Enhanced Electrochemical Performance of Vanadium Redox Flow Batteries Using Li4Ti5O12/TiO2 Nanocomposite‐Modified Graphite Felt Electrodes

In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadiu...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 12; no. 2
Main Authors Huang, Zih‐Jhong, Manaye Kabtamu, Daniel, Mebreku Demeku, Aknachew, Chen, Guan‐Cheng, Hsu, Ning‐Yih, Ku, Hung‐Hsien, Wang, Yao‐Ming, Chiang, Tai‐Chin, Wang, Chen‐Hao
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 14.01.2025
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadium redox flow battery (VRFB) systems. The cyclic voltammetry (CV) curves of the LTO/TiO2@HGF show higher peak current densities and smaller peak separation than TiO2@HGF, HGF, and pristine graphite felt (PGF) for catalyzing V2+/V3+ and VO₂+/VO2+, indicating superior electrochemical activity of LTO/TiO2@HGF. The VRFB using LTO/TiO2@HGF as the positive and negative electrodes demonstrates an energy efficiency of 82.89 % at 80 mA cm−2. When the VRFB using LTO/TiO2@HGF is applied by a high current density of 200 mA cm−2, it still shows an energy efficiency of 62.22 %. However, the VRFB using PGF cannot perform any performance, and the VRFB using HGF only performs 51.94 %. This improvement can be attributed to the uniform distribution of LTO/TiO2 nanowires on the surface of the graphite felt and the presence of oxygen vacancies on LTO/TiO2, which increased the number of active sites for vanadium ion absorption. The study synthesizes LTO/TiO2 nanocomposites on heat‐treated graphite felt (LTO/TiO2@HGF) for the VRFB. This composite demonstrates superior electrochemical activity compared to TiO2@HGF, HGF, and pristine graphite felt. The VRFB using LTO/TiO2@HGF achieves 82.89 % energy efficiency at 80 mA cm−2 and 62.22 % at 200 mA cm−2. Improved performance is attributed to uniform nanowire distribution and oxygen vacancies, enhancing vanadium ion absorption.
AbstractList Abstract In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadium redox flow battery (VRFB) systems. The cyclic voltammetry (CV) curves of the LTO/TiO2@HGF show higher peak current densities and smaller peak separation than TiO2@HGF, HGF, and pristine graphite felt (PGF) for catalyzing V2+/V3+ and VO₂+/VO2+, indicating superior electrochemical activity of LTO/TiO2@HGF. The VRFB using LTO/TiO2@HGF as the positive and negative electrodes demonstrates an energy efficiency of 82.89 % at 80 mA cm−2. When the VRFB using LTO/TiO2@HGF is applied by a high current density of 200 mA cm−2, it still shows an energy efficiency of 62.22 %. However, the VRFB using PGF cannot perform any performance, and the VRFB using HGF only performs 51.94 %. This improvement can be attributed to the uniform distribution of LTO/TiO2 nanowires on the surface of the graphite felt and the presence of oxygen vacancies on LTO/TiO2, which increased the number of active sites for vanadium ion absorption.
In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadium redox flow battery (VRFB) systems. The cyclic voltammetry (CV) curves of the LTO/TiO2@HGF show higher peak current densities and smaller peak separation than TiO2@HGF, HGF, and pristine graphite felt (PGF) for catalyzing V2+/V3+ and VO₂+/VO2+, indicating superior electrochemical activity of LTO/TiO2@HGF. The VRFB using LTO/TiO2@HGF as the positive and negative electrodes demonstrates an energy efficiency of 82.89 % at 80 mA cm−2. When the VRFB using LTO/TiO2@HGF is applied by a high current density of 200 mA cm−2, it still shows an energy efficiency of 62.22 %. However, the VRFB using PGF cannot perform any performance, and the VRFB using HGF only performs 51.94 %. This improvement can be attributed to the uniform distribution of LTO/TiO2 nanowires on the surface of the graphite felt and the presence of oxygen vacancies on LTO/TiO2, which increased the number of active sites for vanadium ion absorption.
In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat treatment methods, denoted by LTO/TiO2@HGF, which LTO/TiO2@HGF acts as effective electrocatalysts to enhance the electrochemical activity in vanadium redox flow battery (VRFB) systems. The cyclic voltammetry (CV) curves of the LTO/TiO2@HGF show higher peak current densities and smaller peak separation than TiO2@HGF, HGF, and pristine graphite felt (PGF) for catalyzing V2+/V3+ and VO₂+/VO2+, indicating superior electrochemical activity of LTO/TiO2@HGF. The VRFB using LTO/TiO2@HGF as the positive and negative electrodes demonstrates an energy efficiency of 82.89 % at 80 mA cm−2. When the VRFB using LTO/TiO2@HGF is applied by a high current density of 200 mA cm−2, it still shows an energy efficiency of 62.22 %. However, the VRFB using PGF cannot perform any performance, and the VRFB using HGF only performs 51.94 %. This improvement can be attributed to the uniform distribution of LTO/TiO2 nanowires on the surface of the graphite felt and the presence of oxygen vacancies on LTO/TiO2, which increased the number of active sites for vanadium ion absorption. The study synthesizes LTO/TiO2 nanocomposites on heat‐treated graphite felt (LTO/TiO2@HGF) for the VRFB. This composite demonstrates superior electrochemical activity compared to TiO2@HGF, HGF, and pristine graphite felt. The VRFB using LTO/TiO2@HGF achieves 82.89 % energy efficiency at 80 mA cm−2 and 62.22 % at 200 mA cm−2. Improved performance is attributed to uniform nanowire distribution and oxygen vacancies, enhancing vanadium ion absorption.
Author Huang, Zih‐Jhong
Manaye Kabtamu, Daniel
Mebreku Demeku, Aknachew
Ku, Hung‐Hsien
Hsu, Ning‐Yih
Chen, Guan‐Cheng
Wang, Yao‐Ming
Wang, Chen‐Hao
Chiang, Tai‐Chin
Author_xml – sequence: 1
  givenname: Zih‐Jhong
  surname: Huang
  fullname: Huang, Zih‐Jhong
  organization: National Taiwan University of Science and Technology
– sequence: 2
  givenname: Daniel
  surname: Manaye Kabtamu
  fullname: Manaye Kabtamu, Daniel
  organization: National Taiwan University of Science and Technology
– sequence: 3
  givenname: Aknachew
  surname: Mebreku Demeku
  fullname: Mebreku Demeku, Aknachew
  organization: National Taiwan University of Science and Technology
– sequence: 4
  givenname: Guan‐Cheng
  surname: Chen
  fullname: Chen, Guan‐Cheng
  organization: National Taiwan University of Science and Technology
– sequence: 5
  givenname: Ning‐Yih
  surname: Hsu
  fullname: Hsu, Ning‐Yih
  organization: National Atomic Research Institute
– sequence: 6
  givenname: Hung‐Hsien
  surname: Ku
  fullname: Ku, Hung‐Hsien
  organization: National Atomic Research Institute
– sequence: 7
  givenname: Yao‐Ming
  surname: Wang
  fullname: Wang, Yao‐Ming
  organization: Metal Industries Research & Development Centre
– sequence: 8
  givenname: Tai‐Chin
  surname: Chiang
  fullname: Chiang, Tai‐Chin
  organization: Chung-Hua Institution for Economic Research
– sequence: 9
  givenname: Chen‐Hao
  orcidid: 0000-0003-2350-3287
  surname: Wang
  fullname: Wang, Chen‐Hao
  email: chwang@mail.ntust.edu.tw
  organization: Academia Sinica
BookMark eNpNUctu2zAQJIoUaJrk2jOBnp0sHxKpY2vYaQA3DgqnV4KPVUxDEl1KRppbP6CHfmO_pHKcGD3t7uzszALznpx0qUNCPjC4ZAD8ymPjLzlwCSCVekNOOavKCXBWnvzXvyMXfb8BAMagELo8Jb9n3dp2HgOdNeiHnPwa2-htQ-8w1ym3-yVNNf1uOxvirqXfMKSfdN6kR_rZDgPmiD2972P3QBdRrmKxZPxqFZec3tou-dRuUx8H_Pvrz9cUYh1Hq-tst-sRo3NshlfjgP05eVvbpseLl3pG7uez1fTLZLG8vpl-WkyCEJWaBAVQiVB5bT24ShUlV7ZAzWtppdNecwfSj0AoJWoNwumC1YVyI7-0rhRn5OagG5LdmG2Orc1PJtlonoGUH4zNQ_QNGsbUqGvLotBSOlBaa6mE866uBaigR62PB61tTj922A9mk3a5G983go1XCrTYO1YH1mNs8OloycDs0zP79MwxPTOdLabHSfwDM_GSgw
ContentType Journal Article
Copyright 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
7SR
8BQ
8FD
JG9
DOA
DOI 10.1002/celc.202400477
DatabaseName Wiley Online Library Open Access
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DOAJ Directory of Open Access Journals
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage n/a
ExternalDocumentID oai_doaj_org_article_11782fa655844b07888473bcbff307d8
CELC202400477
Genre article
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: 110-2221-E-011-074-MY3
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAMMB
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BBNVY
BENPR
BGLVJ
BHPHI
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7P
MEWTI
MY~
O9-
P2W
PDBOC
PHGZM
PHGZT
R.K
ROL
TUS
WBKPD
WOHZO
WXSBR
ZZTAW
7SR
8BQ
8FD
JG9
PQGLB
PUEGO
ID FETCH-LOGICAL-d3397-d70093d9c8ac0b975627a5e82f4a4b8c82b04c5e8d64e8803b851f57b8ac6ab63
IEDL.DBID 24P
ISSN 2196-0216
IngestDate Wed Aug 27 01:32:02 EDT 2025
Fri Jul 25 12:09:07 EDT 2025
Sun Jul 06 04:45:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d3397-d70093d9c8ac0b975627a5e82f4a4b8c82b04c5e8d64e8803b851f57b8ac6ab63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2350-3287
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400477
PQID 3155870836
PQPubID 2034587
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_11782fa655844b07888473bcbff307d8
proquest_journals_3155870836
wiley_primary_10_1002_celc_202400477_CELC202400477
PublicationCentury 2000
PublicationDate January 14, 2025
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 01
  year: 2025
  text: January 14, 2025
  day: 14
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 5
2017; 7
2017; 1
2013; 3
2017; 4
2023; 6
2021; 126
2021; 885
2016; 222
2021; 283
2011; 56
2014; 250
2024; 102
2014; 132
2019; 240
2016; 180
2020; 8
2018; 6
2014; 4
2012; 134
2013; 13
2023; 332
2017; 32
2007; 9
2013; 60
2022; 32
2019; 437
2021; 40
2014; 6
1985; 15
2012; 218
2022; 443
2018; 462
2021; 5
2018; 140
2011; 1
2015; 3
2017; 26
2019; 2
2021; 269
2021; 301
2015; 286
2018; 268
2015; 10
1992; 39
1992; 37
1987; 19
2024; 16
2017; 139
2016; 4
2016; 6
2021; 11
2020; 30
2019; 44
2016; 218
2009; 192
2020; 473
2021; 378
2017; 10
2021; 415
2016; 332
2016; 215
2022; 10
2017; 341
2017; 344
2016; 8
2016; 9
References_xml – volume: 7
  start-page: 15292
  year: 2017
  publication-title: Sci. Rep.
– volume: 6
  start-page: 6625
  year: 2018
  end-page: 6632
  publication-title: J. Mater. Chem. A
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 443
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 473
  year: 2020
  publication-title: J. Power Sources
– volume: 6
  start-page: 24128
  year: 2016
  publication-title: Sci. Rep.
– volume: 283
  year: 2021
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 2089
  year: 2017
  end-page: 2098
  publication-title: ChemSusChem
– volume: 341
  start-page: 318
  year: 2017
  end-page: 326
  publication-title: J. Power Sources
– volume: 44
  start-page: 24485
  year: 2019
  end-page: 24509
  publication-title: Int. J. Hydrog. Energy
– volume: 3
  start-page: 3490
  year: 2013
  publication-title: Sci. Rep.
– volume: 140
  start-page: 16676
  year: 2018
  end-page: 16684
  publication-title: J. Am. Chem. Soc.
– volume: 250
  start-page: 274
  year: 2014
  end-page: 278
  publication-title: J. Power Sources
– volume: 56
  start-page: 9152
  year: 2011
  end-page: 9158
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 1188
  year: 2021
  publication-title: Catalysts
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 218
  start-page: 15
  year: 2016
  end-page: 23
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 1668
  year: 2021
  end-page: 1707
  publication-title: Sustain. Energ. Fuels
– volume: 344
  start-page: 223
  year: 2017
  end-page: 232
  publication-title: J. Power Sources
– volume: 8
  start-page: 15369
  year: 2016
  end-page: 15378
  publication-title: ACS Appl. Mater. Interfaces
– volume: 286
  start-page: 73
  year: 2015
  end-page: 81
  publication-title: J. Power Sources
– volume: 268
  start-page: 59
  year: 2018
  end-page: 65
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 6368
  year: 2017
  end-page: 6381
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 10107
  year: 2015
  end-page: 10113
  publication-title: J. Mater. Chem. A
– volume: 269
  year: 2021
  publication-title: Mater. Chem. Phys.
– volume: 885
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 378
  year: 2021
  publication-title: Electrochim. Acta
– volume: 60
  start-page: 280
  year: 2013
  end-page: 288
  publication-title: Carbon
– volume: 134
  start-page: 7874
  year: 2012
  end-page: 7879
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 7047
  year: 2024
  end-page: 7056
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 61912
  year: 2014
  end-page: 61918
  publication-title: RSC Adv.
– volume: 341
  start-page: 270
  year: 2017
  end-page: 279
  publication-title: J. Power Sources
– volume: 301
  year: 2021
  publication-title: Appl. Energy
– volume: 215
  start-page: 57
  year: 2016
  end-page: 65
  publication-title: Electrochim. Acta
– volume: 192
  start-page: 588
  year: 2009
  end-page: 598
  publication-title: J. Power Sources
– volume: 6
  start-page: 19791
  year: 2014
  end-page: 19796
  publication-title: ACS Appl. Mater. Interfaces
– volume: 37
  start-page: 2459
  year: 1992
  end-page: 2465
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 212
  year: 2011
  end-page: 220
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 2091
  year: 2017
  end-page: 2100
  publication-title: Sustain. Energ. Fuels
– volume: 6
  start-page: 3301
  year: 2023
  end-page: 3311
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  start-page: 3019
  year: 2018
  end-page: 3028
  publication-title: ACS Sustain. Chem.
– volume: 240
  start-page: 226
  year: 2019
  end-page: 235
  publication-title: Appl. Energy
– volume: 332
  start-page: 240
  year: 2016
  end-page: 248
  publication-title: J. Power Sources
– volume: 9
  start-page: 1329
  year: 2016
  end-page: 1338
  publication-title: ChemSusChem
– volume: 13
  start-page: 4833
  year: 2013
  end-page: 4839
  publication-title: Nano Lett.
– volume: 8
  start-page: 16757
  year: 2020
  end-page: 16765
  publication-title: ACS Sustain. Chem. Eng.
– volume: 4
  start-page: 1836
  year: 2017
  end-page: 1839
  publication-title: ChemElectroChem
– volume: 2
  start-page: 2541
  year: 2019
  end-page: 2551
  publication-title: ACS Appl. Energy Mater.
– volume: 126
  year: 2021
  publication-title: Inorg. Chem. Commun.
– volume: 218
  start-page: 455
  year: 2012
  end-page: 461
  publication-title: J. Power Sources
– volume: 6
  start-page: 13908
  year: 2018
  end-page: 13917
  publication-title: J. Mater. Chem. A
– volume: 40
  year: 2021
  publication-title: J. Storage Mater.
– volume: 13
  start-page: 1330
  year: 2013
  end-page: 1335
  publication-title: Nano Lett.
– volume: 26
  start-page: 1
  year: 2017
  end-page: 7
  publication-title: J. Energy Chem.
– volume: 222
  start-page: 1103
  year: 2016
  end-page: 1111
  publication-title: Electrochim. Acta
– volume: 437
  year: 2019
  publication-title: J. Power Sources
– volume: 4
  start-page: 11472
  year: 2016
  end-page: 11480
  publication-title: J. Mater. Chem. A
– volume: 102
  year: 2024
  publication-title: J. Storage Mater.
– volume: 180
  start-page: 386
  year: 2016
  end-page: 391
  publication-title: Appl. Energy
– volume: 4
  start-page: 6299
  year: 2016
  end-page: 6312
  publication-title: ACS Sustain. Chem. Eng.
– volume: 19
  start-page: 45
  year: 1987
  end-page: 54
  publication-title: J. Power Sources
– volume: 415
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 139
  start-page: 16591
  year: 2017
  end-page: 16603
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1
  year: 2014
  end-page: 6
  publication-title: Sci. Rep.
– volume: 15
  start-page: 179
  year: 1985
  end-page: 190
  publication-title: J. Power Sources
– volume: 44
  start-page: 28566
  year: 2019
  end-page: 28577
  publication-title: Int. J. Hydrog. Energy
– volume: 39
  start-page: 1
  year: 1992
  end-page: 9
  publication-title: J. Power Sources
– volume: 32
  start-page: 294
  year: 2017
  end-page: 301
  publication-title: Nano Energy
– volume: 7
  start-page: 191
  year: 2017
  publication-title: Nanomaterials
– volume: 3
  start-page: 16913
  year: 2015
  end-page: 16933
  publication-title: J. Mater. Chem. A
– volume: 462
  start-page: 73
  year: 2018
  end-page: 80
  publication-title: Appl. Surf. Sci.
– volume: 10
  start-page: 12271
  year: 2022
  end-page: 12278
  publication-title: ACS Sustain. Chem. Eng.
– volume: 332
  year: 2023
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 2096
  year: 2015
  end-page: 2110
  publication-title: Chem. Asian J.
– volume: 132
  start-page: 37
  year: 2014
  end-page: 41
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 1924
  year: 2007
  end-page: 1930
  publication-title: Electrochem. Commun.
SSID ssj0001105386
Score 2.3421936
Snippet In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and heat...
Abstract In this study, Li4Ti5O12 (LTO) and TiO2 nanocomposites uniformly were synthesized on the heat‐treated graphite felt through (HGF) hydrothermal and...
SourceID doaj
proquest
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Current density
Electrocatalysts
Electrochemical activity
Electrochemical analysis
Electrodes
Energy efficiency
Energy storage system
Graphite
Graphite felt
Heat treatment
Heat treatments
LTO/TiO2
Nanocomposites
Nanotechnology
Nanowires
Thermal cycling
Titanium dioxide
Vanadium
Vanadium redox flow battery
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQCyyIpygveWCNaseO44xQtSDES6ggNit-iUqlQbQIRj6AgW_kS7h20lImFsZcRbLla997bB-fi9BhQbmj0ttEClckvCQQBxn1ieOF80JzxqLO9sWlOL3lZ_fZ_Vypr8AJq-WB64FrUwo5zJcig0zJNQk7Np4zbbT3MD1tfOYLOW9uMxVPVwA2MCmmKo0kbRs3DIqFgTLJ87xR6P8FK-fBacwuvVW00sBCfFR3Zw0tuNE6WupMq7FtoI_u6CFe1uNuXbjGNC_98fUP9R9XHt9FFtfLI75xtnrDvWH1imsRTdgT48gQwOcD3h9kVzRt9wdXKYYIWwVqeeBvua_3z4vKDjxAU3wS1KzBhntuOJk2bN14E932uv3OadJUUkgsA8CR2DycXNjCyNIQXeQAevIyczCwvORaGplqwg0YrOAOVjTTAMR8lmv4X5RasC20OKpGbhthSSwPd58QFwUX3mtBCuK9Yb6QxtKihY7DyKqnWixDBfnqaACnqsap6i-nttDe1C-qWVNjxQD6QHSRTLRQGn01a6TWXk5VcLKaOVl1uued2dfOf3RsFy2noQAwoQnle2hx8vzi9gGVTPRBnIDfyvPd4w
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhanced Electrochemical Performance of Vanadium Redox Flow Batteries Using Li4Ti5O12/TiO2 Nanocomposite‐Modified Graphite Felt Electrodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400477
https://www.proquest.com/docview/3155870836
https://doaj.org/article/11782fa655844b07888473bcbff307d8
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbaZGiXIOkDdZoaHLIKpkiKosbGkBsEeRiBU2QTxFdrwLGC2EE79gd0yG_ML8kdJdvJmlEHSQR0vNNH8rvvCDksUulTHVyilS8SWTPIgyINiZeFD8pIIaLO9tm5Or6SJ9fZ9bMq_lYfYr3hhpER8zUGeG0Wg41oqPUzlCBEDqTM87dkG-trkdTH5XizywLwQcR2jxCZyLZN1Uq5kfHBy1d0qv0voOZzwBr_OKNdstNBRfq99e0eeePnH8i74apD20fyv5z_jgf4tGyb2diu-p-ON-UAtAn0Z2R23d_QS--av3Q0a_7QVlgT1sk0sgbo6VROptlFygeT6QWnkHUbpJsjp8s__ns4a9w0AFylP1DhGmx05GfL1cDOLz6Rq1E5GR4nXXeFxAkAIYnLcTfDFVbXlpkiByCU15nXPMhaGm01N0xaMDglPUS5MADOQpYbuF_VRonPZGvezP0XQjVzEs9DIVcqqUIwihUsBCtCoa1Lix45wi9b3bYCGhVKWkdDc_er6iIEVcdh7FplAImkYbg0l7kw1oQAecjpHjlY-aXq4mxRCYBDkHG0UD3Co6_Wg7R6zLxCJ1drJ1fD8nS4vtp_zUNfyXuOTYBZmqTygGwt7-79N0AmS9OPk69Pto_K8_FlP67vnwDsMN4L
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECXaZEiXop-o26Th0FUwJVIUNaaGXTexk6Kwg6ILIX6lBlyrSBw0Y35Ah_7G_pLcUZKdrB11kERAxzs9Hh_fEfKhTIVPVXCJkr5MRMUgD_I0JF6UPkgjOI8629NTOZ6L4295xybEszCNPsSm4IaREfM1BjgWpPtb1VDrl6hBiCRIURSPyS5CG5jYu0fn8-_zbaEFEASPHR8hOJFwm8pOvJFl_YcvaYX7H6DN-5g1_nRGz8jTFi3So8a9z8kjv3pB9gZdk7aX5M9w9SPu4dNh08_GtgIA9Mv2RACtAz2P5K7rn_Srd_UNHS3r37TR1oSlMo3EATpZiNkiP0uz_mxxllFIvDUyzpHW5f_d_p3WbhEAsdJPKHINNjryy3U3sPNXr8h8NJwNxknbYCFxHHBI4gosaLjSqsoyUxaAhYoq9yoLohJGWZUZJiwYnBQeAp0bwGchLwzcLysj-Wuys6pX_g2hijmBW6KQLqWQIRjJShaC5aFU1qVlj3zEL6t_NRoaGlWto6G-vNBtkKDwOIxdyRxQkTAMV-ei4MaaECAVOdUj-51fdBtqV5oDIoKko7jskSz6ajNII8mcaXSy3jhZD4aTwebq7f88dEj2xrPpRE8-n568I08y7AnM0iQV-2RnfXntDwCorM37direARYg4Lc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BKkEviKdIaWEPXK2svev1-lhCTIH0IZRUFZeV9wWRQly1qeixP4ADv5Ff0tm1k7RXjh7ZHsnjmf12duYbgPdlyl0qvU2kcGXCa4pxkKU-cbx0XmjOWOTZPjwSB1P-5Sw_u9PF3_JDrBNuwTNivA4Ofm79YEMaatw8UBCGGkheFA9hK8elifZga_90-n26ybMggGBx4CP6Zqi3TcWKu5Fmg_sv6Xj774HNu5A1rjnVU3jSgUWy31r3GTxwi-fweLia0fYC_owWP-MRPhm142xM1_9PTjYNAaTx5DTWdl39It-cba5JNW9-k5ZaE3fKJNYNkPGMT2b5cZoNJrPjjGDcbULBeajqcv9u_h42duYRsJJPgeMaZaRy8-VKsXWXL2FajSbDg6Sbr5BYhjAksUXIZ9jSyNpQXRYIhYo6dzLzvOZaGplpyg0KrOAO_ZxphGc-LzTeL2ot2CvoLZqFew1EUsvDiShGS8GF91rQknpvmC-lsWnZhw_hy6rzlkJDBVLrKGgufqjORwLvOOquRY6giGsaNue8YNpo7zESWdmH3ZVdVOdpl4ohIMKYI5noQxZttVbSMjJnKhhZrY2shqPxcH218z8PvYNHJx8rNf589PUNbGdhIjBNk5TvQm95ceX2EKYs9dvuT7wFsMLf1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Electrochemical+Performance+of+Vanadium+Redox+Flow+Batteries+Using+Li4Ti5O12%2FTiO2+Nanocomposite%E2%80%90Modified+Graphite+Felt+Electrodes&rft.jtitle=ChemElectroChem&rft.au=Zih%E2%80%90Jhong+Huang&rft.au=Daniel+Manaye+Kabtamu&rft.au=Demeku%2C+Aknachew+Mebreku&rft.au=Guan%E2%80%90Cheng+Chen&rft.date=2025-01-14&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1002%2Fcelc.202400477&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon