On the Enhanced p‐Type Performance of Back‐Gated WS2 Devices
In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs), demonstrating robust and persistent p‐type behavior across diverse conditions. Notably, this p‐type behavior is consistently observed regardless o...
Saved in:
Published in | Advanced electronic materials Vol. 11; no. 13 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
20.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs), demonstrating robust and persistent p‐type behavior across diverse conditions. Notably, this p‐type behavior is consistently observed regardless of the metal contacts, semiconductor thickness, or ambient conditions, and remains stable even after high‐vacuum and high‐temperature annealing. Electrical characterization reveals negligible Fermi‐level pinning at the conduction band edge, with minimal Schottky barrier heights for hole carriers below 180 mV and a well‐defined thermionic transport regime. The devices exhibit field‐effect mobilities with a clear back‐gate dependence, reaching values up to 0.1 cm2V−1s−1. Temperature‐dependent transport analysis indicates that charge carrier mobility is predominantly limited by impurity scattering and Coulomb interactions. First‐principles simulations corroborate that the persistent p‐type behavior could be driven by the presence of tungsten vacancies or WO3 oxide species. This study highlights the potential of WS2 for scalable integration into advanced p‐type electronic devices and provides critical insights into the intrinsic mechanisms governing its charge transport properties.
A scalable method for directly growing WS2 enables robust and persistent p‐type behavior in back‐gated FETs, independent of metal contacts, thickness, or ambient conditions. Electrical measurements reveal minimal Schottky barrier heights and stable thermionic transport, while first‐principles simulations suggest tungsten vacancies or WO3 species as the driving mechanism. These findings pave the way for WS2‐based p‐type electronics. |
---|---|
AbstractList | Abstract In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs), demonstrating robust and persistent p‐type behavior across diverse conditions. Notably, this p‐type behavior is consistently observed regardless of the metal contacts, semiconductor thickness, or ambient conditions, and remains stable even after high‐vacuum and high‐temperature annealing. Electrical characterization reveals negligible Fermi‐level pinning at the conduction band edge, with minimal Schottky barrier heights for hole carriers below 180 mV and a well‐defined thermionic transport regime. The devices exhibit field‐effect mobilities with a clear back‐gate dependence, reaching values up to 0.1 cm2V−1s−1. Temperature‐dependent transport analysis indicates that charge carrier mobility is predominantly limited by impurity scattering and Coulomb interactions. First‐principles simulations corroborate that the persistent p‐type behavior could be driven by the presence of tungsten vacancies or WO3 oxide species. This study highlights the potential of WS2 for scalable integration into advanced p‐type electronic devices and provides critical insights into the intrinsic mechanisms governing its charge transport properties. In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs), demonstrating robust and persistent p‐type behavior across diverse conditions. Notably, this p‐type behavior is consistently observed regardless of the metal contacts, semiconductor thickness, or ambient conditions, and remains stable even after high‐vacuum and high‐temperature annealing. Electrical characterization reveals negligible Fermi‐level pinning at the conduction band edge, with minimal Schottky barrier heights for hole carriers below 180 mV and a well‐defined thermionic transport regime. The devices exhibit field‐effect mobilities with a clear back‐gate dependence, reaching values up to 0.1 cm2V−1s−1. Temperature‐dependent transport analysis indicates that charge carrier mobility is predominantly limited by impurity scattering and Coulomb interactions. First‐principles simulations corroborate that the persistent p‐type behavior could be driven by the presence of tungsten vacancies or WO3 oxide species. This study highlights the potential of WS2 for scalable integration into advanced p‐type electronic devices and provides critical insights into the intrinsic mechanisms governing its charge transport properties. A scalable method for directly growing WS2 enables robust and persistent p‐type behavior in back‐gated FETs, independent of metal contacts, thickness, or ambient conditions. Electrical measurements reveal minimal Schottky barrier heights and stable thermionic transport, while first‐principles simulations suggest tungsten vacancies or WO3 species as the driving mechanism. These findings pave the way for WS2‐based p‐type electronics. |
Author | Ortega, Ruben Marquez, Carlos Galdon, Jose C. Sampedro, Carlos Gity, Farzan Martinez, Alberto Donetti, Luca Neill, Hazel Navarro, Carlos Lorenzo, Francisco Salazar, Norberto Gamiz, Francisco Ansari, Lida Caño‐Garcia, Manuel Hurley, Paul K. |
Author_xml | – sequence: 1 givenname: Carlos orcidid: 0000-0003-0159-9951 surname: Marquez fullname: Marquez, Carlos email: carlosmg@ugr.es organization: University of Granada – sequence: 2 givenname: Farzan orcidid: 0000-0003-3128-1426 surname: Gity fullname: Gity, Farzan organization: University College Cork – sequence: 3 givenname: Jose C. orcidid: 0000-0003-3342-3627 surname: Galdon fullname: Galdon, Jose C. organization: University of Granada – sequence: 4 givenname: Alberto surname: Martinez fullname: Martinez, Alberto organization: University of Granada – sequence: 5 givenname: Norberto orcidid: 0000-0002-0204-5742 surname: Salazar fullname: Salazar, Norberto organization: University of Granada – sequence: 6 givenname: Lida orcidid: 0000-0002-9284-2832 surname: Ansari fullname: Ansari, Lida organization: University College Cork – sequence: 7 givenname: Hazel orcidid: 0000-0001-7260-9008 surname: Neill fullname: Neill, Hazel organization: University College Cork – sequence: 8 givenname: Luca orcidid: 0000-0002-5189-867X surname: Donetti fullname: Donetti, Luca organization: University of Granada – sequence: 9 givenname: Francisco surname: Lorenzo fullname: Lorenzo, Francisco organization: University of Granada – sequence: 10 givenname: Manuel orcidid: 0000-0002-4437-4296 surname: Caño‐Garcia fullname: Caño‐Garcia, Manuel organization: University of Granada – sequence: 11 givenname: Ruben orcidid: 0009-0004-6522-8273 surname: Ortega fullname: Ortega, Ruben organization: University of Granada – sequence: 12 givenname: Carlos orcidid: 0000-0002-7846-4599 surname: Navarro fullname: Navarro, Carlos organization: University of Granada – sequence: 13 givenname: Carlos orcidid: 0000-0001-8730-2594 surname: Sampedro fullname: Sampedro, Carlos organization: University of Granada – sequence: 14 givenname: Paul K. orcidid: 0000-0001-5137-721X surname: Hurley fullname: Hurley, Paul K. organization: University College Cork – sequence: 15 givenname: Francisco orcidid: 0000-0002-5072-7924 surname: Gamiz fullname: Gamiz, Francisco organization: University of Granada |
BookMark | eNpNkN1OwkAQhTcGExG59bovUNyfdn_uREQkwWAiid5tprtTKZaWtETDnY_gM_okLmKIVzNz5uQ7yTknnaqukJBLRgeMUn4FWK4HnPKUUqrMCelyZkzMJH3p_NvPSL9tV8HClBRJKrrkel5F2yVG42oJlUMfbb4_vxa7DUaP2OR1s96rUZ1HN-DewmsC22B6fuLRLb4XDtsLcppD2WL_b_bI4m68GN3Hs_lkOhrOYi-o5rHjqWAid1IrlztlMoUq59pTkExnjGZIAbSWXEstHAOWZUYp6R1KMNqLHpkesL6Gld00xRqana2hsL9C3bxaaLaFK9Eaqr0OSYpzmYjAzbUDjmnKWbicCqzkwPooStwdYYzafZV2X6U9VmmH49kDY4aLH-IRasc |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
DBID | 24P DOA |
DOI | 10.1002/aelm.202500079 |
DatabaseName | Wiley Online Library Open Access DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_908d8fc6722643e0af8ca2e55213e0c7 AELM1192 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Horizon 2020 Framework Programme funderid: 871130 ASCENT+ – fundername: MICIU/AEI/ 10.13039/501100011033 and FEDER/UE funderid: PID2023‐ 152467OA‐I00; PID2021‐128547OB‐I00; PLEC2022‐009381 – fundername: Ministerio Para la Transformación Digital y de la Función Pública, Gobierno de España and by European Union NextGenerationEU/PRTR funderid: +QCHIP TSI‐069100‐2023‐0003 – fundername: Irish Research Council for Science, Engineering and Technology funderid: EPSPG/2023/1772 – fundername: Consejería de Universidad, Investigación e Innovación and by ERDF Andalusia Program funderid: 2021‐2027; C‐ING‐357‐UGR23 – fundername: Science Foundation Ireland funderid: SFI‐ 12/RC/2278_P2 – fundername: HORIZON EUROPE Framework Programme funderid: HORIZON‐JU‐GH‐EDCTP3‐2023‐01; HORIZON‐JU‐Chips‐2023‐RIA‐CPL‐2 – fundername: Irish Centre for High‐End Computing – fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions funderid: 101062995 CONCEPT‐2D |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAFWJ AAMMB AAXRX AAZKR ABCUV ABJNI ACAHQ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFPKN AGXDD AIACR AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG EBS GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI M~E O9- P2W ROL WBKPD WOHZO WXSBR ZZTAW |
ID | FETCH-LOGICAL-d3082-c25313fc687cfc79b7e7f28d0a618b10be0aa88628683c1a1bb9776dce6a98d3 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:31:07 EDT 2025 Mon Aug 25 09:20:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d3082-c25313fc687cfc79b7e7f28d0a618b10be0aa88628683c1a1bb9776dce6a98d3 |
ORCID | 0000-0002-0204-5742 0000-0002-7846-4599 0000-0003-3128-1426 0000-0002-5072-7924 0000-0003-0159-9951 0000-0002-5189-867X 0000-0003-3342-3627 0000-0001-7260-9008 0000-0001-8730-2594 0000-0002-9284-2832 0000-0002-4437-4296 0009-0004-6522-8273 0000-0001-5137-721X |
OpenAccessLink | https://doaj.org/article/908d8fc6722643e0af8ca2e55213e0c7 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_908d8fc6722643e0af8ca2e55213e0c7 wiley_primary_10_1002_aelm_202500079_AELM1192 |
PublicationCentury | 2000 |
PublicationDate | August 20, 2025 |
PublicationDateYYYYMMDD | 2025-08-20 |
PublicationDate_xml | – month: 08 year: 2025 text: August 20, 2025 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2017; 5 2013; 3 2013; 25 2019; 11 2023; 6 2024; 625 1991; 150 2010; 104 2021; 129 2020; 128 2019; 18 2020; 14 2020; 12 2015; 106 2024 2015; 107 2013; 7 2001; 89 1996; 105 2020; 7 2018; 8 2021; 32 2013; 13 2019; 66 2017; 38 2014; 14 2020; 217 2021; 593 2005; 71 2014; 8 2023; 618 2019; 7 2021; 7 2018; 28 2023; 17 2018; 226 2019; 2 2023; 15 1954; 25 2025; 8 1976; 83 2025; 19 2007 2006 2005 2008; 55 2003 1988; 129 1957 2005; 19 1976; 13 2023 2021 2020 2010; 132 2016; 651 2016; 63 2017 2016; 176 2016 2015 2022; 10 |
References_xml | – volume: 15 start-page: 230 year: 2023 publication-title: Nano‐Micro Lett. – year: 2005 – volume: 128 start-page: 8 year: 2020 publication-title: J. Appl. Phys. – volume: 2 start-page: 230 year: 2019 publication-title: Nat. Electron. – volume: 8 start-page: 11 year: 2018 publication-title: Nanomaterials – volume: 618 start-page: 57 year: 2023 publication-title: Nature – volume: 83 start-page: 14 year: 1976 publication-title: Phys. B+ c – volume: 25 start-page: 341 year: 1954 publication-title: J. Appl. Phys. – volume: 71 year: 2005 publication-title: Phys. Rev. B – year: 2024 – volume: 19 start-page: 24 year: 2005 publication-title: J. Telecommun. Inf. Technol. – start-page: 42 year: 2007 end-page: 45 – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 7 start-page: 878 year: 2019 publication-title: IEEE J. Electron Devices Soc. – volume: 8 start-page: 8174 year: 2014 publication-title: ACS Nano – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 25 year: 2013 publication-title: J. Phys.: Condens. Matter – volume: 150 start-page: 281 year: 1991 publication-title: Chem. Phys. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 593 start-page: 211 year: 2021 publication-title: Nature – start-page: 1 year: 2023 end-page: 2 – volume: 3 start-page: 1755 year: 2013 publication-title: Sci. Rep. – volume: 625 start-page: 276 year: 2024 publication-title: Nature – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 651 start-page: 215 year: 2016 publication-title: Surf. Sci. – start-page: 212 year: 2017 end-page: 215 – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – start-page: 8302 year: 2016 publication-title: Adv. Mater. – volume: 19 year: 2025 publication-title: ACS Nano – start-page: 134 year: 2006 end-page: 196 – volume: 7 start-page: 4879 year: 2013 publication-title: ACS Nano – volume: 6 start-page: 0057 year: 2023 publication-title: Research – volume: 8 start-page: 24 year: 2025 publication-title: Nat. Electron. – volume: 8 start-page: 923 year: 2014 publication-title: ACS Nano – volume: 17 year: 2023 publication-title: ACS Nano – volume: 7 start-page: 5235 year: 2013 publication-title: ACS Nano – volume: 38 start-page: 1763 year: 2017 publication-title: IEEE Electron Device Lett. – volume: 63 start-page: 2556 year: 2016 publication-title: IEEE Trans. Electron Devices – volume: 176 start-page: 52 year: 2016 publication-title: Mater. Chem. Phys. – start-page: 1 year: 2021 end-page: 2 – volume: 89 start-page: 259 year: 2001 publication-title: Proc. IEEE – volume: 5 year: 2017 publication-title: 2D Mater. – volume: 18 start-page: 1 year: 2019 publication-title: J. Micro/Nanolithography, MEMS, and MOEMS – volume: 14 start-page: 1337 year: 2014 publication-title: Nano Lett. – start-page: 1 year: 2024 end-page: 3 – volume: 10 start-page: 846 year: 2022 publication-title: J. Mater. Chem. C – volume: 129 year: 1988 – volume: 13 start-page: 100 year: 2013 publication-title: Nano Lett. – start-page: 7·1·1 year: 2021 end-page: 7·1·4 – volume: 7 year: 2020 publication-title: 2D Mater. – start-page: 1.1.1 year: 2020 end-page: 1.1.10, d – year: 1957 – volume: 12 start-page: 6022 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 217 year: 2020 publication-title: Phys. Status Solidi A – start-page: 1 year: 2015 end-page: 5 – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – start-page: 1 year: 2023 end-page: 4 – volume: 32 year: 2021 publication-title: Nanotechnology – year: 2023 – volume: 66 start-page: 5381 year: 2019 publication-title: IEEE Trans. Electron Devices – start-page: 1 year: 2020 end-page: 2 – volume: 105 year: 1996 publication-title: J. Chem. Phys. – volume: 106 start-page: 1 year: 2015 publication-title: Appl. Phys. Lett. – volume: 55 start-page: 2744 year: 2008 publication-title: IEEE Trans. Electron Devices – volume: 129 year: 2021 publication-title: J. Appl. Phys. – start-page: 95 year: 2003 end-page: 98 – volume: 226 start-page: 39 year: 2018 publication-title: Comput. Phys. Commun. – volume: 132 year: 2010 publication-title: J. Chem. Phys. |
SSID | ssj0001763453 |
Score | 2.3255808 |
Snippet | In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs),... Abstract In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors... |
SourceID | doaj wiley |
SourceType | Open Website Publisher |
SubjectTerms | 2D materials chemical vapor deposition (CVD) density functional theory (DFT) P‐type transistors tungsten disulfide (WS2) |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXLggECDKJh-4WrWdxc6NFlpViKUSRfQWOeMJSKC0KuXOJ_CNfAm2E1o4cowTO8k443mZzHsh5AwEggadMCUQWVyIhBksgVmZaGMiF3RtqPK9TYcP8dUkmfxi8df6EMuEm_eMsF57BzfFW2clGmrw1TPJpVf0V9k62fD8Wl_UJ-PRKsvi3CcOUpTOMzMmUj75UW7ksvN3iEa1_y9KDWFmsE22GnxIu_WE7pA1rHbJ-V1FHVCj_eo5fLCns6-PT_8GSUerun86LWnPwIvb5VNilj7eS3qJYSXYI-NBf3wxZM2vD5j1-jEMpPONqIRUKyhBZYVCVUptuUmFLgQvkBujteeV6giEEUXhgFxqAVOTaRvtk1Y1rfCAUNcJpEIHE0wSu44Zx7hMEbMUAHhs2qTn7zqf1eIWuZebDg3T-VPePL15xrXV7mqUp91G7tylBiMxcbHfbYFqExZsthylFkOWubdwvrRw3u1f3wiHKQ__efwR2fSNPpcr-TFpLebveOLAwKI4DfP9DTR2rcY priority: 102 providerName: Wiley-Blackwell |
Title | On the Enhanced p‐Type Performance of Back‐Gated WS2 Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202500079 https://doaj.org/article/908d8fc6722643e0af8ca2e55213e0c7 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwsCAaI8Kg-sVm3n5Wy00KpCPCpRRLfIOV-EBEorVHZ-Ar-RX8LZKaVMLIxJZDv3Raf77Nx9x9gZKAQDJhGZQhRxqRJhsQLhdGKsjSjoupDle5uOHuKraTJda_Xlc8IaeeAGuG4ujTMVpJmv-IxQ2sqA1ZhQ2KErCHXkFPPWNlPhdIXcJk6ib5VGqbsWX3zhufYNAELell_pNyMNIWW4w7aXXJD3mnfYZRtY77Hzu5oTKeOD-in8nOfzz_cPv1vk458cfz6reN_CMz3yx1-OP95rfonB6_fZZDiYXIzEss2BcF4rRoAmP4jIRJNBBVleZphV2jhpU2VKJUsy2hrja0hNBMqqsiTSljrA1ObGRQesVc9qPGScBoHOkCiBTWIamEuMqxQxTwFAxrbN-t7qYt4IWRReWjrcIMCLJeDFX4C3mQiYrWZphI914REuVggXvcH1jSL-ePQfix6zLT-zP8zV8oS1Fq9veEpsYFF22KaOx53w-b8A9VGyZw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELagPbAXtAjQdvnzgatV2_mxc6NlWxVoCxItVFwiZzLZlRalVVXuPALPyJMwk6ateuSYxHbiscfzeTLzWYi3YBA8-EQ5g6jiwiQqYAWqtIkPISKjWzZRvvN0sow_rpJDNCHnwuz5IY4ON9aMZr1mBWeHdP_EGhrwJ6eSW6b0d9lD0WVoQxO7O_i2_LE8OVpIg-KGjZKUM1Mm1asDeaO2_fNGWuL-c6DaWJrxpXjcQkQ52I_pE_EA66fi3edaElaTo_qu-WcvN39__-FNpPxyCv2X60oOA9zTI_aKlfL7VytvsFkMnonFeLR4P1Ht6QeqZAoZBZbUI6og9Q4qcFnh0FXWlzqkxhdGF6hD8J5TS30EJpiiICyXloBpyHwZPRedel3jlZBUCaxDQgohialipjGuUsQsBQAdh54Ycq_zzZ7fImfG6ebGenubtxM4z7QvPX2N48zbiN5deQgWEzL_dAWuJ1Qjs2Mrez5km7OE86OE88FoOjMEK6__s_wb8WiymE3z6Yf5pxfigguwa9fql6Kz2_7CV4QNdsXrdvT_ASvwswE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLAgFixweuFraz2LlRoBU7SFCouETOeAISKK0Q3PkEvpEvYZyGFo4cEy9Jxnmel4nnmbFdUAgWbCKMQhRxoRLhsAThdWKdi8jp-nqV72V63ItP-0n_Vxb_SB9iHHALyKjn6wDwoS_3JqKhDl9CJrkOiv4mm2YzCbkm2WIz7bveQ28SZyEAxbUYJWEzEyqV_R_tRqn3_nbS6Pb_5am1o-kusPmGIfL2aEgX2RRWS2z_quJE1Xineqp_2fPh18dn-Ibk15OV_3xQ8gMHz1QUgmKe399ofoT1XLDMbrud28Nj0Wx-IHxQkBGgCR1RCak1UILJCoOm1NZLlypbKFmgdM7akFlqI1BOFQVRudQDpi6zPlphrWpQ4Srj1Ai0QSIKLompYSYxLlPELAUAGbs1dhCeOh-O5C3yIDhdnxi8PubN-5tn0npLd2NC4m1E1y4tOI0JeX86ArPGRG2zcS8jOWSdBwvnYwvn7c75hSJWuf7P-jts9vqom5-fXJ5tsLlQHgK7Wm6y1tvrO24RM3grtpvB_wY8PrIh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Enhanced+p%E2%80%90Type+Performance+of+Back%E2%80%90Gated+WS2+Devices&rft.jtitle=Advanced+electronic+materials&rft.au=Carlos+Marquez&rft.au=Farzan+Gity&rft.au=Jose+C.+Galdon&rft.au=Alberto+Martinez&rft.date=2025-08-20&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=11&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202500079&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_908d8fc6722643e0af8ca2e55213e0c7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |