A Small Database with an Adaptive Data Selection Method for Solder Joint Fatigue Life Prediction in Advanced Packaging
There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a...
Saved in:
Published in | Materials Vol. 17; no. 16; p. 4091 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.08.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a core component of AI). With machine learning, metamodels that approximate the attributes of systems or functions are created to predict the fatigue life of advanced packaging. However, the prediction ability is highly dependent on the size and distribution of the training data. Increasing the amount of training data is the most intuitive approach to improve prediction performance, but this implies a higher computational cost. In this research, the adaptive sampling methods are applied to build the machine learning model with a small dataset sampled from an existing database. The performance of the model will be visualized using predefined criteria. Moreover, ensemble learning can be used to improve the performance of AI models after they have been fully trained. |
---|---|
AbstractList | There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a core component of AI). With machine learning, metamodels that approximate the attributes of systems or functions are created to predict the fatigue life of advanced packaging. However, the prediction ability is highly dependent on the size and distribution of the training data. Increasing the amount of training data is the most intuitive approach to improve prediction performance, but this implies a higher computational cost. In this research, the adaptive sampling methods are applied to build the machine learning model with a small dataset sampled from an existing database. The performance of the model will be visualized using predefined criteria. Moreover, ensemble learning can be used to improve the performance of AI models after they have been fully trained. There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a core component of AI). With machine learning, metamodels that approximate the attributes of systems or functions are created to predict the fatigue life of advanced packaging. However, the prediction ability is highly dependent on the size and distribution of the training data. Increasing the amount of training data is the most intuitive approach to improve prediction performance, but this implies a higher computational cost. In this research, the adaptive sampling methods are applied to build the machine learning model with a small dataset sampled from an existing database. The performance of the model will be visualized using predefined criteria. Moreover, ensemble learning can be used to improve the performance of AI models after they have been fully trained.There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a core component of AI). With machine learning, metamodels that approximate the attributes of systems or functions are created to predict the fatigue life of advanced packaging. However, the prediction ability is highly dependent on the size and distribution of the training data. Increasing the amount of training data is the most intuitive approach to improve prediction performance, but this implies a higher computational cost. In this research, the adaptive sampling methods are applied to build the machine learning model with a small dataset sampled from an existing database. The performance of the model will be visualized using predefined criteria. Moreover, ensemble learning can be used to improve the performance of AI models after they have been fully trained. |
Audience | Academic |
Author | Chiang, Kuo-Ning Su, Qinghua Yuan, Cadmus |
AuthorAffiliation | 2 Department of Mechanical and Computer-aided Engineering, Feng Chia University, Taichung 407102, Taiwan; cayuan@fcu.edu.tw 1 Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan; 0967356474shq@gmail.com |
AuthorAffiliation_xml | – name: 2 Department of Mechanical and Computer-aided Engineering, Feng Chia University, Taichung 407102, Taiwan; cayuan@fcu.edu.tw – name: 1 Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan; 0967356474shq@gmail.com |
Author_xml | – sequence: 1 givenname: Qinghua surname: Su fullname: Su, Qinghua organization: Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan – sequence: 2 givenname: Cadmus orcidid: 0000-0002-2699-9532 surname: Yuan fullname: Yuan, Cadmus organization: Department of Mechanical and Computer-aided Engineering, Feng Chia University, Taichung 407102, Taiwan – sequence: 3 givenname: Kuo-Ning orcidid: 0000-0003-0984-0164 surname: Chiang fullname: Chiang, Kuo-Ning organization: Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39203269$$D View this record in MEDLINE/PubMed |
BookMark | eNpdksFu1DAQhiNUREvphQdAlrhw2WLHdmKf0KpQKFpEpYVzNLEnWS-JvTjOIt4eb7egFvtge-afzzOjeV6c-OCxKF4yesm5pm9HYDWrBNXsSXHGtK4WTAtx8uB-WlxM05bmxTlTpX5WnHJdUl5W-qzYL8l6hGEg7yFBCxOSXy5tCHiytLBLbo93HrLGAU1ywZMvmDbBki5Esg6DxUg-B-cTuYbk-hnJynVIbiNad9S7A2oP3qAlt2B-QO98_6J42sEw4cX9eV58v_7w7erTYvX1483VcrWwnNO00FwKZSla4EpDW1teC1nV0tYVUsltRxFbq6WRvGPWaFuXpmspKKrySyl-XtwcuTbAttlFN0L83QRwzZ0hxL6BmJwZsJGgAZGCaCWKVssWLEhjc6NE5ncss94dWbu5HdEa9CnC8Aj62OPdpunDvmGMy4ppnglv7gkx_JxxSs3oJoPDAB7DPDWcal1rrvkh8df_Sbdhjj736qBSrNRVKbLq8qjqIVfgfBfyxyZvi6MzeVA6l-1LRWshqGI0B7x6WMO_5P8OBP8DFUO5eQ |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/ma17164091 |
DatabaseName | PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Materials Science Database Materials Science Collection Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | oai_doaj_org_article_5a9aee0a4b5e4b95bada5cd20345c5f1 A807440810 39203269 |
Genre | Journal Article |
GrantInformation_xml | – fundername: SRC, US grantid: 2023-PK-3180 – fundername: National Tsing Hua University, Taiwan – fundername: Semiconductor Research Corporation (SRC) grantid: 2023-PK-3180 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH ABDBF ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CZ9 D1I E3Z EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E NPM OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-d330t-93548d0eda389ab7d3745675d76e053df0eebd95c53f1dc9d72cfb0a808dc9883 |
IEDL.DBID | RPM |
ISSN | 1996-1944 |
IngestDate | Tue Oct 22 15:16:06 EDT 2024 Tue Sep 17 21:27:53 EDT 2024 Sat Oct 26 04:11:33 EDT 2024 Thu Oct 10 21:59:41 EDT 2024 Tue Nov 12 23:35:41 EST 2024 Sat Nov 02 12:25:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | adaptive sampling ensemble learning AI-assisted design of simulation (AI-DoS) small data life prediction advanced packaging machine learning |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d330t-93548d0eda389ab7d3745675d76e053df0eebd95c53f1dc9d72cfb0a808dc9883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0984-0164 0000-0002-2699-9532 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356193/ |
PMID | 39203269 |
PQID | 3098129624 |
PQPubID | 2032366 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a9aee0a4b5e4b95bada5cd20345c5f1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356193 proquest_miscellaneous_3099793938 proquest_journals_3098129624 gale_infotracacademiconefile_A807440810 pubmed_primary_39203269 |
PublicationCentury | 2000 |
PublicationDate | 20240817 |
PublicationDateYYYYMMDD | 2024-08-17 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240817 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
SSID | ssj0000331829 |
Score | 2.430782 |
Snippet | There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial... |
SourceID | doaj pubmedcentral proquest gale pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 4091 |
SubjectTerms | Adaptive sampling advanced packaging Artificial intelligence Computing costs Data analysis Datasets Design Ensemble learning Experiments Fatigue Fatigue life Fatigue testing machines Finite element analysis Life prediction Machine learning Materials Metamodels Methods Neural networks Optimization algorithms Packaging Performance enhancement Sampling methods Sampling techniques Shear strain Simulation small data Soldered joints Solders Thermal cycling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBMoyEhInKI6sb2xj8tjVVUUVVoq9RaNH4EVbbYqWX4_M06osuLAhWNiK3Hms8ff2M43AG8DkXRdB1Uqn3yp68qXaF1VKmuDTbzqluWLT78sjs_1yYW5mKX64jNhozzwaLgjw_LRSaL2JmnvjMeIJsRaKm2C6cbAR7pZMJV9sKK-WrtRj1RRXH90hSwMQ9FMNanz_-2DZ5PQ_gHJ2YyzegD3J6oolmMTH8Kd1D-CezMBwcfwaynWV3h5KT7igDwhCV5XFdiLZcRr9mS5RKxzthuCQJzmjNGCqKpYbzlDtzjZbvpBrAihb7skPm-6JM5uePsm19_wo8ZjAuIMw4-c1OgJnK8-ff1wXE6ZFMqolBxKpygwiTJFJH6CvomqIeLUmNgsODVE7GRKPjoyqOqqGFxs6tB5iVZaurJWPYWDftun5yAovAkmBVm76HnT1tMLqoROh0CxpDYFvGfrttejWEbL8tX5BoHaTqC2_wK1gHeMTcuDjAAIOP0rQE1guap2yRI-mtiMLODwD3ztNPp-tko64i1uUesC3twW07jhzRDs03aX6zjyTU7ZAp6NaN-2mTijJFrrCrB7_WDvo_ZL-s33rM1dVYoYqVMv_ocZXsLdmjgUL2FXzSEcDDe79Io40OBf5-7-G86hB5A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkJGQOEW1Y3tjn9DyWKqKokpLpd4iv1JWtMl2m-X3M-O4y66QOCaOEifz8DczzjeEvPMA0mXlRSlcdKWsuCutNrwUWnsdMeuW6ItPvk-OzuTxuTrPCbebvK3y1icmRx16jznyQ8EMrEVmUskPy-sSu0ZhdTW30LhL7vGqrjH40rOvmxwLE6CxlRlZSQVE94dXFulhIKbhmaP_X0-8tRTtbpPcWndmj8jDDBjpdJTwY3Indk_Igy0awafk95TOr-zlJf1sB4vLEsXsKrUdnQa7RH-WRug89bwBQdCT1DeaAmCl8x77dNPjftENdAZyulhH-m3RRnq6wiJOun6Btxo3C9BT63-l1kbPyNnsy49PR2Xup1AGIdhQGgHhSWAxWEAp1tVB1ACfahXqCTaICC2L0QWjvBItD96EuvKtY1YzDUdai-dkr-u7-JJQCHK8ip5VJjgs3Tp4AI_WSO8hopSqIB_x6zbLkTKjQRLrdKJfXTTZJhqFzOCRWelUlM4oZ4NVPlRMSJhDywvyHmXToKmBALzNfwzAFJC0qpkikY8ETMMKcnArvibb4E3zV2MK8nYzDNaDJRHbxX6drjHgoYzQBXkxSnszZ0CODMCtKYje0YOdl9od6RY_E0M35wJwqRH7_5_XK3K_AoyEKWpeH5C9YbWOrwHjDO5NUuQ_fkr9kg priority: 102 providerName: ProQuest |
Title | A Small Database with an Adaptive Data Selection Method for Solder Joint Fatigue Life Prediction in Advanced Packaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39203269 https://www.proquest.com/docview/3098129624 https://www.proquest.com/docview/3099793938 https://pubmed.ncbi.nlm.nih.gov/PMC11356193 https://doaj.org/article/5a9aee0a4b5e4b95bada5cd20345c5f1 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swED813cv2MO17dF3kSZP2RGMwDvZj2jWtqqWKllXKG_IXLVoCUZb079_ZkCrR3vaCBDZguLPvd_b5dwBfDYL0LDUsZtrpOEsTHSshk5gJYYTzs26BvnhyO7y-y27mfH4Ew91emBC0b3R1Vi-WZ3X1EGIrV0sz2MWJDaaTiyRhaPYlG_Sghxq656OH8Zehnqay5SJl6NMPlsqTwqAnk3TM_P-Ov3sG6DA4cs_ajF_Byw4mklHbnNdw5Oo38GKPPPAtPI7IbKkWC_JdbZQ3RsTPqRJVk5FVKz-KhRIyC5lu8PeTScgWTRCmklnjs3OTm6aqN2SM0rnfOvKjKh2Zrv3STahf-Ue1IQJkqszvkNDoHdyNL39dXMddFoXYMkY3sWTolFjqrEJsonRuWY6gKec2H_q0ELakzmkrueGsTKyRNk9NqakSVOCZEOw9HNdN7T4CQdfGcGdoKq32C7YaX5A4JTNj0I_MeATn_u8Wq5Yoo_DU1eFCs74vOgEW3POBO6oyzV2mJdfKKm5sSlmGbSiTCL552RS-g6EAjOr2CWATPFVVMfL0PRkiGRrB6U58Rdfz_hSMSsQscphmEXx5KsY-4xdCVO2abagjcVySTETwoZX2U5sRL1KEtDICcaAHBx91WIJqGni5d2p58v-3foLnKaImP2md5KdwvFlv3WdEPRvdh54YX_Xh2fnl7fRnP8wd4PFqnvSD-v8FdB0JnQ |
link.rule.ids | 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,53804,53806,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4A9IL4JDDASEk_RnNhu4ifUwaoy2qqim7S3yF8ZFVvSdSl_P3euV1oh8Zg4Spzch3935_yOkI8WQLrILU-58SYVeWZSXaos5WVpS49Zt0BfPJ70hufi9EJexITbbdxWeecTg6N2rcUc-RFnCtYi1cvF58VNil2jsLoaW2jcJ_tIVQXB1_7xyWT6Y5NlYRx0NldrXlIO8f3RtUaCGIhqssjS_68v3lqMdjdKbq08g8fkUYSMtL-W8RNyzzdPycEWkeAz8rtPZ9f66op-1Z3GhYlifpXqhvadXqBHCyN0FrregCjoOHSOpgBZ6azFTt30tJ03HR2ApC5Xno7mtafTJZZxwvVzvNV6uwCdavsrNDd6Ts4HJ2dfhmnsqJA6zlmXKg4BimPeacAp2hSOFwCgCumKHraIcDXz3jglreR15qxyRW5rw3TJSjgqS_6C7DVt418RCmGOld6yXDmDxVsDD8i8VsJaiCmFTMgxft1qsSbNqJDGOpxol5dVtIpKIje4Z1oY6YVR0minpXU54wLmUGcJ-YSyqdDYQABWx38GYApIW1X1kcpHAKphCTm8E18VrfC2-qszCfmwGQb7waKIbny7Ctco8FGKlwl5uZb2Zs6AHRnAW5WQckcPdl5qd6SZ_wwc3VnGAZkq_vr_83pPHgzPxqNq9G3y_Q15mANiwoR1VhySvW658m8B8XTmXVTrP8wfAfI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxA8IL4JDDASEk9Rndhp7CfUsVVjbFVFmbS3yF8ZFVtSupS_nzvHK62QeEwcJU7ufP7dR35HyAcLIF3klqfceJOKPDOplipLuZRWeoy6Bfris-no-FycXBQXsf7pJpZV3trEYKhdazFGPuRMwV6kRrkY1rEsYnY4-bT8lWIHKcy0xnYad8leKUacDcjewdF09m0TcWEc9DdXPUcpB19_eK2RLAY8nCwy9v9rl7c2pt2iya1daPKIPIzwkY57eT8md3zzhDzYIhV8Sn6P6fxaX13RQ91p3KQoxlqpbujY6SVatzBC56EDDoiFnoUu0hTgK5232LWbnrSLpqMTkNrl2tPTRe3pbIUpnXD9Am_Vlw7QmbY_Q6OjZ-R8cvT983EauyukjnPWpYqDs-KYdxowizal4yWAqbJw5QjbRbiaeW-cKmzB68xZ5crc1oZpySQcScmfk0HTNv4loeDy2MJblitnMJFr4AGZ10pYC_6lKBJygF-3WvYEGhVSWocT7eqyiiukKpAn3DMtTOGFUYXRThfW5YwLmEOdJeQjyqbChQcCsDr-PwBTQAqraoy0PgIQDkvI_q34qrgib6q_-pOQ95thWEuYINGNb9fhGgX2SnGZkBe9tDdzBhzJAOqqhMgdPdh5qd2RZvEj8HVnGQeUqvir_8_rHbkHGl2dfpl-fU3u5wCeMHadlftk0K3W_g2An868jVr9B6e5BiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Small+Database+with+an+Adaptive+Data+Selection+Method+for+Solder+Joint+Fatigue+Life+Prediction+in+Advanced+Packaging&rft.jtitle=Materials&rft.au=Su%2C+Qinghua&rft.au=Yuan%2C+Cadmus&rft.au=Chiang%2C+Kuo-Ning&rft.date=2024-08-17&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=16&rft_id=info:doi/10.3390%2Fma17164091&rft.externalDocID=A807440810 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |