Physics of Ferroelectric Wurtzite Al1−xScxN Thin Films

Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly tunable coercive fields (1.5–6.5 MV cm−¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al1−xScxN exhibits remarkable...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 11; no. 2
Main Author Yang, Feng
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly tunable coercive fields (1.5–6.5 MV cm−¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al1−xScxN exhibits remarkable compatibility with both CMOS and III‐N technologies. It can be fabricated on plastic substrates at low temperatures, demonstrating excellent flexibility and biocompatibility. Remarkably, Al1−xScxN maintains superior performance in harsh environments due to its outstanding thermal stability (up to 1100 °C). These unique characteristics position Al1−xScxN as a highly promising candidate for a wide range of applications, including high‐performance memory, in‐memory computing, neuromorphic computing, and next‐generation wearable and implantable devices, particularly for operation in complex environments. Despite its potential, Al1−xScxN faces challenges such as high coercive fields, significant leakage currents, and limited polarization reversal cycle life. Addressing these challenges require a deeper understanding of the fundamental physics controlling Al1−xScxN films. This review explores the origins of Al1−xScxN's ferroelectricity and phase stability, delves into the fundamental theory of wurtzite ferroelectricity, investigates mechanisms for controlling spontaneous polarization and coercive fields, examines recent research progress in Al1−xScxN ferroelectric devices, and outlines future development directions for this exciting material. This review highlights Al1−xScxN as a groundbreaking wurtzite ferroelectric with exceptional properties, including large polarization, tunable coercive field, outstanding thermal stability, and compatibility with CMOS/III‐N technologies. It explores the origins of its ferroelectricity, phase stability, and control mechanisms, discusses challenges such as high operating voltages and leakage currents, and outlines future development directions, emphasizing its potential for advanced applications.
AbstractList Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly tunable coercive fields (1.5–6.5 MV cm−¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al1−xScxN exhibits remarkable compatibility with both CMOS and III‐N technologies. It can be fabricated on plastic substrates at low temperatures, demonstrating excellent flexibility and biocompatibility. Remarkably, Al1−xScxN maintains superior performance in harsh environments due to its outstanding thermal stability (up to 1100 °C). These unique characteristics position Al1−xScxN as a highly promising candidate for a wide range of applications, including high‐performance memory, in‐memory computing, neuromorphic computing, and next‐generation wearable and implantable devices, particularly for operation in complex environments. Despite its potential, Al1−xScxN faces challenges such as high coercive fields, significant leakage currents, and limited polarization reversal cycle life. Addressing these challenges require a deeper understanding of the fundamental physics controlling Al1−xScxN films. This review explores the origins of Al1−xScxN's ferroelectricity and phase stability, delves into the fundamental theory of wurtzite ferroelectricity, investigates mechanisms for controlling spontaneous polarization and coercive fields, examines recent research progress in Al1−xScxN ferroelectric devices, and outlines future development directions for this exciting material. This review highlights Al1−xScxN as a groundbreaking wurtzite ferroelectric with exceptional properties, including large polarization, tunable coercive field, outstanding thermal stability, and compatibility with CMOS/III‐N technologies. It explores the origins of its ferroelectricity, phase stability, and control mechanisms, discusses challenges such as high operating voltages and leakage currents, and outlines future development directions, emphasizing its potential for advanced applications.
Abstract Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly tunable coercive fields (1.5–6.5 MV cm−¹), and a wide bandgap (4.9–5.6 eV). Unlike conventional ferroelectrics, Al1−xScxN exhibits remarkable compatibility with both CMOS and III‐N technologies. It can be fabricated on plastic substrates at low temperatures, demonstrating excellent flexibility and biocompatibility. Remarkably, Al1−xScxN maintains superior performance in harsh environments due to its outstanding thermal stability (up to 1100 °C). These unique characteristics position Al1−xScxN as a highly promising candidate for a wide range of applications, including high‐performance memory, in‐memory computing, neuromorphic computing, and next‐generation wearable and implantable devices, particularly for operation in complex environments. Despite its potential, Al1−xScxN faces challenges such as high coercive fields, significant leakage currents, and limited polarization reversal cycle life. Addressing these challenges require a deeper understanding of the fundamental physics controlling Al1−xScxN films. This review explores the origins of Al1−xScxN's ferroelectricity and phase stability, delves into the fundamental theory of wurtzite ferroelectricity, investigates mechanisms for controlling spontaneous polarization and coercive fields, examines recent research progress in Al1−xScxN ferroelectric devices, and outlines future development directions for this exciting material.
Author Yang, Feng
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0001-7937-6833
  surname: Yang
  fullname: Yang, Feng
  email: mse_yangf@ujn.edu.cn
  organization: University of Jinan
BookMark eNpNkM1OAjEUhRuDiYhsXc8LDPZOZ6btkhBQEvxJxOiu6XRupaQwpjNG4Alc-4g-iYMY4urccxffSb5z0llXayTkEugAKE2uNPrVIKFJ2hYuT0g3ASljyOlL5999Rvp1vaSUAs9ZmrEuEQ-Lbe1MHVU2mmAIFXo0TXAmen4Pzc41GA09fH9-bR7N5i6aL9w6mji_qi_IqdW-xv5f9sjTZDwf3cSz--vpaDiLS0YzETNhIDNC5LYEbnlhBC8yqdPS6HZf55i0xbDCGkwABRRMIHJjUCM1TFrWI9MDt6z0Ur0Ft9Jhqyrt1O-jCq9Kh8YZj0pgVgCnEtFCmsm8KFkhKFquS2AcoWWxA-vDedweYUDV3qHaO1RHh2o4nt3KRLAf6zNplg
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
DBID 24P
DOA
DOI 10.1002/aelm.202400279
DatabaseName Wiley Online Library Open Access
DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8e5b1709eef14596bd3b80ef7ad137e1
AELM928
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11104116
– fundername: Distinguished Middle‐Aged and Young Scientist Encourage and Reward Foundation of Shandong Province
  funderid: BS2011CL003
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR201702120113
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAMMB
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFPKN
AGXDD
AIACR
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
M~E
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
ID FETCH-LOGICAL-d3058-38c15c886fd17f7bc87b59a4dca453a6e29a4c3bfce21e81b38ee7cceae0c39f3
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Wed Aug 27 00:54:48 EDT 2025
Sun Jul 06 04:45:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d3058-38c15c886fd17f7bc87b59a4dca453a6e29a4c3bfce21e81b38ee7cceae0c39f3
ORCID 0000-0001-7937-6833
OpenAccessLink https://doaj.org/article/8e5b1709eef14596bd3b80ef7ad137e1
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_8e5b1709eef14596bd3b80ef7ad137e1
wiley_primary_10_1002_aelm_202400279_AELM928
PublicationCentury 2000
PublicationDate February 2025
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2010; 98
2002; 14
2001; 388
2010; 107
2019; 11
2010; 104
1965; 140
2016; 32
2004; 4
2020; 15
2019; 565
2020; 13
2020; 12
2012; 11
1994; 63
1959; 116
2018; 6
2018; 2
2009; 95
2018; 4
2024; 7
1997; 56
2022; 34
2007; 6
2013; 114
2022; 31
2022; 32
2005; 72
2024; 3
2024; 26
2010; 5
1970; 28
2005; 77
2018; 36
2019; 7
1995; 9
2019; 4
2019; 3
2019; 31
1962; 7
2020; 41
2020; 40
2019; 2
2011; 84
2019; 36
1996
2013; 102
2024; 10
2024; 11
2024; 124
2007; 99
2024; 17
2024; 18
2012; 109
1971; 31
2016; 6
2017; 52
2012; 111
2023; 44
2016; 2
2010; 46
2004; 432
2020; 30
2022; 4
2022; 7
2022; 8
2002; 65
2002; 66
2022; 13
2000; 84
2005; 4
2005; 98
2021; 130
2022; 10
2024; 135
2005; 94
2021; 60
2016; 8
2009; 105
2017; 547
2018; 13
2017; 7
2017; 8
2022; 132
2018; 121
2021; 21
2023; 35
2006; 74
2023; 380
2021; 20
2022; 130
2023; 38
2023; 9
2021; 129
2019; 126
2020; 127
2011; 99
2020; 128
2003; 15
2019; 125
1932; 54
2023; 2
2017; 110
2001; 89
2017; 9
2021; 36
2020; 8
2020; 6
2022; 120
2022; 121
2021; 32
2014; 5
2020; 3
2021; 31
2003; 90
2021; 33
2023; 23
2020; 52
2019; 66
2013; 13
1954; 95
2021; 119
2023; 133
2021; 118
2000; 61
2019; 115
2011; 23
2017; 122
2003; 83
1996; 6
1998; 58
2015; 2
2021; 9
2023; 10
2021; 7
2023; 13
2021; 5
2021; 4
2006; 94
2023; 11
2009; 21
2015; 3
2023; 17
1985; 109
1936; 138
2023; 18
2015; 92
2023; 15
2020; 83
2023; 16
2021; 103
2023; 123
2023; 122
2007
2008; 96
2022; 44
2010; 81
2006; 313
1996; 54
2014; 115
2021; 14
2021; 13
2021; 15
2015; 27
2023
2022
2021
2022; 61
2020
2016; 530
2020; 116
2018
2011; 44
2017
1962
2015
2020; 67
1999; 74
2024; 45
2016; 131
2019; 772
References_xml – volume: 7
  start-page: 653
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 66
  year: 2002
  publication-title: Phys. Rev. B
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 860
  year: 2012
  publication-title: Nat. Mater.
– volume: 18
  start-page: 422
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 21
  year: 2007
  publication-title: Nat. Mater.
– volume: 8
  year: 2022
  publication-title: Adv. Electron. Mater.
– volume: 6
  year: 2016
  publication-title: AIP Adv.
– volume: 5
  year: 2021
  publication-title: Phys. Rev. Mater.
– volume: 13
  start-page: 24
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 44
  start-page: 1260
  year: 2023
  publication-title: IEEE Electron Device Lett.
– volume: 131
  year: 2016
– volume: 15
  year: 2021
  publication-title: Phys. Status Solidi RRL
– volume: 380
  start-page: 1034
  year: 2023
  publication-title: Science
– volume: 547
  start-page: 74
  year: 2017
  publication-title: Nature
– volume: 10
  start-page: 1084
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 127
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 65
  year: 2002
  publication-title: Phys. Rev. B
– volume: 60
  year: 2021
  publication-title: Jpn. J. Appl. Phys.
– volume: 41
  start-page: 1774
  year: 2020
  publication-title: IEEE Electron Device Lett.
– volume: 4
  start-page: 436
  year: 2004
  publication-title: IEEE Trans. Device Mater. Reliab.
– volume: 132
  year: 2022
  publication-title: J. Appl. Phys.
– volume: 40
  start-page: 5410
  year: 2020
  publication-title: J. Eur. Ceram. Soc.
– volume: 17
  year: 2024
  publication-title: Appl. Phys. Express
– volume: 530
  start-page: 198
  year: 2016
  publication-title: Nature
– volume: 111
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 10
  year: 2024
  publication-title: Adv. Electron. Mater.
– year: 2007
– volume: 119
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 98
  start-page: 2201
  year: 2010
  publication-title: Proc. IEEE
– volume: 32
  start-page: 1
  year: 2016
  publication-title: J. Mater. Sci. Technol.
– volume: 2
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 772
  start-page: 306
  year: 2019
  publication-title: J. Alloy. Compd.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 6
  year: 2018
  publication-title: APL Mater.
– volume: 83
  year: 2020
  publication-title: Rep. Prog. Phys.
– volume: 31
  start-page: 506
  year: 1971
  publication-title: J. Phys. Soc. Jpn.
– volume: 11
  year: 2023
  publication-title: APL Mater.
– volume: 6
  year: 2016
  publication-title: Phys. Rev. X
– volume: 99
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 89
  start-page: 6389
  year: 2001
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 107
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 13
  start-page: 887
  year: 2022
  publication-title: Micromachines
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 128
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 83
  start-page: 3767
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 116
  start-page: 61
  year: 1959
  publication-title: Phys. Rev.
– volume: 96
  start-page: 287
  year: 2008
  publication-title: Proc. IEEE
– year: 1962
– volume: 5
  start-page: 4289
  year: 2014
  publication-title: Nat. Commun.
– volume: 36
  year: 2021
  publication-title: Semicond. Sci. Technol.
– year: 2021
– volume: 56
  year: 1997
  publication-title: Phys. Rev. B
– volume: 95
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 95
  start-page: 690
  year: 1954
  publication-title: Phys. Rev.
– volume: 13
  start-page: 783
  year: 2022
  publication-title: Micromachines
– volume: 135
  year: 2024
  publication-title: J. Appl. Phys.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 122
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 16
  year: 2023
  publication-title: Appl. Phys. Express
– volume: 126
  year: 2019
  publication-title: J. Appl. Phys.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 3
  year: 2024
  publication-title: Adv. Phys. Res.
– volume: 38
  year: 2023
  publication-title: Semicond. Sci. Technol.
– volume: 74
  start-page: 1326
  year: 1999
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 2027
  year: 1962
  publication-title: Philos. Mag.
– volume: 9
  year: 2021
  publication-title: APL Mater.
– year: 2015
– year: 2023
  publication-title: IEEE Microw. Wirel. Tech. Lett.
– volume: 140
  start-page: A863
  year: 1965
  publication-title: Phys. Rev.
– volume: 4
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 36
  year: 2018
  publication-title: J. Vac. Sci. Technol. B
– volume: 9
  start-page: 57
  year: 1995
  publication-title: Integr. Ferroelectr.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. C
– year: 1996
– volume: 63
  start-page: 1031
  year: 1994
  publication-title: J. Phys. Soc. Jpn.
– volume: 124
  year: 2024
  publication-title: Nano Energy
– volume: 61
  year: 2022
  publication-title: Jpn. J. Appl. Phys.
– volume: 61
  start-page: 197
  year: 2000
  publication-title: J. Phys. Chem. Solids
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: APL Mater.
– volume: 13
  start-page: 54
  year: 2023
  publication-title: Coatings
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 125
  year: 2019
  publication-title: J. Appl. Phys.
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– year: 2020
– volume: 2
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 565
  start-page: 464
  year: 2019
  publication-title: Nature
– volume: 2
  start-page: 521
  year: 2019
  publication-title: Nat. Electron.
– volume: 102
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 66
  start-page: 3828
  year: 2019
  publication-title: IEEE Trans. Electron Devices
– volume: 129
  year: 2021
  publication-title: J. Appl. Phys.
– volume: 313
  start-page: 181
  year: 2006
  publication-title: Science
– volume: 114
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 109
  start-page: 345
  year: 1985
  publication-title: J. Less Common Met.
– volume: 94
  start-page: 1050
  year: 2006
  publication-title: Proc. IEEE
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 84
  start-page: 175
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 21
  start-page: 3753
  year: 2021
  publication-title: Nano Lett.
– volume: 17
  year: 2023
  publication-title: Phys. Status Solidi RRL
– volume: 31
  year: 2019
  publication-title: J. Phys. Condens. Matter
– volume: 8
  year: 2016
  publication-title: NPG Asia Mater.
– volume: 18
  start-page: 1044
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 44
  start-page: 17
  year: 2022
  publication-title: IEEE Electron Device Lett.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 81
  year: 2010
  publication-title: Phys. Rev. B
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 3
  year: 2015
  publication-title: APL Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 432
  start-page: 84
  year: 2004
  publication-title: Nature
– volume: 14
  start-page: 3399
  year: 2002
  publication-title: J. Phys. Condens. Matter
– year: 2022
– volume: 54
  start-page: 3570
  year: 1932
  publication-title: J. Am. Chem. Soc.
– volume: 67
  start-page: 2981
  year: 2020
  publication-title: IEEE Trans. Electron. Devices
– volume: 124
  year: 2024
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 1537
  year: 2010
  publication-title: IEEE Trans. Magn.
– volume: 45
  start-page: 574
  year: 2024
  publication-title: IEEE Electron Device Lett.
– volume: 130
  year: 2021
  publication-title: J. Appl. Phys.
– volume: 116
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 593
  year: 2009
  publication-title: Adv. Mater.
– volume: 45
  start-page: 356
  year: 2024
  publication-title: IEEE Electron Device Lett.
– volume: 123
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 98
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 77
  start-page: 1083
  year: 2005
  publication-title: Rev. Mod. Phys.
– volume: 4
  year: 2019
  publication-title: ACS Omega
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 143
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 23
  start-page: 7213
  year: 2023
  publication-title: Nano Lett.
– volume: 4
  year: 2022
  publication-title: Adv. Intell. Syst.
– volume: 58
  start-page: 6224
  year: 1998
  publication-title: Phys. Rev. B
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 397
  year: 2024
  publication-title: Materials
– volume: 14
  year: 2021
  publication-title: Appl. Phys. Express
– volume: 23
  start-page: 1277
  year: 2011
  publication-title: Adv. Mater.
– volume: 17
  start-page: 627
  year: 2024
  publication-title: Materials
– volume: 103
  year: 2021
  publication-title: Phys. Rev. B
– volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 180
  year: 2024
  publication-title: CrystEngComm
– volume: 8
  start-page: 1115
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 717
  year: 2020
  publication-title: IEEE J. Electron Devices Soc.
– volume: 20
  start-page: 1130
  year: 2021
  publication-title: Nat. Mater.
– volume: 133
  year: 2023
  publication-title: J. Appl. Phys.
– volume: 13
  start-page: 93
  year: 2013
  publication-title: IEEE Trans. Device Mater. Reliab.
– year: 2018
– volume: 11
  start-page: 2355
  year: 2024
  publication-title: Mater. Horiz.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 15
  start-page: L393
  year: 2003
  publication-title: J. Phys. Condens. Matter
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1
  year: 2015
  publication-title: J. Big Data
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 90
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 94
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 3
  year: 2019
  publication-title: Phys. Rev. Mater.
– volume: 44
  year: 2011
  publication-title: J. Phys. D: Appl. Phys.
– volume: 74
  year: 2006
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 348
  year: 2024
  publication-title: Nat. Electron.
– volume: 4
  start-page: 595
  year: 2021
  publication-title: Nat. Electron.
– volume: 28
  start-page: 38
  year: 1970
  publication-title: J. Phys. Soc. Japan
– volume: 31
  start-page: 234
  year: 2022
  publication-title: J. Microelectromech. Syst.
– volume: 9
  year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 122
  year: 2017
  publication-title: J. Appl. Phys.
– volume: 388
  start-page: 62
  year: 2001
  publication-title: Thin Solid Films
– volume: 3
  start-page: 588
  year: 2020
  publication-title: Nat. Electron.
– volume: 105
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 52
  start-page: 915
  year: 2017
  publication-title: IEEE J. Solid‐State Circuits
– volume: 130
  start-page: 436
  year: 2022
  publication-title: J. Ceram. Soc. Jpn.
– volume: 138
  start-page: 840
  year: 1936
  publication-title: Nature
– volume: 13
  year: 2020
  publication-title: Appl. Phys. Express
– volume: 72
  year: 2005
  publication-title: Phys. Rev. B
– volume: 115
  year: 2014
  publication-title: J. Appl. Phys.
– volume: 52
  start-page: 200
  year: 2020
  publication-title: Physiol. Genomics
– volume: 27
  year: 2015
  publication-title: J. Phys. Condens. Matter
– volume: 18
  start-page: 4180
  year: 2024
  publication-title: ACS Nano
– volume: 10
  start-page: 2936
  year: 2023
  publication-title: Mater. Horiz.
– volume: 115
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2023
  publication-title: Adv. Phys. Res.
– volume: 15
  start-page: 529
  year: 2020
  publication-title: Nat. Nanotechnol.
– year: 2023
– volume: 121
  year: 2022
  publication-title: Appl. Phys. Lett.
– year: 2017
– volume: 4
  start-page: 243
  year: 2005
  publication-title: Nat. Mater.
– volume: 15
  start-page: 7030
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 36
  start-page: 41
  year: 2019
  publication-title: IEEE Des. Test.
– volume: 13
  start-page: 825
  year: 2023
  publication-title: MRS Commun.
SSID ssj0001763453
Score 2.3390412
SecondaryResourceType review_article
Snippet Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2), highly...
Abstract Al1−xScxN emerges as a revolutionary ferroelectric material within the III‐N family. It combines exceptional switchable polarization (80–165 µC cm−2),...
SourceID doaj
wiley
SourceType Open Website
Publisher
SubjectTerms Al1−xScxN
ferroelectric memory
III‐nitride semiconductor
thin film
wurtzite ferroelectric
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L15EUXH-IgePljVJ2yTHKStD3BB0uFtJ0lcZzFW6DYZ_gWf_RP8Sk7RuevSYEh7kvXzpl_De9xC6Ag6x2xkBY9JeUKRSgQSRB8CihEJBDCeu3nkwTPqj6G4cj39V8df6EOsHN4cMf147gCs972xEQxVMXSW5y4GkXG6jHVdf65L6aPSweWWx8Im8FKVFpgxIEo5_lBtD2vlrolHt_8tS_W8m3Ud7DT_E3TqgB2gLZodI-DxNM8dlgVOoqrJuXjMx-HlZLd4ta8TdKfn6-Fw9mtUQu16cOJ1MX-dHaJT2nm77QdPyIMgt8KzHhCGxESIpcsILro3gOpYqyo2yy1AJUDswTBcGKAFLOZkA4MaAgtAwWbBj1JqVMzhBuBBRTBQHCJW9BQiLOwlUGKZ0zsGec21045abvdWqFpnTmfYfyuola7ZtJiDWhIcSbNiiWCY6Z1qEUHCVE2bNtNG1d9baSq2CTDPn2mzt2qzbux9IKk7_N_0M7VLXbtcnSZ-j1qJawoXlAAt96cP8DfJhq2g
  priority: 102
  providerName: Wiley-Blackwell
Title Physics of Ferroelectric Wurtzite Al1−xScxN Thin Films
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400279
https://doaj.org/article/8e5b1709eef14596bd3b80ef7ad137e1
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA66kxdRVJwfIwePljVJ0yTHKSsibgg63K0k6RsYzE32AcNf4Nmf6C8xSeeYJy8eW2iTPu1Lnrc8eR6ErkAAD19GwpjyDYrSOlEgqwRYllNwxAoS9jv3-vndILsf8uFW1FfQhNX2wDVwbQncEJEq8BdmXOWmYkam4ISuCBMQGx-_5m01U_Hvii-bjLMfl8aUtjWMw8bzIJmkUbcVRvrNSOOSUhyg_TUXxJ16DodoByZHSEZNpp3jqcMFzGbTOqhmZPHLcrZ49wwRd8bk6-Nz9WRXfRxyN3ExGr_Oj9Gg6D7f3iXreIOk8kXm0ZGWcCtl7ioinDBWCsOVziqr_dR1DtQfWGacBUrA00smAYS1oCG1TDl2ghqT6QROEXYy40QLgFR7xi99jSmg0jJtKg8RZ010Ex63fKsdLMrgKR1PeKTLNdLlX0g30XUEa3OX2vGYlgHacgNt2ek-9BSVZ_8x5jnaoyFwN8qkL1BjMVvCpWcBC9NCuzR7bMXX_g1CzLEA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgHWBBIECUzwyMRI3tJLbHgBoVaLvQQMUSOc4FVSoNSlup4hcw8xP5JdhJ2oqRMVF0ks_3nOfT3TuEroGBZyLDplToC4qQ0hbAUxuo6xPIsGLY9Dv3B343ch9G3qqa0PTCVPoQ64SbQUZ5XhuAm4R0e6MaKmFiWslNESRhYhs1DbXRgd0MnqPXaJNo0QhySzVKDU5hY98ZrcQbHdL-a6QW7v9LVMs_TbiP9mqKaAXVnh6gLZgeIl6WaqqZlWdWCEWRV_Nrxsp6WRTzT00crWCCf76-l09qObDMOE4rHE_eZ0coCjvDu65dTz2wU4097TSusKc497MUs4wlirPEE9JNldTLkD4Q_aBokikgGDTrpByAKQUSHEVFRo9RY5pP4QRZGXc9LBmAI_VFgGvoCSBcUZmkDPRR10K3ZrnxRyVsERup6fJFXrzFdeTGHLwEM0eA3jnXE36S0oQ7kDGZYqrNtNBN6ay1lUoImcTGtfHatXHQ6fUF4af_-_wK7XSH_V7cux88nqFdYqbvljXT56gxLxZwoSnBPLmsN_0Xukawow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66gXgRRcXf9uDRsiZpm-Q4dWXqNgSdDi8lTV9kMLfRbTD8Czz7J_qXmLR1c0ePDeVB3suXfAnvfQ-hC2AQ2JXhUirMBUVI6QrgqQvUDwlorBi29c7tTtjs-ne9oPenir_Qh1g8uFlk5Pu1Bfg41bWlaKiEga0ktzmQhIl1VA3M0eRVULX-3H3tLt9ZDID8XIzSYFO4OPR6v9qNHqmtGil1-1d5an7QRNtoq2SITr0I6Q5ag-Eu4nmmppo4I-1EkGWjon1NXzkvs2z6YXijUx_g78-v-aOadxzbjdOJ-oP3yR7qRo2n66ZbNj1wUwM94zOucKA4D3WKmWaJ4iwJhPRTJc00ZAjEfCiaaAUEgyGdlAMwpUCCp6jQdB9VhqMhHCBHcz_AkgF40twDuEGeAMIVlUnKwOx0h-jKTjceF7oWsVWazgdG2VtcLtyYQ5Bg5gkwgfMDESYpTbgHmskUU2PmEF3mzlpYKXSQSWxdGy9cG9cbrbYg_Oh_v5-jjYebKG7ddu6P0SaxvXfzjOkTVJlmMzg1hGCanJUx_wHSPq_D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+of+Ferroelectric+Wurtzite+Al1%E2%88%92xScxN+Thin+Films&rft.jtitle=Advanced+electronic+materials&rft.au=Feng+Yang&rft.date=2025-02-01&rft.pub=Wiley-VCH&rft.eissn=2199-160X&rft.volume=11&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202400279&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8e5b1709eef14596bd3b80ef7ad137e1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon