Is the Bandgap of Bulk PdSe2 Located Truly in the Far‐Infrared Region? Determination by Fourier‐Transform Photocurrent Spectroscopy
2D bulk PdSe2, a group 10 noble metal dichalcogenide, is recognized as a newly found far‐infrared material with a bandgap energy (E G) of ≈0.05 eV and thus has attracted much attention as an optoelectronic material. However, the bandgap energy of bulk PdSe2 is the subject of a controversial debate a...
Saved in:
Published in | Advanced photonics research Vol. 3; no. 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley & Sons, Inc
01.11.2022
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D bulk PdSe2, a group 10 noble metal dichalcogenide, is recognized as a newly found far‐infrared material with a bandgap energy (E
G) of ≈0.05 eV and thus has attracted much attention as an optoelectronic material. However, the bandgap energy of bulk PdSe2 is the subject of a controversial debate as a middle bandgap of ≈0.3 eV is also reported by electrical transport measurements. Although determining E
G by optical absorption measurement is essential, the difficulty lies in the weak absorption caused by indirect transition. Herein, it is quantitatively estimated that the indirect E
G of bulk PdSe2 is indeed 0.5 eV at 40 K based on the highly sensitive spectroscopic method of Fourier‐transformation photocurrent spectroscopy. Herein, it is suggested that the potential application of PdSe2 should be properly selected.
The bandgap energy of bulk PdSe2 is the subject of a controversial debate at present. Herein, it is quantitatively estimated that the E
G of bulk PdSe2 is 0.5 eV based on Fourier‐transformation photocurrent spectroscopy. |
---|---|
AbstractList | 2D bulk PdSe2, a group 10 noble metal dichalcogenide, is recognized as a newly found far‐infrared material with a bandgap energy (E G) of ≈0.05 eV and thus has attracted much attention as an optoelectronic material. However, the bandgap energy of bulk PdSe2 is the subject of a controversial debate as a middle bandgap of ≈0.3 eV is also reported by electrical transport measurements. Although determining E G by optical absorption measurement is essential, the difficulty lies in the weak absorption caused by indirect transition. Herein, it is quantitatively estimated that the indirect E G of bulk PdSe2 is indeed 0.5 eV at 40 K based on the highly sensitive spectroscopic method of Fourier‐transformation photocurrent spectroscopy. Herein, it is suggested that the potential application of PdSe2 should be properly selected. 2D bulk PdSe2, a group 10 noble metal dichalcogenide, is recognized as a newly found far‐infrared material with a bandgap energy (E G) of ≈0.05 eV and thus has attracted much attention as an optoelectronic material. However, the bandgap energy of bulk PdSe2 is the subject of a controversial debate as a middle bandgap of ≈0.3 eV is also reported by electrical transport measurements. Although determining E G by optical absorption measurement is essential, the difficulty lies in the weak absorption caused by indirect transition. Herein, it is quantitatively estimated that the indirect E G of bulk PdSe2 is indeed 0.5 eV at 40 K based on the highly sensitive spectroscopic method of Fourier‐transformation photocurrent spectroscopy. Herein, it is suggested that the potential application of PdSe2 should be properly selected. The bandgap energy of bulk PdSe2 is the subject of a controversial debate at present. Herein, it is quantitatively estimated that the E G of bulk PdSe2 is 0.5 eV based on Fourier‐transformation photocurrent spectroscopy. |
Author | Ueno, Keiji Iwamoto, Satoshi Nagashio, Kosuke Nishiyama, Wataru Nishimura, Tomonori Nishioka, Masao |
Author_xml | – sequence: 1 givenname: Wataru surname: Nishiyama fullname: Nishiyama, Wataru organization: The University of Tokyo – sequence: 2 givenname: Tomonori surname: Nishimura fullname: Nishimura, Tomonori organization: The University of Tokyo – sequence: 3 givenname: Masao surname: Nishioka fullname: Nishioka, Masao organization: The University of Tokyo – sequence: 4 givenname: Keiji surname: Ueno fullname: Ueno, Keiji organization: Saitama University – sequence: 5 givenname: Satoshi surname: Iwamoto fullname: Iwamoto, Satoshi organization: The University of Tokyo – sequence: 6 givenname: Kosuke orcidid: 0000-0003-1181-8644 surname: Nagashio fullname: Nagashio, Kosuke email: nagashio@material.t.u-tokyo.ac.jp organization: The University of Tokyo |
BookMark | eNpNkT1v2zAQhoUiBZqmWTMT6OyEH6IkTkU-6taAgRqJMxMn8uTIlUmVolBoy9Y1vzG_pHRcGJ3uXt6D93h4P2YnzjvMsgtGLxml_ApsHy455TwJwd5lp7xQaqa4Eif_9R-y82HY0sRIJphUp9mfxUDiE5IbcHYDPfENuRm7n2RlH5CTpTcQ0ZJ1GLuJtO4NnUN4fX5ZuCZASLN73LTefSF3GDHsWgcxSVJPZO7H0OKeXQdwQ-PDjqyefPRmDAFdJA89mhj8YHw_fcreN9ANeP6vnmWP86_r2--z5Y9vi9vr5cwKIdkMOa8By6IAC6LJlUTLaS2hKqVlTHFDRc2oocYCUsbKAlmTIFYD5KIQKM6yxcHXetjqPrQ7CJP20Oq3Bx82GkJsTYdacJC8shKlyfNCGmC8KClHzlhd0Vwmr88Hrz74XyMOUW_TyS59XwtaqaqgZUUTpQ7U77bD6biSUb0PTu-D08fg9PXd6v6oxF_kQ5JQ |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH Copyright John Wiley & Sons, Inc. 2022 |
Copyright_xml | – notice: 2022 The Authors. Advanced Photonics Research published by Wiley‐VCH GmbH – notice: Copyright John Wiley & Sons, Inc. 2022 |
DBID | 24P ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/adpr.202200231 |
DatabaseName | Wiley Online Library Open Access ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2699-9293 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_32a528d5e5c4465ca126702e211b8045 ADPR202200231 |
Genre | article |
GrantInformation_xml | – fundername: Japan Science and Technology Agency funderid: JPMJMI22708192 – fundername: National Institute of Information and Communications Technology funderid: 05901 – fundername: NEXCO Group Companies’ Support Fund to Disaster Prevention Measures on Expressways – fundername: Canon Foundation – fundername: Japan Society for the Promotion of Science funderid: JPJSCCA20160005; JP22H04957; JP21H05237; JP21H05232; JP22H05445; JP21K04826; JP18H01822 – fundername: Mitsubishi Foundation |
GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS ACCFJ ACCMX ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN BENPR CCPQU EBS GROUPED_DOAJ IAO ITC M~E OK1 PIMPY AAMMB ABUWG AEFGJ AFPKN AGXDD AIDQK AIDYY AZQEC DWQXO PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-d3351-e22bae766ada3f495ed20b5a875d1192c03b10c0cdae01176e1f95e1baa4363e3 |
IEDL.DBID | 24P |
ISSN | 2699-9293 |
IngestDate | Wed Aug 27 01:31:39 EDT 2025 Sat Jul 26 02:47:18 EDT 2025 Wed Jan 22 16:31:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d3351-e22bae766ada3f495ed20b5a875d1192c03b10c0cdae01176e1f95e1baa4363e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1181-8644 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadpr.202200231 |
PQID | 3089860780 |
PQPubID | 6860423 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_32a528d5e5c4465ca126702e211b8045 proquest_journals_3089860780 wiley_primary_10_1002_adpr_202200231_ADPR202200231 |
PublicationCentury | 2000 |
PublicationDate | November 2022 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced photonics research |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2021; 23 1966; 15 2019; 11 2019; 13 2022; 23 2020; 16 2020; 14 2020; 13 2020; 12 2020; 11 2015; 107 1990; 193–194 2013; 5 2017; 358 2005; 68 1954; 93 2018; 8 2021; 31 2018; 5 2021; 33 2019; 114 2019; 29 2002; 229 2022; 32 1965; 26 2009; 206 2005; 38 2010; 5 2014; 53 2015; 2 2004; 43 2021; 8 2019; 3 2019; 31 2021; 103 1986; 19 2017; 29 1969; 18 2020; 32 2002; 80 2017; 139 2021; 13 2021; 15 2016; 7 2021; 12 1997; 71 2020; 30 2015; 112 2016 2016; 28 2018; 54 2022; 16 2018; 13 |
References_xml | – volume: 29 start-page: 1806878 year: 2019 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 3439 year: 2020 publication-title: Nano Res. – volume: 38 year: 2005 publication-title: Superlattices Microstruct – volume: 13 start-page: 2511 year: 2019 publication-title: ACS Nano – volume: 5 start-page: 263 year: 2013 publication-title: Nat. Chem. – volume: 23 start-page: 18869 year: 2021 publication-title: Phys. Chem. Chem. Phys. – volume: 33 start-page: 2008126 year: 2021 publication-title: Adv. Mater. – volume: 93 start-page: 632 year: 1954 publication-title: Phys. Rev. – volume: 32 start-page: 2108061 year: 2022 publication-title: Adv. Funct. Mater. – volume: 32 start-page: 1906238 year: 2020 publication-title: Adv. Mater. – volume: 13 start-page: 1780 year: 2020 publication-title: Nano Res. – volume: 29 start-page: 1904932 year: 2019 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 20403 year: 2021 publication-title: ACS Nano – volume: 103 start-page: 165419 year: 2021 publication-title: Phys. Rev. B – volume: 13 start-page: 246 year: 2018 publication-title: Nat. Nanotechnol. – volume: 114 start-page: 253102 year: 2019 publication-title: Appl. Phys. Lett. – volume: 206 start-page: 808 year: 2009 publication-title: Phys. Status Solidi A – volume: 5 start-page: 035016 year: 2018 publication-title: 2D Mater. – volume: 193–194 start-page: 712 year: 1990 publication-title: Thin Solid Films – volume: 80 start-page: 719 year: 2002 publication-title: Appl. Phys. Lett. – volume: 53 start-page: 3015 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 497 year: 1986 publication-title: Int. J. Quantum Chem. – volume: 12 start-page: 1083 year: 2021 publication-title: Nat. Commun. – volume: 11 start-page: 14410 year: 2019 publication-title: Nanoscale – volume: 13 start-page: 143 year: 2021 publication-title: Nano-Micro Lett. – volume: 8 start-page: 045036 year: 2021 publication-title: 2D Mater. – volume: 14 start-page: 4963 year: 2020 publication-title: ACS Nano – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 2 start-page: 041303 year: 2015 publication-title: Appl. Phys. Rev. – volume: 18 start-page: 193 year: 1969 publication-title: Adv. Phys. – volume: 107 start-page: 153902 year: 2015 publication-title: Appl. Phys. Lett. – volume: 68 start-page: 2267 year: 2005 publication-title: Rep. Prog. Phys. – volume: 13 start-page: 2091 year: 2020 publication-title: Nano Res. – volume: 54 start-page: 1395 year: 2018 publication-title: Electron. Lett. – volume: 23 start-page: 275 year: 2022 publication-title: Sci. Technol. Adv. Mater. – volume: 31 start-page: 2006774 year: 2021 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 43282 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 295 year: 2022 publication-title: ACS Nano – volume: 32 start-page: 55201 year: 2020 publication-title: Nanotechnology – volume: 229 start-page: R1 year: 2002 publication-title: Phys. Status Solidi B – volume: 11 start-page: 1866 year: 2020 publication-title: Nat. Commun. – volume: 43 start-page: 1943 year: 2004 publication-title: Inorg. Chem. – volume: 112 start-page: 2372 year: 2015 publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2016 – volume: 31 start-page: 1807609 year: 2019 publication-title: Adv. Mater. – volume: 28 start-page: 9378 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 20149 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 627 year: 1966 publication-title: Phys. Status Solidi B – volume: 139 start-page: 14090 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1602969 year: 2017 publication-title: Adv. Mater. – volume: 30 start-page: 2004896 year: 2020 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 2104787 year: 2021 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 43480 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 639 year: 1965 publication-title: J. Phys. Chem. Solids – volume: 5 start-page: 722 year: 2010 publication-title: Nat. Nanotechnol. – volume: 30 start-page: 2003215 year: 2020 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 50 year: 2019 publication-title: NPJ 2D Mater. Appl. – volume: 71 start-page: 2233 year: 1997 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 2000754 year: 2020 publication-title: Small – volume: 7 start-page: 1198 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 358 start-page: 907 year: 2017 publication-title: Science |
SSID | ssj0002513159 |
Score | 2.235227 |
Snippet | 2D bulk PdSe2, a group 10 noble metal dichalcogenide, is recognized as a newly found far‐infrared material with a bandgap energy (E
G) of ≈0.05 eV and thus has... 2D bulk PdSe2, a group 10 noble metal dichalcogenide, is recognized as a newly found far‐infrared material with a bandgap energy (E G) of ≈0.05 eV and thus has... |
SourceID | doaj proquest wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | bandgap determinations Crystals Electrons Fourier-transform photocurrent spectroscopy Graphene Light noble metal dichalcogenides photothermoelectric effects photovoltaic effects Physical properties Radiation Semiconductors Spectrum analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkShIA-sURO7cZMJtZSqRYCq0krdLH8FEFUS9WPoxsbKb-SXcJe0VZlYGBOdEssv9r2Lnt8Rcm2s4omJrZc0DYMCJVaeDnxsGWYdc83Y-Ab_Qz4-id64cT8JJzutvlATVtoDlxNX50yFLLKhCw16exkVMNH0mYPCRUfAR3D3hZy3U0zhHgxZm0Oi3rg0-qyubI72nwxFCdhRrnDo_0Urd8lpkV26h-RgTQtpqxzOEdlz6TH57M8p8DPahmr_ReU0S2h7OX2nA_vsGH3IUMxk6Wi2nK7oW1qEdtXs--OrnyYzFJbToUO58Q3tbEQvCAPVK9otW9VB7GjDXOngNVtkpvRrotiXfoFOl1m-OiHj7t3otuetGyd4lvMw8BxjWrmmEAqRgBLIWebrUEFtYgOgdMbnAAjAYJVDTzjhggSCAq1Ugwvu-CmppFnqzgi1NowtpHUmYt2INKxmljSEThzwAh5GvEraOJEyL70xJLpVFzcAQ7nGUP6FYZXUNjDI9RKaS-5HcSSAwfhVwgpoti8prZaZREzlFlPZ6gyG26vz_xjYBdnHB5ZnD2ukspgt3SWQkIW-Kr63H5QC2R8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV27TsMwFLV4LCwIBIjykgfWiMRu3GRClLYCBKgqRWKz_AogUBLSdujGxso38iXcm0eBhTGRlUg-tu-5NzfnEHJsrOKJia2XdAyDBCVWng58tAyzjrlObHyDdcibW3Fx3756CB_qgtukbqtszsTyoLaZwRr5CfejOBIQ0PzT_M1D1yj8ulpbaCyTVTiCI0i-Vrv92-FoUWWB6M2D0jGNCZSihODWKDf67ETZHCVBGTYqoMtcqdr_h2r-JqxlxBlskPWaKtKzCttNsuTSLfJxOaHA2WhXpfZR5TRLaHf2-kKH9s4xep1hg5Ol42L2OqfPaTl0oIqv98_LNCmw2ZyOHLYgn9Je0wiD0FA9p4PKvg7Gjhs2S4dP2TQzlYYTRa_6KapfZvl8m9wP-uPzC682U_As52HgOca0ch0hFKIDaZGzzNehgnzFBkDzjM8BJIDGKoc6ccIFCQwKtFJtLrjjO2QlzVK3S6i1YWwh1MOU6nakYYezpC104oAr8DDiLdLFiZR5pZchUcG6vJEVj7LeEJIzFbLIhi40qNlmVMBEx2cOElIdAc9skYMGBllvq4n8WQQtwkpoFi-p5JeZREzlAlN51huOFld7_z9zn6zh0OpPwwOyMi1m7hAox1Qf1evqG8oe1Ys priority: 102 providerName: ProQuest |
Title | Is the Bandgap of Bulk PdSe2 Located Truly in the Far‐Infrared Region? Determination by Fourier‐Transform Photocurrent Spectroscopy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadpr.202200231 https://www.proquest.com/docview/3089860780 https://doaj.org/article/32a528d5e5c4465ca126702e211b8045 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF1VcOmlKqJVQyHaQ68W9qy9sU-IQCKoCrLSIHFb7ZehKrIjJznkgrhx7W_sL2HGdly49mLZ1tor7fN43qxm3jD2zTotCpu5oBhZwAAl04GJQmoZ5jz4UWZDS_uQV9fy4ib-fpvcvqrib_Uh-g03sozmf00Grs3y-J9oqHYL0vMEyjKgQupdqq8l9XyI836XBb23iJqOaSBJihKd21a5MYTjt6_oVPvfUM3XhLXxONOP7ENHFflpi-0ee-fLffZ8ueTI2fhYl-5OL3hV8PH64TfP3U8P_EdFCU6Oz-v1w4b_KpuhU13_ffpzWRY1JZvzmacU5BN-vk2EIWi42fBp274Ox863bJbn99Wqsq2GE6de9StSv6wWm0_sZjqZn10EXTOFwAmRRIEHMNqPpNSEDoZF3kFoEo3xiouQ5tlQIEgIjdOedOKkjwocFBmtYyGFF5_ZTlmV_gvjziWZQ1ePS2ri1KCFQxFLU3jkCiJJxYCNaSHVotXLUKRg3dyo6jvVGYQSoBNIXeITS5ptVkcgRyF4DEhNijxzwA63MKjOrJZKhGmWSmQ14YBBA00_SSu_DIowVT2m6vQ8n_VXB__z0Ff2ns7b-sNDtrOq1_4IicjKDJtvbch2x5PrfDZswnk8Xj1OXgCcbds3 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbGdoALAgGiMMAHOEZz7MZNDmha6aqWdVXVddJuxr8ypk1JSFuh3rjtur-EP4q_hPfyo8CF225J5DiW37P9Pef5-wh5b50WqU1ckPYshwAl0YEJGUqGOc99L7HM4j7k6VSOzrufL6KLHfKzPQuDaZXtnFhN1C63uEd-IFicxBIWNHZYfAtQNQr_rrYSGrVbnPjNdwjZlh_HA7DvB86Hx4tPo6BRFQicEFEYeM6N9j0pNTYT4gPvODORBuDuQsA7lgloLbTRaY-EadKHKRQKjdZdIYUXUO8DsgfXDCaCvf7xdDbf7uoAWhBhpdDGJVJfwmLaMkUyfqBdgRSkHBMjUNWuUgn4B9r-DZCrFW74hDxuoCk9qn3pKdnx2TNyO15SwIi0rzN3qQuap7S_vrmmM3fmOZ3kmFDl6KJc32zoVVYVHery14-7cZaWmNxO5x5Tng_poE28QVegZkOHtVwelF206JnOvuar3NacUfSsqCR68ODM5jk5v5dufkF2szzzLwl1LkocQAvoUtONDcwoPO1Kk3rAJiKKRYf0sSNVUfNzKGTMrh7k5aVqBqASXEc8dpGPLHLEWR1y2WPcQwBsYsC1HbLfmkE1w3ip_jhdh_DKNNuP1HTPXKFN1dam6mgwm2_vXv2_znfk4WhxOlGT8fTkNXmEr9WnHPfJ7qpc-zcAd1bmbeNjlHy5b7f-DdN3Eok |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUqkCouqIhWbKHgA9eIxE68yQmxLBEL21VEF4mb5a_QqiiJwu5hb731ym_klzCTZANcOcZyEskvk3ljz7wh5NhYxXOTWC8fGgYBSqI8HfjYMsw65oaJ8Q3uQ_6cicvb8OouuntTxd_qQ_QbbmgZzf8aDbyy-cmraKiyFep5MswywELqzebED7Wdw6zfZQHvzYOmYxoTKEUJzm2t3Oizk_eP6FT731HNt4S18TjpF7LdUUV61mK7Qz65Ypf8nzxS4Gx0pAp7rypa5nS0fPhLM_vLMTotMcHJ0nm9fFjRP0UzNVX187-nSZHXmGxObxymIJ_S8ToRBqGhekXTtn0dzJ2v2SzNfpeL0rQaThR71S9Q_bKsVl_JbXoxP7_0umYKnuU8CjzHmFZuKIRCdCAscpb5OlIQr9gAaJ7xOYAE0FjlUCdOuCCHSYFWKuSCO_6NbBRl4fYItTZKLLh6WFIdxhosnOWh0LkDrsCjmA_ICBdSVq1ehkQF62agrO9lZxCSMxWx2EYuMqjZZlTAxNBnDgJSHQPPHJCDNQyyM6tHyf04iQWwGn9AWANN_5JWfplJxFT2mMqzcXbTX33_yE1H5HM2TuV0MrveJ1s43JYiHpCNRb10P4CTLPRh89m9AChC2hU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+the+Bandgap+of+Bulk+PdSe2+Located+Truly+in+the+Far%E2%80%90Infrared+Region%3F+Determination+by+Fourier%E2%80%90Transform+Photocurrent+Spectroscopy&rft.jtitle=Advanced+photonics+research&rft.au=Nishiyama%2C+Wataru&rft.au=Nishimura%2C+Tomonori&rft.au=Nishioka%2C+Masao&rft.au=Ueno%2C+Keiji&rft.date=2022-11-01&rft.issn=2699-9293&rft.eissn=2699-9293&rft.volume=3&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadpr.202200231&rft.externalDBID=10.1002%252Fadpr.202200231&rft.externalDocID=ADPR202200231 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2699-9293&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2699-9293&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2699-9293&client=summon |