Physics of Ferroelectric Wurtzite Al1−xScxN Thin Films
Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly tunable coercive fields (1.5–6.5 MV cm−¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al1−xScxN exhibits remarkable...
Saved in:
Published in | Advanced electronic materials Vol. 11; no. 2 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly tunable coercive fields (1.5–6.5 MV cm−¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al1−xScxN exhibits remarkable compatibility with both CMOS and III‐N technologies. It can be fabricated on plastic substrates at low temperatures, demonstrating excellent flexibility and biocompatibility. Remarkably, Al1−xScxN maintains superior performance in harsh environments due to its outstanding thermal stability (up to 1100 °C). These unique characteristics position Al1−xScxN as a highly promising candidate for a wide range of applications, including high‐performance memory, in‐memory computing, neuromorphic computing, and next‐generation wearable and implantable devices, particularly for operation in complex environments. Despite its potential, Al1−xScxN faces challenges such as high coercive fields, significant leakage currents, and limited polarization reversal cycle life. Addressing these challenges require a deeper understanding of the fundamental physics controlling Al1−xScxN films. This review explores the origins of Al1−xScxN's ferroelectricity and phase stability, delves into the fundamental theory of wurtzite ferroelectricity, investigates mechanisms for controlling spontaneous polarization and coercive fields, examines recent research progress in Al1−xScxN ferroelectric devices, and outlines future development directions for this exciting material.
This review highlights Al1−xScxN as a groundbreaking wurtzite ferroelectric with exceptional properties, including large polarization, tunable coercive field, outstanding thermal stability, and compatibility with CMOS/III‐N technologies. It explores the origins of its ferroelectricity, phase stability, and control mechanisms, discusses challenges such as high operating voltages and leakage currents, and outlines future development directions, emphasizing its potential for advanced applications. |
---|---|
AbstractList | Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly tunable coercive fields (1.5–6.5 MV cm−¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al1−xScxN exhibits remarkable compatibility with both CMOS and III‐N technologies. It can be fabricated on plastic substrates at low temperatures, demonstrating excellent flexibility and biocompatibility. Remarkably, Al1−xScxN maintains superior performance in harsh environments due to its outstanding thermal stability (up to 1100 °C). These unique characteristics position Al1−xScxN as a highly promising candidate for a wide range of applications, including high‐performance memory, in‐memory computing, neuromorphic computing, and next‐generation wearable and implantable devices, particularly for operation in complex environments. Despite its potential, Al1−xScxN faces challenges such as high coercive fields, significant leakage currents, and limited polarization reversal cycle life. Addressing these challenges require a deeper understanding of the fundamental physics controlling Al1−xScxN films. This review explores the origins of Al1−xScxN's ferroelectricity and phase stability, delves into the fundamental theory of wurtzite ferroelectricity, investigates mechanisms for controlling spontaneous polarization and coercive fields, examines recent research progress in Al1−xScxN ferroelectric devices, and outlines future development directions for this exciting material.
This review highlights Al1−xScxN as a groundbreaking wurtzite ferroelectric with exceptional properties, including large polarization, tunable coercive field, outstanding thermal stability, and compatibility with CMOS/III‐N technologies. It explores the origins of its ferroelectricity, phase stability, and control mechanisms, discusses challenges such as high operating voltages and leakage currents, and outlines future development directions, emphasizing its potential for advanced applications. Abstract Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly tunable coercive fields (1.5–6.5 MV cm−¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al1−xScxN exhibits remarkable compatibility with both CMOS and III‐N technologies. It can be fabricated on plastic substrates at low temperatures, demonstrating excellent flexibility and biocompatibility. Remarkably, Al1−xScxN maintains superior performance in harsh environments due to its outstanding thermal stability (up to 1100 °C). These unique characteristics position Al1−xScxN as a highly promising candidate for a wide range of applications, including high‐performance memory, in‐memory computing, neuromorphic computing, and next‐generation wearable and implantable devices, particularly for operation in complex environments. Despite its potential, Al1−xScxN faces challenges such as high coercive fields, significant leakage currents, and limited polarization reversal cycle life. Addressing these challenges require a deeper understanding of the fundamental physics controlling Al1−xScxN films. This review explores the origins of Al1−xScxN's ferroelectricity and phase stability, delves into the fundamental theory of wurtzite ferroelectricity, investigates mechanisms for controlling spontaneous polarization and coercive fields, examines recent research progress in Al1−xScxN ferroelectric devices, and outlines future development directions for this exciting material. |
Author | Yang, Feng |
Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0001-7937-6833 surname: Yang fullname: Yang, Feng email: mse_yangf@ujn.edu.cn organization: University of Jinan |
BookMark | eNpNkM1OAjEUhRuDiYhsXc8LDPZOZ6btkhBQEvxJxOiu6XRupaQwpjNG4Alc-4g-iYMY4urccxffSb5z0llXayTkEugAKE2uNPrVIKFJ2hYuT0g3ASljyOlL5999Rvp1vaSUAs9ZmrEuEQ-Lbe1MHVU2mmAIFXo0TXAmen4Pzc41GA09fH9-bR7N5i6aL9w6mji_qi_IqdW-xv5f9sjTZDwf3cSz--vpaDiLS0YzETNhIDNC5LYEbnlhBC8yqdPS6HZf55i0xbDCGkwABRRMIHJjUCM1TFrWI9MDt6z0Ur0Ft9Jhqyrt1O-jCq9Kh8YZj0pgVgCnEtFCmsm8KFkhKFquS2AcoWWxA-vDedweYUDV3qHaO1RHh2o4nt3KRLAf6zNplg |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH |
DBID | 24P DOA |
DOI | 10.1002/aelm.202400279 |
DatabaseName | Wiley Online Library Open Access DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_8e5b1709eef14596bd3b80ef7ad137e1 AELM928 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11104116 – fundername: Distinguished Middle‐Aged and Young Scientist Encourage and Reward Foundation of Shandong Province funderid: BS2011CL003 – fundername: Natural Science Foundation of Shandong Province funderid: ZR201702120113 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAFWJ AAMMB AAXRX AAZKR ABCUV ABJNI ACAHQ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFPKN AGXDD AIACR AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI M~E O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW |
ID | FETCH-LOGICAL-d3058-38c15c886fd17f7bc87b59a4dca453a6e29a4c3bfce21e81b38ee7cceae0c39f3 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 00:54:48 EDT 2025 Sun Jul 06 04:45:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d3058-38c15c886fd17f7bc87b59a4dca453a6e29a4c3bfce21e81b38ee7cceae0c39f3 |
ORCID | 0000-0001-7937-6833 |
OpenAccessLink | https://doaj.org/article/8e5b1709eef14596bd3b80ef7ad137e1 |
PageCount | 32 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8e5b1709eef14596bd3b80ef7ad137e1 wiley_primary_10_1002_aelm_202400279_AELM928 |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2010; 98 2002; 14 2001; 388 2010; 107 2019; 11 2010; 104 1965; 140 2016; 32 2004; 4 2020; 15 2019; 565 2020; 13 2020; 12 2012; 11 1994; 63 1959; 116 2018; 6 2018; 2 2009; 95 2018; 4 2024; 7 1997; 56 2022; 34 2007; 6 2013; 114 2022; 31 2022; 32 2005; 72 2024; 3 2024; 26 2010; 5 1970; 28 2005; 77 2018; 36 2019; 7 1995; 9 2019; 4 2019; 3 2019; 31 1962; 7 2020; 41 2020; 40 2019; 2 2011; 84 2019; 36 1996 2013; 102 2024; 10 2024; 11 2024; 124 2007; 99 2024; 17 2024; 18 2012; 109 1971; 31 2016; 6 2017; 52 2012; 111 2023; 44 2016; 2 2010; 46 2004; 432 2020; 30 2022; 4 2022; 7 2022; 8 2002; 65 2002; 66 2022; 13 2000; 84 2005; 4 2005; 98 2021; 130 2022; 10 2024; 135 2005; 94 2021; 60 2016; 8 2009; 105 2017; 547 2018; 13 2017; 7 2017; 8 2022; 132 2018; 121 2021; 21 2023; 35 2006; 74 2023; 380 2021; 20 2022; 130 2023; 38 2023; 9 2021; 129 2019; 126 2020; 127 2011; 99 2020; 128 2003; 15 2019; 125 1932; 54 2023; 2 2017; 110 2001; 89 2017; 9 2021; 36 2020; 8 2020; 6 2022; 120 2022; 121 2021; 32 2014; 5 2020; 3 2021; 31 2003; 90 2021; 33 2023; 23 2020; 52 2019; 66 2013; 13 1954; 95 2021; 119 2023; 133 2021; 118 2000; 61 2019; 115 2011; 23 2017; 122 2003; 83 1996; 6 1998; 58 2015; 2 2021; 9 2023; 10 2021; 7 2023; 13 2021; 5 2021; 4 2006; 94 2023; 11 2009; 21 2015; 3 2023; 17 1985; 109 1936; 138 2023; 18 2015; 92 2023; 15 2020; 83 2023; 16 2021; 103 2023; 123 2023; 122 2007 2008; 96 2022; 44 2010; 81 2006; 313 1996; 54 2014; 115 2021; 14 2021; 13 2021; 15 2015; 27 2023 2022 2021 2022; 61 2020 2016; 530 2020; 116 2018 2011; 44 2017 1962 2015 2020; 67 1999; 74 2024; 45 2016; 131 2019; 772 |
References_xml | – volume: 7 start-page: 653 year: 2022 publication-title: Nat. Rev. Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 66 year: 2002 publication-title: Phys. Rev. B – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 860 year: 2012 publication-title: Nat. Mater. – volume: 18 start-page: 422 year: 2023 publication-title: Nat. Nanotechnol. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 21 year: 2007 publication-title: Nat. Mater. – volume: 8 year: 2022 publication-title: Adv. Electron. Mater. – volume: 6 year: 2016 publication-title: AIP Adv. – volume: 5 year: 2021 publication-title: Phys. Rev. Mater. – volume: 13 start-page: 24 year: 2018 publication-title: Nat. Nanotechnol. – volume: 44 start-page: 1260 year: 2023 publication-title: IEEE Electron Device Lett. – volume: 131 year: 2016 – volume: 15 year: 2021 publication-title: Phys. Status Solidi RRL – volume: 380 start-page: 1034 year: 2023 publication-title: Science – volume: 547 start-page: 74 year: 2017 publication-title: Nature – volume: 10 start-page: 1084 year: 2022 publication-title: J. Mater. Chem. C – volume: 127 year: 2020 publication-title: J. Appl. Phys. – volume: 65 year: 2002 publication-title: Phys. Rev. B – volume: 60 year: 2021 publication-title: Jpn. J. Appl. Phys. – volume: 41 start-page: 1774 year: 2020 publication-title: IEEE Electron Device Lett. – volume: 4 start-page: 436 year: 2004 publication-title: IEEE Trans. Device Mater. Reliab. – volume: 132 year: 2022 publication-title: J. Appl. Phys. – volume: 40 start-page: 5410 year: 2020 publication-title: J. Eur. Ceram. Soc. – volume: 17 year: 2024 publication-title: Appl. Phys. Express – volume: 530 start-page: 198 year: 2016 publication-title: Nature – volume: 111 year: 2012 publication-title: J. Appl. Phys. – volume: 10 year: 2024 publication-title: Adv. Electron. Mater. – year: 2007 – volume: 119 year: 2021 publication-title: Appl. Phys. Lett. – volume: 98 start-page: 2201 year: 2010 publication-title: Proc. IEEE – volume: 32 start-page: 1 year: 2016 publication-title: J. Mater. Sci. Technol. – volume: 2 year: 2016 publication-title: Nat. Rev. Mater. – volume: 772 start-page: 306 year: 2019 publication-title: J. Alloy. Compd. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 6 year: 2018 publication-title: APL Mater. – volume: 83 year: 2020 publication-title: Rep. Prog. Phys. – volume: 31 start-page: 506 year: 1971 publication-title: J. Phys. Soc. Jpn. – volume: 11 year: 2023 publication-title: APL Mater. – volume: 6 year: 2016 publication-title: Phys. Rev. X – volume: 99 year: 2011 publication-title: Appl. Phys. Lett. – volume: 89 start-page: 6389 year: 2001 publication-title: J. Appl. Phys. – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 107 year: 2010 publication-title: J. Appl. Phys. – volume: 13 start-page: 887 year: 2022 publication-title: Micromachines – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 128 year: 2020 publication-title: J. Appl. Phys. – volume: 120 year: 2022 publication-title: Appl. Phys. Lett. – volume: 83 start-page: 3767 year: 2003 publication-title: Appl. Phys. Lett. – volume: 116 start-page: 61 year: 1959 publication-title: Phys. Rev. – volume: 96 start-page: 287 year: 2008 publication-title: Proc. IEEE – year: 1962 – volume: 5 start-page: 4289 year: 2014 publication-title: Nat. Commun. – volume: 36 year: 2021 publication-title: Semicond. Sci. Technol. – year: 2021 – volume: 56 year: 1997 publication-title: Phys. Rev. B – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 95 start-page: 690 year: 1954 publication-title: Phys. Rev. – volume: 13 start-page: 783 year: 2022 publication-title: Micromachines – volume: 135 year: 2024 publication-title: J. Appl. Phys. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 122 year: 2023 publication-title: Appl. Phys. Lett. – volume: 16 year: 2023 publication-title: Appl. Phys. Express – volume: 126 year: 2019 publication-title: J. Appl. Phys. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 3 year: 2024 publication-title: Adv. Phys. Res. – volume: 38 year: 2023 publication-title: Semicond. Sci. Technol. – volume: 74 start-page: 1326 year: 1999 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 2027 year: 1962 publication-title: Philos. Mag. – volume: 9 year: 2021 publication-title: APL Mater. – year: 2015 – year: 2023 publication-title: IEEE Microw. Wirel. Tech. Lett. – volume: 140 start-page: A863 year: 1965 publication-title: Phys. Rev. – volume: 4 year: 2018 publication-title: Adv. Electron. Mater. – volume: 36 year: 2018 publication-title: J. Vac. Sci. Technol. B – volume: 9 start-page: 57 year: 1995 publication-title: Integr. Ferroelectr. – volume: 10 year: 2022 publication-title: J. Mater. Chem. C – year: 1996 – volume: 63 start-page: 1031 year: 1994 publication-title: J. Phys. Soc. Jpn. – volume: 124 year: 2024 publication-title: Nano Energy – volume: 61 year: 2022 publication-title: Jpn. J. Appl. Phys. – volume: 61 start-page: 197 year: 2000 publication-title: J. Phys. Chem. Solids – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: APL Mater. – volume: 13 start-page: 54 year: 2023 publication-title: Coatings – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 125 year: 2019 publication-title: J. Appl. Phys. – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – year: 2020 – volume: 2 year: 2018 publication-title: Phys. Rev. Mater. – volume: 565 start-page: 464 year: 2019 publication-title: Nature – volume: 2 start-page: 521 year: 2019 publication-title: Nat. Electron. – volume: 102 year: 2013 publication-title: Appl. Phys. Lett. – volume: 66 start-page: 3828 year: 2019 publication-title: IEEE Trans. Electron Devices – volume: 129 year: 2021 publication-title: J. Appl. Phys. – volume: 313 start-page: 181 year: 2006 publication-title: Science – volume: 114 year: 2013 publication-title: J. Appl. Phys. – volume: 109 start-page: 345 year: 1985 publication-title: J. Less Common Met. – volume: 94 start-page: 1050 year: 2006 publication-title: Proc. IEEE – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 84 start-page: 175 year: 2000 publication-title: Phys. Rev. Lett. – volume: 21 start-page: 3753 year: 2021 publication-title: Nano Lett. – volume: 17 year: 2023 publication-title: Phys. Status Solidi RRL – volume: 31 year: 2019 publication-title: J. Phys. Condens. Matter – volume: 8 year: 2016 publication-title: NPG Asia Mater. – volume: 18 start-page: 1044 year: 2023 publication-title: Nat. Nanotechnol. – volume: 44 start-page: 17 year: 2022 publication-title: IEEE Electron Device Lett. – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 81 year: 2010 publication-title: Phys. Rev. B – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 3 year: 2015 publication-title: APL Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 432 start-page: 84 year: 2004 publication-title: Nature – volume: 14 start-page: 3399 year: 2002 publication-title: J. Phys. Condens. Matter – year: 2022 – volume: 54 start-page: 3570 year: 1932 publication-title: J. Am. Chem. Soc. – volume: 67 start-page: 2981 year: 2020 publication-title: IEEE Trans. Electron. Devices – volume: 124 year: 2024 publication-title: Appl. Phys. Lett. – volume: 46 start-page: 1537 year: 2010 publication-title: IEEE Trans. Magn. – volume: 45 start-page: 574 year: 2024 publication-title: IEEE Electron Device Lett. – volume: 130 year: 2021 publication-title: J. Appl. Phys. – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 593 year: 2009 publication-title: Adv. Mater. – volume: 45 start-page: 356 year: 2024 publication-title: IEEE Electron Device Lett. – volume: 123 year: 2023 publication-title: Appl. Phys. Lett. – volume: 98 year: 2005 publication-title: J. Appl. Phys. – volume: 77 start-page: 1083 year: 2005 publication-title: Rev. Mod. Phys. – volume: 4 year: 2019 publication-title: ACS Omega – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 143 year: 2010 publication-title: Nat. Nanotechnol. – volume: 23 start-page: 7213 year: 2023 publication-title: Nano Lett. – volume: 4 year: 2022 publication-title: Adv. Intell. Syst. – volume: 58 start-page: 6224 year: 1998 publication-title: Phys. Rev. B – volume: 32 year: 2021 publication-title: Nanotechnology – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 397 year: 2024 publication-title: Materials – volume: 14 year: 2021 publication-title: Appl. Phys. Express – volume: 23 start-page: 1277 year: 2011 publication-title: Adv. Mater. – volume: 17 start-page: 627 year: 2024 publication-title: Materials – volume: 103 year: 2021 publication-title: Phys. Rev. B – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 26 start-page: 180 year: 2024 publication-title: CrystEngComm – volume: 8 start-page: 1115 year: 2017 publication-title: Nat. Commun. – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 717 year: 2020 publication-title: IEEE J. Electron Devices Soc. – volume: 20 start-page: 1130 year: 2021 publication-title: Nat. Mater. – volume: 133 year: 2023 publication-title: J. Appl. Phys. – volume: 13 start-page: 93 year: 2013 publication-title: IEEE Trans. Device Mater. Reliab. – year: 2018 – volume: 11 start-page: 2355 year: 2024 publication-title: Mater. Horiz. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 15 start-page: L393 year: 2003 publication-title: J. Phys. Condens. Matter – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 2 start-page: 1 year: 2015 publication-title: J. Big Data – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 90 year: 2003 publication-title: Phys. Rev. Lett. – volume: 94 year: 2005 publication-title: Phys. Rev. Lett. – volume: 3 year: 2019 publication-title: Phys. Rev. Mater. – volume: 44 year: 2011 publication-title: J. Phys. D: Appl. Phys. – volume: 74 year: 2006 publication-title: Phys. Rev. B – volume: 7 start-page: 348 year: 2024 publication-title: Nat. Electron. – volume: 4 start-page: 595 year: 2021 publication-title: Nat. Electron. – volume: 28 start-page: 38 year: 1970 publication-title: J. Phys. Soc. Japan – volume: 31 start-page: 234 year: 2022 publication-title: J. Microelectromech. Syst. – volume: 9 year: 2023 publication-title: Adv. Electron. Mater. – volume: 122 year: 2017 publication-title: J. Appl. Phys. – volume: 388 start-page: 62 year: 2001 publication-title: Thin Solid Films – volume: 3 start-page: 588 year: 2020 publication-title: Nat. Electron. – volume: 105 year: 2009 publication-title: J. Appl. Phys. – volume: 52 start-page: 915 year: 2017 publication-title: IEEE J. Solid‐State Circuits – volume: 130 start-page: 436 year: 2022 publication-title: J. Ceram. Soc. Jpn. – volume: 138 start-page: 840 year: 1936 publication-title: Nature – volume: 13 year: 2020 publication-title: Appl. Phys. Express – volume: 72 year: 2005 publication-title: Phys. Rev. B – volume: 115 year: 2014 publication-title: J. Appl. Phys. – volume: 52 start-page: 200 year: 2020 publication-title: Physiol. Genomics – volume: 27 year: 2015 publication-title: J. Phys. Condens. Matter – volume: 18 start-page: 4180 year: 2024 publication-title: ACS Nano – volume: 10 start-page: 2936 year: 2023 publication-title: Mater. Horiz. – volume: 115 year: 2019 publication-title: Appl. Phys. Lett. – volume: 2 year: 2023 publication-title: Adv. Phys. Res. – volume: 15 start-page: 529 year: 2020 publication-title: Nat. Nanotechnol. – year: 2023 – volume: 121 year: 2022 publication-title: Appl. Phys. Lett. – year: 2017 – volume: 4 start-page: 243 year: 2005 publication-title: Nat. Mater. – volume: 15 start-page: 7030 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 36 start-page: 41 year: 2019 publication-title: IEEE Des. Test. – volume: 13 start-page: 825 year: 2023 publication-title: MRS Commun. |
SSID | ssj0001763453 |
Score | 2.3390412 |
SecondaryResourceType | review_article |
Snippet | Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly... Abstract Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2),... |
SourceID | doaj wiley |
SourceType | Open Website Publisher |
SubjectTerms | Al1−xScxN ferroelectric memory III‐nitride semiconductor thin film wurtzite ferroelectric |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L15EUXH-IgePljVJ2yTHKStD3BB0uFtJ0lcZzFW6DYZ_gWf_RP8Sk7RuevSYEh7kvXzpl_De9xC6Ag6x2xkBY9JeUKRSgQSRB8CihEJBDCeu3nkwTPqj6G4cj39V8df6EOsHN4cMf147gCs972xEQxVMXSW5y4GkXG6jHVdf65L6aPSweWWx8Im8FKVFpgxIEo5_lBtD2vlrolHt_8tS_W8m3Ud7DT_E3TqgB2gLZodI-DxNM8dlgVOoqrJuXjMx-HlZLd4ta8TdKfn6-Fw9mtUQu16cOJ1MX-dHaJT2nm77QdPyIMgt8KzHhCGxESIpcsILro3gOpYqyo2yy1AJUDswTBcGKAFLOZkA4MaAgtAwWbBj1JqVMzhBuBBRTBQHCJW9BQiLOwlUGKZ0zsGec21045abvdWqFpnTmfYfyuola7ZtJiDWhIcSbNiiWCY6Z1qEUHCVE2bNtNG1d9baSq2CTDPn2mzt2qzbux9IKk7_N_0M7VLXbtcnSZ-j1qJawoXlAAt96cP8DfJhq2g priority: 102 providerName: Wiley-Blackwell |
Title | Physics of Ferroelectric Wurtzite Al1−xScxN Thin Films |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400279 https://doaj.org/article/8e5b1709eef14596bd3b80ef7ad137e1 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA66kxdRVJwfIwePljVJ0yTHKSsibgg63K0k6RsYzE32AcNf4Nmf6C8xSeeYJy8eW2iTPu1Lnrc8eR6ErkAAD19GwpjyDYrSOlEgqwRYllNwxAoS9jv3-vndILsf8uFW1FfQhNX2wDVwbQncEJEq8BdmXOWmYkam4ISuCBMQGx-_5m01U_Hvii-bjLMfl8aUtjWMw8bzIJmkUbcVRvrNSOOSUhyg_TUXxJ16DodoByZHSEZNpp3jqcMFzGbTOqhmZPHLcrZ49wwRd8bk6-Nz9WRXfRxyN3ExGr_Oj9Gg6D7f3iXreIOk8kXm0ZGWcCtl7ioinDBWCsOVziqr_dR1DtQfWGacBUrA00smAYS1oCG1TDl2ghqT6QROEXYy40QLgFR7xi99jSmg0jJtKg8RZ010Ex63fKsdLMrgKR1PeKTLNdLlX0g30XUEa3OX2vGYlgHacgNt2ek-9BSVZ_8x5jnaoyFwN8qkL1BjMVvCpWcBC9NCuzR7bMXX_g1CzLEA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgHWBBIECUzwyMRI3tJLbHgBoVaLvQQMUSOc4FVSoNSlup4hcw8xP5JdhJ2oqRMVF0ks_3nOfT3TuEroGBZyLDplToC4qQ0hbAUxuo6xPIsGLY9Dv3B343ch9G3qqa0PTCVPoQ64SbQUZ5XhuAm4R0e6MaKmFiWslNESRhYhs1DbXRgd0MnqPXaJNo0QhySzVKDU5hY98ZrcQbHdL-a6QW7v9LVMs_TbiP9mqKaAXVnh6gLZgeIl6WaqqZlWdWCEWRV_Nrxsp6WRTzT00crWCCf76-l09qObDMOE4rHE_eZ0coCjvDu65dTz2wU4097TSusKc497MUs4wlirPEE9JNldTLkD4Q_aBokikgGDTrpByAKQUSHEVFRo9RY5pP4QRZGXc9LBmAI_VFgGvoCSBcUZmkDPRR10K3ZrnxRyVsERup6fJFXrzFdeTGHLwEM0eA3jnXE36S0oQ7kDGZYqrNtNBN6ay1lUoImcTGtfHatXHQ6fUF4af_-_wK7XSH_V7cux88nqFdYqbvljXT56gxLxZwoSnBPLmsN_0Xukawow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66gXgRRcXf9uDRsiZpm-Q4dWXqNgSdDi8lTV9kMLfRbTD8Czz7J_qXmLR1c0ePDeVB3suXfAnvfQ-hC2AQ2JXhUirMBUVI6QrgqQvUDwlorBi29c7tTtjs-ne9oPenir_Qh1g8uFlk5Pu1Bfg41bWlaKiEga0ktzmQhIl1VA3M0eRVULX-3H3tLt9ZDID8XIzSYFO4OPR6v9qNHqmtGil1-1d5an7QRNtoq2SITr0I6Q5ag-Eu4nmmppo4I-1EkGWjon1NXzkvs2z6YXijUx_g78-v-aOadxzbjdOJ-oP3yR7qRo2n66ZbNj1wUwM94zOucKA4D3WKmWaJ4iwJhPRTJc00ZAjEfCiaaAUEgyGdlAMwpUCCp6jQdB9VhqMhHCBHcz_AkgF40twDuEGeAMIVlUnKwOx0h-jKTjceF7oWsVWazgdG2VtcLtyYQ5Bg5gkwgfMDESYpTbgHmskUU2PmEF3mzlpYKXSQSWxdGy9cG9cbrbYg_Oh_v5-jjYebKG7ddu6P0SaxvXfzjOkTVJlmMzg1hGCanJUx_wHSPq_D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+of+Ferroelectric+Wurtzite+Al1%E2%88%92xScxN+Thin+Films&rft.jtitle=Advanced+electronic+materials&rft.au=Feng+Yang&rft.date=2025-02-01&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400279&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8e5b1709eef14596bd3b80ef7ad137e1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |