On the Enhanced p‐Type Performance of Back‐Gated WS2 Devices

In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs), demonstrating robust and persistent p‐type behavior across diverse conditions. Notably, this p‐type behavior is consistently observed regardless o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 11; no. 13
Main Authors Marquez, Carlos, Gity, Farzan, Galdon, Jose C., Martinez, Alberto, Salazar, Norberto, Ansari, Lida, Neill, Hazel, Donetti, Luca, Lorenzo, Francisco, Caño‐Garcia, Manuel, Ortega, Ruben, Navarro, Carlos, Sampedro, Carlos, Hurley, Paul K., Gamiz, Francisco
Format Journal Article
LanguageEnglish
Published Wiley-VCH 20.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs), demonstrating robust and persistent p‐type behavior across diverse conditions. Notably, this p‐type behavior is consistently observed regardless of the metal contacts, semiconductor thickness, or ambient conditions, and remains stable even after high‐vacuum and high‐temperature annealing. Electrical characterization reveals negligible Fermi‐level pinning at the conduction band edge, with minimal Schottky barrier heights for hole carriers below 180 mV and a well‐defined thermionic transport regime. The devices exhibit field‐effect mobilities with a clear back‐gate dependence, reaching values up to 0.1 cm2V−1s−1. Temperature‐dependent transport analysis indicates that charge carrier mobility is predominantly limited by impurity scattering and Coulomb interactions. First‐principles simulations corroborate that the persistent p‐type behavior could be driven by the presence of tungsten vacancies or WO3 oxide species. This study highlights the potential of WS2 for scalable integration into advanced p‐type electronic devices and provides critical insights into the intrinsic mechanisms governing its charge transport properties. A scalable method for directly growing WS2 enables robust and persistent p‐type behavior in back‐gated FETs, independent of metal contacts, thickness, or ambient conditions. Electrical measurements reveal minimal Schottky barrier heights and stable thermionic transport, while first‐principles simulations suggest tungsten vacancies or WO3 species as the driving mechanism. These findings pave the way for WS2‐based p‐type electronics.
AbstractList Abstract In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs), demonstrating robust and persistent p‐type behavior across diverse conditions. Notably, this p‐type behavior is consistently observed regardless of the metal contacts, semiconductor thickness, or ambient conditions, and remains stable even after high‐vacuum and high‐temperature annealing. Electrical characterization reveals negligible Fermi‐level pinning at the conduction band edge, with minimal Schottky barrier heights for hole carriers below 180 mV and a well‐defined thermionic transport regime. The devices exhibit field‐effect mobilities with a clear back‐gate dependence, reaching values up to 0.1 cm2V−1s−1. Temperature‐dependent transport analysis indicates that charge carrier mobility is predominantly limited by impurity scattering and Coulomb interactions. First‐principles simulations corroborate that the persistent p‐type behavior could be driven by the presence of tungsten vacancies or WO3 oxide species. This study highlights the potential of WS2 for scalable integration into advanced p‐type electronic devices and provides critical insights into the intrinsic mechanisms governing its charge transport properties.
In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs), demonstrating robust and persistent p‐type behavior across diverse conditions. Notably, this p‐type behavior is consistently observed regardless of the metal contacts, semiconductor thickness, or ambient conditions, and remains stable even after high‐vacuum and high‐temperature annealing. Electrical characterization reveals negligible Fermi‐level pinning at the conduction band edge, with minimal Schottky barrier heights for hole carriers below 180 mV and a well‐defined thermionic transport regime. The devices exhibit field‐effect mobilities with a clear back‐gate dependence, reaching values up to 0.1 cm2V−1s−1. Temperature‐dependent transport analysis indicates that charge carrier mobility is predominantly limited by impurity scattering and Coulomb interactions. First‐principles simulations corroborate that the persistent p‐type behavior could be driven by the presence of tungsten vacancies or WO3 oxide species. This study highlights the potential of WS2 for scalable integration into advanced p‐type electronic devices and provides critical insights into the intrinsic mechanisms governing its charge transport properties. A scalable method for directly growing WS2 enables robust and persistent p‐type behavior in back‐gated FETs, independent of metal contacts, thickness, or ambient conditions. Electrical measurements reveal minimal Schottky barrier heights and stable thermionic transport, while first‐principles simulations suggest tungsten vacancies or WO3 species as the driving mechanism. These findings pave the way for WS2‐based p‐type electronics.
Author Ortega, Ruben
Marquez, Carlos
Galdon, Jose C.
Sampedro, Carlos
Gity, Farzan
Martinez, Alberto
Donetti, Luca
Neill, Hazel
Navarro, Carlos
Lorenzo, Francisco
Salazar, Norberto
Gamiz, Francisco
Ansari, Lida
Caño‐Garcia, Manuel
Hurley, Paul K.
Author_xml – sequence: 1
  givenname: Carlos
  orcidid: 0000-0003-0159-9951
  surname: Marquez
  fullname: Marquez, Carlos
  email: carlosmg@ugr.es
  organization: University of Granada
– sequence: 2
  givenname: Farzan
  orcidid: 0000-0003-3128-1426
  surname: Gity
  fullname: Gity, Farzan
  organization: University College Cork
– sequence: 3
  givenname: Jose C.
  orcidid: 0000-0003-3342-3627
  surname: Galdon
  fullname: Galdon, Jose C.
  organization: University of Granada
– sequence: 4
  givenname: Alberto
  surname: Martinez
  fullname: Martinez, Alberto
  organization: University of Granada
– sequence: 5
  givenname: Norberto
  orcidid: 0000-0002-0204-5742
  surname: Salazar
  fullname: Salazar, Norberto
  organization: University of Granada
– sequence: 6
  givenname: Lida
  orcidid: 0000-0002-9284-2832
  surname: Ansari
  fullname: Ansari, Lida
  organization: University College Cork
– sequence: 7
  givenname: Hazel
  orcidid: 0000-0001-7260-9008
  surname: Neill
  fullname: Neill, Hazel
  organization: University College Cork
– sequence: 8
  givenname: Luca
  orcidid: 0000-0002-5189-867X
  surname: Donetti
  fullname: Donetti, Luca
  organization: University of Granada
– sequence: 9
  givenname: Francisco
  surname: Lorenzo
  fullname: Lorenzo, Francisco
  organization: University of Granada
– sequence: 10
  givenname: Manuel
  orcidid: 0000-0002-4437-4296
  surname: Caño‐Garcia
  fullname: Caño‐Garcia, Manuel
  organization: University of Granada
– sequence: 11
  givenname: Ruben
  orcidid: 0009-0004-6522-8273
  surname: Ortega
  fullname: Ortega, Ruben
  organization: University of Granada
– sequence: 12
  givenname: Carlos
  orcidid: 0000-0002-7846-4599
  surname: Navarro
  fullname: Navarro, Carlos
  organization: University of Granada
– sequence: 13
  givenname: Carlos
  orcidid: 0000-0001-8730-2594
  surname: Sampedro
  fullname: Sampedro, Carlos
  organization: University of Granada
– sequence: 14
  givenname: Paul K.
  orcidid: 0000-0001-5137-721X
  surname: Hurley
  fullname: Hurley, Paul K.
  organization: University College Cork
– sequence: 15
  givenname: Francisco
  orcidid: 0000-0002-5072-7924
  surname: Gamiz
  fullname: Gamiz, Francisco
  organization: University of Granada
BookMark eNpNkN1OwkAQhTcGExG59bovUNyfdn_uREQkwWAiid5tprtTKZaWtETDnY_gM_okLmKIVzNz5uQ7yTknnaqukJBLRgeMUn4FWK4HnPKUUqrMCelyZkzMJH3p_NvPSL9tV8HClBRJKrrkel5F2yVG42oJlUMfbb4_vxa7DUaP2OR1s96rUZ1HN-DewmsC22B6fuLRLb4XDtsLcppD2WL_b_bI4m68GN3Hs_lkOhrOYi-o5rHjqWAid1IrlztlMoUq59pTkExnjGZIAbSWXEstHAOWZUYp6R1KMNqLHpkesL6Gld00xRqana2hsL9C3bxaaLaFK9Eaqr0OSYpzmYjAzbUDjmnKWbicCqzkwPooStwdYYzafZV2X6U9VmmH49kDY4aLH-IRasc
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2025 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
DBID 24P
DOA
DOI 10.1002/aelm.202500079
DatabaseName Wiley Online Library Open Access
DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_908d8fc6722643e0af8ca2e55213e0c7
AELM1192
Genre researchArticle
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  funderid: 871130 ASCENT+
– fundername: MICIU/AEI/ 10.13039/501100011033 and FEDER/UE
  funderid: PID2023‐ 152467OA‐I00; PID2021‐128547OB‐I00; PLEC2022‐009381
– fundername: Ministerio Para la Transformación Digital y de la Función Pública, Gobierno de España and by European Union NextGenerationEU/PRTR
  funderid: +QCHIP TSI‐069100‐2023‐0003
– fundername: Irish Research Council for Science, Engineering and Technology
  funderid: EPSPG/2023/1772
– fundername: Consejería de Universidad, Investigación e Innovación and by ERDF Andalusia Program
  funderid: 2021‐2027; C‐ING‐357‐UGR23
– fundername: Science Foundation Ireland
  funderid: SFI‐ 12/RC/2278_P2
– fundername: HORIZON EUROPE Framework Programme
  funderid: HORIZON‐JU‐GH‐EDCTP3‐2023‐01; HORIZON‐JU‐Chips‐2023‐RIA‐CPL‐2
– fundername: Irish Centre for High‐End Computing
– fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions
  funderid: 101062995 CONCEPT‐2D
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAMMB
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFPKN
AGXDD
AIACR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
EBS
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
M~E
O9-
P2W
ROL
WBKPD
WOHZO
WXSBR
ZZTAW
ID FETCH-LOGICAL-d3082-c25313fc687cfc79b7e7f28d0a618b10be0aa88628683c1a1bb9776dce6a98d3
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Wed Aug 27 01:31:07 EDT 2025
Mon Aug 25 09:20:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d3082-c25313fc687cfc79b7e7f28d0a618b10be0aa88628683c1a1bb9776dce6a98d3
ORCID 0000-0002-0204-5742
0000-0002-7846-4599
0000-0003-3128-1426
0000-0002-5072-7924
0000-0003-0159-9951
0000-0002-5189-867X
0000-0003-3342-3627
0000-0001-7260-9008
0000-0001-8730-2594
0000-0002-9284-2832
0000-0002-4437-4296
0009-0004-6522-8273
0000-0001-5137-721X
OpenAccessLink https://doaj.org/article/908d8fc6722643e0af8ca2e55213e0c7
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_908d8fc6722643e0af8ca2e55213e0c7
wiley_primary_10_1002_aelm_202500079_AELM1192
PublicationCentury 2000
PublicationDate August 20, 2025
PublicationDateYYYYMMDD 2025-08-20
PublicationDate_xml – month: 08
  year: 2025
  text: August 20, 2025
  day: 20
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2017; 5
2013; 3
2013; 25
2019; 11
2023; 6
2024; 625
1991; 150
2010; 104
2021; 129
2020; 128
2019; 18
2020; 14
2020; 12
2015; 106
2024
2015; 107
2013; 7
2001; 89
1996; 105
2020; 7
2018; 8
2021; 32
2013; 13
2019; 66
2017; 38
2014; 14
2020; 217
2021; 593
2005; 71
2014; 8
2023; 618
2019; 7
2021; 7
2018; 28
2023; 17
2018; 226
2019; 2
2023; 15
1954; 25
2025; 8
1976; 83
2025; 19
2007
2006
2005
2008; 55
2003
1988; 129
1957
2005; 19
1976; 13
2023
2021
2020
2010; 132
2016; 651
2016; 63
2017
2016; 176
2016
2015
2022; 10
References_xml – volume: 15
  start-page: 230
  year: 2023
  publication-title: Nano‐Micro Lett.
– year: 2005
– volume: 128
  start-page: 8
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 2
  start-page: 230
  year: 2019
  publication-title: Nat. Electron.
– volume: 8
  start-page: 11
  year: 2018
  publication-title: Nanomaterials
– volume: 618
  start-page: 57
  year: 2023
  publication-title: Nature
– volume: 83
  start-page: 14
  year: 1976
  publication-title: Phys. B+ c
– volume: 25
  start-page: 341
  year: 1954
  publication-title: J. Appl. Phys.
– volume: 71
  year: 2005
  publication-title: Phys. Rev. B
– year: 2024
– volume: 19
  start-page: 24
  year: 2005
  publication-title: J. Telecommun. Inf. Technol.
– start-page: 42
  year: 2007
  end-page: 45
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 7
  start-page: 878
  year: 2019
  publication-title: IEEE J. Electron Devices Soc.
– volume: 8
  start-page: 8174
  year: 2014
  publication-title: ACS Nano
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 25
  year: 2013
  publication-title: J. Phys.: Condens. Matter
– volume: 150
  start-page: 281
  year: 1991
  publication-title: Chem. Phys.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 593
  start-page: 211
  year: 2021
  publication-title: Nature
– start-page: 1
  year: 2023
  end-page: 2
– volume: 3
  start-page: 1755
  year: 2013
  publication-title: Sci. Rep.
– volume: 625
  start-page: 276
  year: 2024
  publication-title: Nature
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 651
  start-page: 215
  year: 2016
  publication-title: Surf. Sci.
– start-page: 212
  year: 2017
  end-page: 215
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– start-page: 8302
  year: 2016
  publication-title: Adv. Mater.
– volume: 19
  year: 2025
  publication-title: ACS Nano
– start-page: 134
  year: 2006
  end-page: 196
– volume: 7
  start-page: 4879
  year: 2013
  publication-title: ACS Nano
– volume: 6
  start-page: 0057
  year: 2023
  publication-title: Research
– volume: 8
  start-page: 24
  year: 2025
  publication-title: Nat. Electron.
– volume: 8
  start-page: 923
  year: 2014
  publication-title: ACS Nano
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 7
  start-page: 5235
  year: 2013
  publication-title: ACS Nano
– volume: 38
  start-page: 1763
  year: 2017
  publication-title: IEEE Electron Device Lett.
– volume: 63
  start-page: 2556
  year: 2016
  publication-title: IEEE Trans. Electron Devices
– volume: 176
  start-page: 52
  year: 2016
  publication-title: Mater. Chem. Phys.
– start-page: 1
  year: 2021
  end-page: 2
– volume: 89
  start-page: 259
  year: 2001
  publication-title: Proc. IEEE
– volume: 5
  year: 2017
  publication-title: 2D Mater.
– volume: 18
  start-page: 1
  year: 2019
  publication-title: J. Micro/Nanolithography, MEMS, and MOEMS
– volume: 14
  start-page: 1337
  year: 2014
  publication-title: Nano Lett.
– start-page: 1
  year: 2024
  end-page: 3
– volume: 10
  start-page: 846
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 129
  year: 1988
– volume: 13
  start-page: 100
  year: 2013
  publication-title: Nano Lett.
– start-page: 7·1·1
  year: 2021
  end-page: 7·1·4
– volume: 7
  year: 2020
  publication-title: 2D Mater.
– start-page: 1.1.1
  year: 2020
  end-page: 1.1.10, d
– year: 1957
– volume: 12
  start-page: 6022
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 217
  year: 2020
  publication-title: Phys. Status Solidi A
– start-page: 1
  year: 2015
  end-page: 5
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– start-page: 1
  year: 2023
  end-page: 4
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– year: 2023
– volume: 66
  start-page: 5381
  year: 2019
  publication-title: IEEE Trans. Electron Devices
– start-page: 1
  year: 2020
  end-page: 2
– volume: 105
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 106
  start-page: 1
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 55
  start-page: 2744
  year: 2008
  publication-title: IEEE Trans. Electron Devices
– volume: 129
  year: 2021
  publication-title: J. Appl. Phys.
– start-page: 95
  year: 2003
  end-page: 98
– volume: 226
  start-page: 39
  year: 2018
  publication-title: Comput. Phys. Commun.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
SSID ssj0001763453
Score 2.3255808
Snippet In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors (FETs),...
Abstract In this work, a scalable technique is presented for the direct growth of tungsten disulfide (WS2) utilized in back‐gated field‐effect transistors...
SourceID doaj
wiley
SourceType Open Website
Publisher
SubjectTerms 2D materials
chemical vapor deposition (CVD)
density functional theory (DFT)
P‐type transistors
tungsten disulfide (WS2)
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgXLggECDKJh-4WrWdxc6NFlpViKUSRfQWOeMJSKC0KuXOJ_CNfAm2E1o4cowTO8k443mZzHsh5AwEggadMCUQWVyIhBksgVmZaGMiF3RtqPK9TYcP8dUkmfxi8df6EMuEm_eMsF57BzfFW2clGmrw1TPJpVf0V9k62fD8Wl_UJ-PRKsvi3CcOUpTOMzMmUj75UW7ksvN3iEa1_y9KDWFmsE22GnxIu_WE7pA1rHbJ-V1FHVCj_eo5fLCns6-PT_8GSUerun86LWnPwIvb5VNilj7eS3qJYSXYI-NBf3wxZM2vD5j1-jEMpPONqIRUKyhBZYVCVUptuUmFLgQvkBujteeV6giEEUXhgFxqAVOTaRvtk1Y1rfCAUNcJpEIHE0wSu44Zx7hMEbMUAHhs2qTn7zqf1eIWuZebDg3T-VPePL15xrXV7mqUp91G7tylBiMxcbHfbYFqExZsthylFkOWubdwvrRw3u1f3wiHKQ__efwR2fSNPpcr-TFpLebveOLAwKI4DfP9DTR2rcY
  priority: 102
  providerName: Wiley-Blackwell
Title On the Enhanced p‐Type Performance of Back‐Gated WS2 Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202500079
https://doaj.org/article/908d8fc6722643e0af8ca2e55213e0c7
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwsCAaI8Kg-sVm3n5Wy00KpCPCpRRLfIOV-EBEorVHZ-Ar-RX8LZKaVMLIxJZDv3Raf77Nx9x9gZKAQDJhGZQhRxqRJhsQLhdGKsjSjoupDle5uOHuKraTJda_Xlc8IaeeAGuG4ujTMVpJmv-IxQ2sqA1ZhQ2KErCHXkFPPWNlPhdIXcJk6ib5VGqbsWX3zhufYNAELell_pNyMNIWW4w7aXXJD3mnfYZRtY77Hzu5oTKeOD-in8nOfzz_cPv1vk458cfz6reN_CMz3yx1-OP95rfonB6_fZZDiYXIzEss2BcF4rRoAmP4jIRJNBBVleZphV2jhpU2VKJUsy2hrja0hNBMqqsiTSljrA1ObGRQesVc9qPGScBoHOkCiBTWIamEuMqxQxTwFAxrbN-t7qYt4IWRReWjrcIMCLJeDFX4C3mQiYrWZphI914REuVggXvcH1jSL-ePQfix6zLT-zP8zV8oS1Fq9veEpsYFF22KaOx53w-b8A9VGyZw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELagPbAXtAjQdvnzgatV2_mxc6NlWxVoCxItVFwiZzLZlRalVVXuPALPyJMwk6ateuSYxHbiscfzeTLzWYi3YBA8-EQ5g6jiwiQqYAWqtIkPISKjWzZRvvN0sow_rpJDNCHnwuz5IY4ON9aMZr1mBWeHdP_EGhrwJ6eSW6b0d9lD0WVoQxO7O_i2_LE8OVpIg-KGjZKUM1Mm1asDeaO2_fNGWuL-c6DaWJrxpXjcQkQ52I_pE_EA66fi3edaElaTo_qu-WcvN39__-FNpPxyCv2X60oOA9zTI_aKlfL7VytvsFkMnonFeLR4P1Ht6QeqZAoZBZbUI6og9Q4qcFnh0FXWlzqkxhdGF6hD8J5TS30EJpiiICyXloBpyHwZPRedel3jlZBUCaxDQgohialipjGuUsQsBQAdh54Ycq_zzZ7fImfG6ebGenubtxM4z7QvPX2N48zbiN5deQgWEzL_dAWuJ1Qjs2Mrez5km7OE86OE88FoOjMEK6__s_wb8WiymE3z6Yf5pxfigguwa9fql6Kz2_7CV4QNdsXrdvT_ASvwswE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLAgFixweuFraz2LlRoBU7SFCouETOeAISKK0Q3PkEvpEvYZyGFo4cEy9Jxnmel4nnmbFdUAgWbCKMQhRxoRLhsAThdWKdi8jp-nqV72V63ItP-0n_Vxb_SB9iHHALyKjn6wDwoS_3JqKhDl9CJrkOiv4mm2YzCbkm2WIz7bveQ28SZyEAxbUYJWEzEyqV_R_tRqn3_nbS6Pb_5am1o-kusPmGIfL2aEgX2RRWS2z_quJE1Xineqp_2fPh18dn-Ibk15OV_3xQ8gMHz1QUgmKe399ofoT1XLDMbrud28Nj0Wx-IHxQkBGgCR1RCak1UILJCoOm1NZLlypbKFmgdM7akFlqI1BOFQVRudQDpi6zPlphrWpQ4Srj1Ai0QSIKLompYSYxLlPELAUAGbs1dhCeOh-O5C3yIDhdnxi8PubN-5tn0npLd2NC4m1E1y4tOI0JeX86ArPGRG2zcS8jOWSdBwvnYwvn7c75hSJWuf7P-jts9vqom5-fXJ5tsLlQHgK7Wm6y1tvrO24RM3grtpvB_wY8PrIh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Enhanced+p%E2%80%90Type+Performance+of+Back%E2%80%90Gated+WS2+Devices&rft.jtitle=Advanced+electronic+materials&rft.au=Carlos+Marquez&rft.au=Farzan+Gity&rft.au=Jose+C.+Galdon&rft.au=Alberto+Martinez&rft.date=2025-08-20&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=11&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202500079&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_908d8fc6722643e0af8ca2e55213e0c7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon