volume: 378 year: 2021 publication-title: Electrochim. Acta – volume: 60 start-page: 280 year: 2013 end-page: 288 publication-title: Carbon – volume: 134 start-page: 7874 year: 2012 end-page: 7879 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 7047 year: 2024 end-page: 7056 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 61912 year: 2014 end-page: 61918 publication-title: RSC Adv. – volume: 341 start-page: 270 year: 2017 end-page: 279 publication-title: J. Power Sources – volume: 301 year: 2021 publication-title: Appl. Energy – volume: 215 start-page: 57 year: 2016 end-page: 65 publication-title: Electrochim. Acta – volume: 192 start-page: 588 year: 2009 end-page: 598 publication-title: J. Power Sources – volume: 6 start-page: 19791 year: 2014 end-page: 19796 publication-title: ACS Appl. Mater. Interfaces – volume: 37 start-page: 2459 year: 1992 end-page: 2465 publication-title: Electrochim. Acta – volume: 1 start-page: 212 year: 2011 end-page: 220 publication-title: Adv. Energy Mater. – volume: 1 start-page: 2091 year: 2017 end-page: 2100 publication-title: Sustain. Energ. Fuels – volume: 6 start-page: 3301 year: 2023 end-page: 3311 publication-title: ACS Appl. Energy Mater. – volume: 6 start-page: 3019 year: 2018 end-page: 3028 publication-title: ACS Sustain. Chem. – volume: 240 start-page: 226 year: 2019 end-page: 235 publication-title: Appl. Energy – volume: 332 start-page: 240 year: 2016 end-page: 248 publication-title: J. Power Sources – volume: 9 start-page: 1329 year: 2016 end-page: 1338 publication-title: ChemSusChem – volume: 13 start-page: 4833 year: 2013 end-page: 4839 publication-title: Nano Lett. – volume: 8 start-page: 16757 year: 2020 end-page: 16765 publication-title: ACS Sustain. Chem. Eng. – volume: 4 start-page: 1836 year: 2017 end-page: 1839 publication-title: ChemElectroChem – volume: 2 start-page: 2541 year: 2019 end-page: 2551 publication-title: ACS Appl. Energy Mater. – volume: 126 year: 2021 publication-title: Inorg. Chem. Commun. – volume: 218 start-page: 455 year: 2012 end-page: 461 publication-title: J. Power Sources – volume: 6 start-page: 13908 year: 2018 end-page: 13917 publication-title: J. Mater. Chem. A – volume: 40 year: 2021 publication-title: J. Storage Mater. – volume: 13 start-page: 1330 year: 2013 end-page: 1335 publication-title: Nano Lett. – volume: 26 start-page: 1 year: 2017 end-page: 7 publication-title: J. Energy Chem. – volume: 222 start-page: 1103 year: 2016 end-page: 1111 publication-title: Electrochim. Acta – volume: 437 year: 2019 publication-title: J. Power Sources – volume: 4 start-page: 11472 year: 2016 end-page: 11480 publication-title: J. Mater. Chem. A – volume: 102 year: 2024 publication-title: J. Storage Mater. – volume: 180 start-page: 386 year: 2016 end-page: 391 publication-title: Appl. Energy – volume: 4 start-page: 6299 year: 2016 end-page: 6312 publication-title: ACS Sustain. Chem. Eng. – volume: 19 start-page: 45 year: 1987 end-page: 54 publication-title: J. Power Sources – volume: 415 year: 2021 publication-title: Chem. Eng. J. – volume: 139 start-page: 16591 year: 2017 end-page: 16603 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1 year: 2014 end-page: 6 publication-title: Sci. Rep. – volume: 15 start-page: 179 year: 1985 end-page: 190 publication-title: J. Power Sources – volume: 44 start-page: 28566 year: 2019 end-page: 28577 publication-title: Int. J. Hydrog. Energy – volume: 39 start-page: 1 year: 1992 end-page: 9 publication-title: J. Power Sources – volume: 32 start-page: 294 year: 2017 end-page: 301 publication-title: Nano Energy – volume: 7 start-page: 191 year: 2017 publication-title: Nanomaterials – volume: 3 start-page: 16913 year: 2015 end-page: 16933 publication-title: J. Mater. Chem. A – volume: 462 start-page: 73 year: 2018 end-page: 80 publication-title: Appl. Surf. Sci. – volume: 10 start-page: 12271 year: 2022 end-page: 12278 publication-title: ACS Sustain. Chem. Eng. – volume: 332 year: 2023 publication-title: Appl. Catal. B – volume: 10 start-page: 2096 year: 2015 end-page: 2110 publication-title: Chem. Asian J. – volume: 132 start-page: 37 year: 2014 end-page: 41 publication-title: Electrochim. Acta – volume: 9 start-page: 1924 year: 2007 end-page: 1930 publication-title: Electrochem. Commun. |
SSID | ssj0001105386 |
Score | 2.3421936 |
Snippet | In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat... Abstract In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and... |
SourceID | doaj proquest wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Current density Electrocatalysts Electrochemical activity Electrochemical analysis Electrodes Energy efficiency Energy storage system Graphite Graphite felt Heat treatment Heat treatments LTO/TiO2 Nanocomposites Nanotechnology Nanowires Thermal cycling Titanium dioxide Vanadium Vanadium redox flow battery |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQCyyIpygveWCNaseO44xQtSDES6ggNit-iUqlQbQIRj6AgW_kS7h20lImFsZcRbLla997bB-fi9BhQbmj0ttEClckvCQQBxn1ieOF80JzxqLO9sWlOL3lZ_fZ_Vypr8AJq-WB64FrUwo5zJcig0zJNQk7Np4zbbT3MD1tfOYLOW9uMxVPVwA2MCmmKo0kbRs3DIqFgTLJ87xR6P8FK-fBacwuvVW00sBCfFR3Zw0tuNE6WupMq7FtoI_u6CFe1uNuXbjGNC_98fUP9R9XHt9FFtfLI75xtnrDvWH1imsRTdgT48gQwOcD3h9kVzRt9wdXKYYIWwVqeeBvua_3z4vKDjxAU3wS1KzBhntuOJk2bN14E932uv3OadJUUkgsA8CR2DycXNjCyNIQXeQAevIyczCwvORaGplqwg0YrOAOVjTTAMR8lmv4X5RasC20OKpGbhthSSwPd58QFwUX3mtBCuK9Yb6QxtKihY7DyKqnWixDBfnqaACnqsap6i-nttDe1C-qWVNjxQD6QHSRTLRQGn01a6TWXk5VcLKaOVl1uued2dfOf3RsFy2noQAwoQnle2hx8vzi9gGVTPRBnIDfyvPd4w priority: 102 providerName: Directory of Open Access Journals |
Title | Enhanced Electrochemical Performance of Vanadium Redox Flow Batteries Using Li4Ti5O12/TiO2 Nanocomposite‐Modified Graphite Felt Electrodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400477 https://www.proquest.com/docview/3155870836 https://doaj.org/article/11782fa655844b07888473bcbff307d8 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbaZGiXIOkDdZoaHLIKpkiKosbGkBsEeRiBU2QTxFdrwLGC2EE79gd0yG_ML8kdJdvJmlEHSQR0vNNH8rvvCDksUulTHVyilS8SWTPIgyINiZeFD8pIIaLO9tm5Or6SJ9fZ9bMq_lYfYr3hhpER8zUGeG0Wg41oqPUzlCBEDqTM87dkG-trkdTH5XizywLwQcR2jxCZyLZN1Uq5kfHBy1d0qv0voOZzwBr_OKNdstNBRfq99e0eeePnH8i74apD20fyv5z_jgf4tGyb2diu-p-ON-UAtAn0Z2R23d_QS--av3Q0a_7QVlgT1sk0sgbo6VROptlFygeT6QWnkHUbpJsjp8s__ns4a9w0AFylP1DhGmx05GfL1cDOLz6Rq1E5GR4nXXeFxAkAIYnLcTfDFVbXlpkiByCU15nXPMhaGm01N0xaMDglPUS5MADOQpYbuF_VRonPZGvezP0XQjVzEs9DIVcqqUIwihUsBCtCoa1Lix45wi9b3bYCGhVKWkdDc_er6iIEVcdh7FplAImkYbg0l7kw1oQAecjpHjlY-aXq4mxRCYBDkHG0UD3Co6_Wg7R6zLxCJ1drJ1fD8nS4vtp_zUNfyXuOTYBZmqTygGwt7-79N0AmS9OPk69Pto_K8_FlP67vnwDsMN4L |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECXaZEiXop-o26Th0FUwJVIUNaaGXTexk6Kwg6ILIX6lBlyrSBw0Y35Ah_7G_pLcUZKdrB11kERAxzs9Hh_fEfKhTIVPVXCJkr5MRMUgD_I0JF6UPkgjOI8629NTOZ6L4295xybEszCNPsSm4IaREfM1BjgWpPtb1VDrl6hBiCRIURSPyS5CG5jYu0fn8-_zbaEFEASPHR8hOJFwm8pOvJFl_YcvaYX7H6DN-5g1_nRGz8jTFi3So8a9z8kjv3pB9gZdk7aX5M9w9SPu4dNh08_GtgIA9Mv2RACtAz2P5K7rn_Srd_UNHS3r37TR1oSlMo3EATpZiNkiP0uz_mxxllFIvDUyzpHW5f_d_p3WbhEAsdJPKHINNjryy3U3sPNXr8h8NJwNxknbYCFxHHBI4gosaLjSqsoyUxaAhYoq9yoLohJGWZUZJiwYnBQeAp0bwGchLwzcLysj-Wuys6pX_g2hijmBW6KQLqWQIRjJShaC5aFU1qVlj3zEL6t_NRoaGlWto6G-vNBtkKDwOIxdyRxQkTAMV-ei4MaaECAVOdUj-51fdBtqV5oDIoKko7jskSz6ajNII8mcaXSy3jhZD4aTwebq7f88dEj2xrPpRE8-n568I08y7AnM0iQV-2RnfXntDwCorM37direARYg4Lc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BKkEviKdIaWEPXK2svev1-lhCTIH0IZRUFZeV9wWRQly1qeixP4ADv5Ff0tm1k7RXjh7ZHsnjmf12duYbgPdlyl0qvU2kcGXCa4pxkKU-cbx0XmjOWOTZPjwSB1P-5Sw_u9PF3_JDrBNuwTNivA4Ofm79YEMaatw8UBCGGkheFA9hK8elifZga_90-n26ybMggGBx4CP6Zqi3TcWKu5Fmg_sv6Xj774HNu5A1rjnVU3jSgUWy31r3GTxwi-fweLia0fYC_owWP-MRPhm142xM1_9PTjYNAaTx5DTWdl39It-cba5JNW9-k5ZaE3fKJNYNkPGMT2b5cZoNJrPjjGDcbULBeajqcv9u_h42duYRsJJPgeMaZaRy8-VKsXWXL2FajSbDg6Sbr5BYhjAksUXIZ9jSyNpQXRYIhYo6dzLzvOZaGplpyg0KrOAO_ZxphGc-LzTeL2ot2CvoLZqFew1EUsvDiShGS8GF91rQknpvmC-lsWnZhw_hy6rzlkJDBVLrKGgufqjORwLvOOquRY6giGsaNue8YNpo7zESWdmH3ZVdVOdpl4ohIMKYI5noQxZttVbSMjJnKhhZrY2shqPxcH218z8PvYNHJx8rNf589PUNbGdhIjBNk5TvQm95ceX2EKYs9dvuT7wFsMLf1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Electrochemical+Performance+of+Vanadium+Redox+Flow+Batteries+Using+Li4Ti5O12%2FTiO2+Nanocomposite%E2%80%90Modified+Graphite+Felt+Electrodes&rft.jtitle=ChemElectroChem&rft.au=Zih%E2%80%90Jhong+Huang&rft.au=Daniel+Manaye+Kabtamu&rft.au=Demeku%2C+Aknachew+Mebreku&rft.au=Guan%E2%80%90Cheng+Chen&rft.date=2025-01-14&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1002%2Fcelc.202400477&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |