A Small Database with an Adaptive Data Selection Method for Solder Joint Fatigue Life Prediction in Advanced Packaging

There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 16; p. 4091
Main Authors Su, Qinghua, Yuan, Cadmus, Chiang, Kuo-Ning
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.08.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a core component of AI). With machine learning, metamodels that approximate the attributes of systems or functions are created to predict the fatigue life of advanced packaging. However, the prediction ability is highly dependent on the size and distribution of the training data. Increasing the amount of training data is the most intuitive approach to improve prediction performance, but this implies a higher computational cost. In this research, the adaptive sampling methods are applied to build the machine learning model with a small dataset sampled from an existing database. The performance of the model will be visualized using predefined criteria. Moreover, ensemble learning can be used to improve the performance of AI models after they have been fully trained.
AbstractList There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a core component of AI). With machine learning, metamodels that approximate the attributes of systems or functions are created to predict the fatigue life of advanced packaging. However, the prediction ability is highly dependent on the size and distribution of the training data. Increasing the amount of training data is the most intuitive approach to improve prediction performance, but this implies a higher computational cost. In this research, the adaptive sampling methods are applied to build the machine learning model with a small dataset sampled from an existing database. The performance of the model will be visualized using predefined criteria. Moreover, ensemble learning can be used to improve the performance of AI models after they have been fully trained.
There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a core component of AI). With machine learning, metamodels that approximate the attributes of systems or functions are created to predict the fatigue life of advanced packaging. However, the prediction ability is highly dependent on the size and distribution of the training data. Increasing the amount of training data is the most intuitive approach to improve prediction performance, but this implies a higher computational cost. In this research, the adaptive sampling methods are applied to build the machine learning model with a small dataset sampled from an existing database. The performance of the model will be visualized using predefined criteria. Moreover, ensemble learning can be used to improve the performance of AI models after they have been fully trained.There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial Intelligence Plus (AI+) is becoming increasingly popular as computational facilities continue to develop. This study will introduce machine learning (a core component of AI). With machine learning, metamodels that approximate the attributes of systems or functions are created to predict the fatigue life of advanced packaging. However, the prediction ability is highly dependent on the size and distribution of the training data. Increasing the amount of training data is the most intuitive approach to improve prediction performance, but this implies a higher computational cost. In this research, the adaptive sampling methods are applied to build the machine learning model with a small dataset sampled from an existing database. The performance of the model will be visualized using predefined criteria. Moreover, ensemble learning can be used to improve the performance of AI models after they have been fully trained.
Audience Academic
Author Chiang, Kuo-Ning
Su, Qinghua
Yuan, Cadmus
AuthorAffiliation 2 Department of Mechanical and Computer-aided Engineering, Feng Chia University, Taichung 407102, Taiwan; cayuan@fcu.edu.tw
1 Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan; 0967356474shq@gmail.com
AuthorAffiliation_xml – name: 2 Department of Mechanical and Computer-aided Engineering, Feng Chia University, Taichung 407102, Taiwan; cayuan@fcu.edu.tw
– name: 1 Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan; 0967356474shq@gmail.com
Author_xml – sequence: 1
  givenname: Qinghua
  surname: Su
  fullname: Su, Qinghua
  organization: Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan
– sequence: 2
  givenname: Cadmus
  orcidid: 0000-0002-2699-9532
  surname: Yuan
  fullname: Yuan, Cadmus
  organization: Department of Mechanical and Computer-aided Engineering, Feng Chia University, Taichung 407102, Taiwan
– sequence: 3
  givenname: Kuo-Ning
  orcidid: 0000-0003-0984-0164
  surname: Chiang
  fullname: Chiang, Kuo-Ning
  organization: Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 30013, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39203269$$D View this record in MEDLINE/PubMed
BookMark eNpdksFu1DAQhiNUREvphQdAlrhw2WLHdmKf0KpQKFpEpYVzNLEnWS-JvTjOIt4eb7egFvtge-afzzOjeV6c-OCxKF4yesm5pm9HYDWrBNXsSXHGtK4WTAtx8uB-WlxM05bmxTlTpX5WnHJdUl5W-qzYL8l6hGEg7yFBCxOSXy5tCHiytLBLbo93HrLGAU1ywZMvmDbBki5Esg6DxUg-B-cTuYbk-hnJynVIbiNad9S7A2oP3qAlt2B-QO98_6J42sEw4cX9eV58v_7w7erTYvX1483VcrWwnNO00FwKZSla4EpDW1teC1nV0tYVUsltRxFbq6WRvGPWaFuXpmspKKrySyl-XtwcuTbAttlFN0L83QRwzZ0hxL6BmJwZsJGgAZGCaCWKVssWLEhjc6NE5ncss94dWbu5HdEa9CnC8Aj62OPdpunDvmGMy4ppnglv7gkx_JxxSs3oJoPDAB7DPDWcal1rrvkh8df_Sbdhjj736qBSrNRVKbLq8qjqIVfgfBfyxyZvi6MzeVA6l-1LRWshqGI0B7x6WMO_5P8OBP8DFUO5eQ
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/ma17164091
DatabaseName PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Materials Science Database
Materials Science Collection
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID oai_doaj_org_article_5a9aee0a4b5e4b95bada5cd20345c5f1
A807440810
39203269
Genre Journal Article
GrantInformation_xml – fundername: SRC, US
  grantid: 2023-PK-3180
– fundername: National Tsing Hua University, Taiwan
– fundername: Semiconductor Research Corporation (SRC)
  grantid: 2023-PK-3180
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CZ9
D1I
E3Z
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
NPM
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-d330t-93548d0eda389ab7d3745675d76e053df0eebd95c53f1dc9d72cfb0a808dc9883
IEDL.DBID RPM
ISSN 1996-1944
IngestDate Tue Oct 22 15:16:06 EDT 2024
Tue Sep 17 21:27:53 EDT 2024
Sat Oct 26 04:11:33 EDT 2024
Thu Oct 10 21:59:41 EDT 2024
Tue Nov 12 23:35:41 EST 2024
Sat Nov 02 12:25:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords adaptive sampling
ensemble learning
AI-assisted design of simulation (AI-DoS)
small data
life prediction
advanced packaging
machine learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d330t-93548d0eda389ab7d3745675d76e053df0eebd95c53f1dc9d72cfb0a808dc9883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0984-0164
0000-0002-2699-9532
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356193/
PMID 39203269
PQID 3098129624
PQPubID 2032366
ParticipantIDs doaj_primary_oai_doaj_org_article_5a9aee0a4b5e4b95bada5cd20345c5f1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356193
proquest_miscellaneous_3099793938
proquest_journals_3098129624
gale_infotracacademiconefile_A807440810
pubmed_primary_39203269
PublicationCentury 2000
PublicationDate 20240817
PublicationDateYYYYMMDD 2024-08-17
PublicationDate_xml – month: 8
  year: 2024
  text: 20240817
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
SSID ssj0000331829
Score 2.430782
Snippet There has always been high interest in predicting the solder joint fatigue life in advanced packaging with high accuracy and efficiency. Artificial...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4091
SubjectTerms Adaptive sampling
advanced packaging
Artificial intelligence
Computing costs
Data analysis
Datasets
Design
Ensemble learning
Experiments
Fatigue
Fatigue life
Fatigue testing machines
Finite element analysis
Life prediction
Machine learning
Materials
Metamodels
Methods
Neural networks
Optimization algorithms
Packaging
Performance enhancement
Sampling methods
Sampling techniques
Shear strain
Simulation
small data
Soldered joints
Solders
Thermal cycling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBMoyEhInKI6sb2xj8tjVVUUVVoq9RaNH4EVbbYqWX4_M06osuLAhWNiK3Hms8ff2M43AG8DkXRdB1Uqn3yp68qXaF1VKmuDTbzqluWLT78sjs_1yYW5mKX64jNhozzwaLgjw_LRSaL2JmnvjMeIJsRaKm2C6cbAR7pZMJV9sKK-WrtRj1RRXH90hSwMQ9FMNanz_-2DZ5PQ_gHJ2YyzegD3J6oolmMTH8Kd1D-CezMBwcfwaynWV3h5KT7igDwhCV5XFdiLZcRr9mS5RKxzthuCQJzmjNGCqKpYbzlDtzjZbvpBrAihb7skPm-6JM5uePsm19_wo8ZjAuIMw4-c1OgJnK8-ff1wXE6ZFMqolBxKpygwiTJFJH6CvomqIeLUmNgsODVE7GRKPjoyqOqqGFxs6tB5iVZaurJWPYWDftun5yAovAkmBVm76HnT1tMLqoROh0CxpDYFvGfrttejWEbL8tX5BoHaTqC2_wK1gHeMTcuDjAAIOP0rQE1guap2yRI-mtiMLODwD3ztNPp-tko64i1uUesC3twW07jhzRDs03aX6zjyTU7ZAp6NaN-2mTijJFrrCrB7_WDvo_ZL-s33rM1dVYoYqVMv_ocZXsLdmjgUL2FXzSEcDDe79Io40OBf5-7-G86hB5A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkJGQOEW1Y3tjn9DyWKqKokpLpd4iv1JWtMl2m-X3M-O4y66QOCaOEifz8DczzjeEvPMA0mXlRSlcdKWsuCutNrwUWnsdMeuW6ItPvk-OzuTxuTrPCbebvK3y1icmRx16jznyQ8EMrEVmUskPy-sSu0ZhdTW30LhL7vGqrjH40rOvmxwLE6CxlRlZSQVE94dXFulhIKbhmaP_X0-8tRTtbpPcWndmj8jDDBjpdJTwY3Indk_Igy0awafk95TOr-zlJf1sB4vLEsXsKrUdnQa7RH-WRug89bwBQdCT1DeaAmCl8x77dNPjftENdAZyulhH-m3RRnq6wiJOun6Btxo3C9BT63-l1kbPyNnsy49PR2Xup1AGIdhQGgHhSWAxWEAp1tVB1ACfahXqCTaICC2L0QWjvBItD96EuvKtY1YzDUdai-dkr-u7-JJQCHK8ip5VJjgs3Tp4AI_WSO8hopSqIB_x6zbLkTKjQRLrdKJfXTTZJhqFzOCRWelUlM4oZ4NVPlRMSJhDywvyHmXToKmBALzNfwzAFJC0qpkikY8ETMMKcnArvibb4E3zV2MK8nYzDNaDJRHbxX6drjHgoYzQBXkxSnszZ0CODMCtKYje0YOdl9od6RY_E0M35wJwqRH7_5_XK3K_AoyEKWpeH5C9YbWOrwHjDO5NUuQ_fkr9kg
  priority: 102
  providerName: ProQuest
Title A Small Database with an Adaptive Data Selection Method for Solder Joint Fatigue Life Prediction in Advanced Packaging
URI https://www.ncbi.nlm.nih.gov/pubmed/39203269
https://www.proquest.com/docview/3098129624
https://www.proquest.com/docview/3099793938
https://pubmed.ncbi.nlm.nih.gov/PMC11356193
https://doaj.org/article/5a9aee0a4b5e4b95bada5cd20345c5f1
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swED813cv2MO17dF3kSZP2RGMwDvZj2jWtqqWKllXKG_IXLVoCUZb079_ZkCrR3vaCBDZguLPvd_b5dwBfDYL0LDUsZtrpOEsTHSshk5gJYYTzs26BvnhyO7y-y27mfH4Ew91emBC0b3R1Vi-WZ3X1EGIrV0sz2MWJDaaTiyRhaPYlG_Sghxq656OH8Zehnqay5SJl6NMPlsqTwqAnk3TM_P-Ov3sG6DA4cs_ajF_Byw4mklHbnNdw5Oo38GKPPPAtPI7IbKkWC_JdbZQ3RsTPqRJVk5FVKz-KhRIyC5lu8PeTScgWTRCmklnjs3OTm6aqN2SM0rnfOvKjKh2Zrv3STahf-Ue1IQJkqszvkNDoHdyNL39dXMddFoXYMkY3sWTolFjqrEJsonRuWY6gKec2H_q0ELakzmkrueGsTKyRNk9NqakSVOCZEOw9HNdN7T4CQdfGcGdoKq32C7YaX5A4JTNj0I_MeATn_u8Wq5Yoo_DU1eFCs74vOgEW3POBO6oyzV2mJdfKKm5sSlmGbSiTCL552RS-g6EAjOr2CWATPFVVMfL0PRkiGRrB6U58Rdfz_hSMSsQscphmEXx5KsY-4xdCVO2abagjcVySTETwoZX2U5sRL1KEtDICcaAHBx91WIJqGni5d2p58v-3foLnKaImP2md5KdwvFlv3WdEPRvdh54YX_Xh2fnl7fRnP8wd4PFqnvSD-v8FdB0JnQ
link.rule.ids 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,53804,53806,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4A9IL4JDDASEk_RnNhu4ifUwaoy2qqim7S3yF8ZFVvSdSl_P3euV1oh8Zg4Spzch3935_yOkI8WQLrILU-58SYVeWZSXaos5WVpS49Zt0BfPJ70hufi9EJexITbbdxWeecTg6N2rcUc-RFnCtYi1cvF58VNil2jsLoaW2jcJ_tIVQXB1_7xyWT6Y5NlYRx0NldrXlIO8f3RtUaCGIhqssjS_68v3lqMdjdKbq08g8fkUYSMtL-W8RNyzzdPycEWkeAz8rtPZ9f66op-1Z3GhYlifpXqhvadXqBHCyN0FrregCjoOHSOpgBZ6azFTt30tJ03HR2ApC5Xno7mtafTJZZxwvVzvNV6uwCdavsrNDd6Ts4HJ2dfhmnsqJA6zlmXKg4BimPeacAp2hSOFwCgCumKHraIcDXz3jglreR15qxyRW5rw3TJSjgqS_6C7DVt418RCmGOld6yXDmDxVsDD8i8VsJaiCmFTMgxft1qsSbNqJDGOpxol5dVtIpKIje4Z1oY6YVR0minpXU54wLmUGcJ-YSyqdDYQABWx38GYApIW1X1kcpHAKphCTm8E18VrfC2-qszCfmwGQb7waKIbny7Ctco8FGKlwl5uZb2Zs6AHRnAW5WQckcPdl5qd6SZ_wwc3VnGAZkq_vr_83pPHgzPxqNq9G3y_Q15mANiwoR1VhySvW658m8B8XTmXVTrP8wfAfI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxA8IL4JDDASEk9Rndhp7CfUsVVjbFVFmbS3yF8ZFVtSupS_nzvHK62QeEwcJU7ufP7dR35HyAcLIF3klqfceJOKPDOplipLuZRWeoy6Bfris-no-FycXBQXsf7pJpZV3trEYKhdazFGPuRMwV6kRrkY1rEsYnY4-bT8lWIHKcy0xnYad8leKUacDcjewdF09m0TcWEc9DdXPUcpB19_eK2RLAY8nCwy9v9rl7c2pt2iya1daPKIPIzwkY57eT8md3zzhDzYIhV8Sn6P6fxaX13RQ91p3KQoxlqpbujY6SVatzBC56EDDoiFnoUu0hTgK5232LWbnrSLpqMTkNrl2tPTRe3pbIUpnXD9Am_Vlw7QmbY_Q6OjZ-R8cvT983EauyukjnPWpYqDs-KYdxowizal4yWAqbJw5QjbRbiaeW-cKmzB68xZ5crc1oZpySQcScmfk0HTNv4loeDy2MJblitnMJFr4AGZ10pYC_6lKBJygF-3WvYEGhVSWocT7eqyiiukKpAn3DMtTOGFUYXRThfW5YwLmEOdJeQjyqbChQcCsDr-PwBTQAqraoy0PgIQDkvI_q34qrgib6q_-pOQ95thWEuYINGNb9fhGgX2SnGZkBe9tDdzBhzJAOqqhMgdPdh5qd2RZvEj8HVnGQeUqvir_8_rHbkHGl2dfpl-fU3u5wCeMHadlftk0K3W_g2An868jVr9B6e5BiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Small+Database+with+an+Adaptive+Data+Selection+Method+for+Solder+Joint+Fatigue+Life+Prediction+in+Advanced+Packaging&rft.jtitle=Materials&rft.au=Su%2C+Qinghua&rft.au=Yuan%2C+Cadmus&rft.au=Chiang%2C+Kuo-Ning&rft.date=2024-08-17&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=16&rft_id=info:doi/10.3390%2Fma17164091&rft.externalDocID=A807440810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon