Dual Modulated SiO Particles by Graphene Cord and Si/SiO2 Composite for High‐Performance Lithium‐Ion Battery Anodes

To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor depos...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 9; no. 10
Main Authors Zhao, Hongda, Ding, Xuli, Zhang, Ning, Chen, Xiaojing, Xu, Jiahao, He, Pengfei
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.04.2022
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor deposition. Being the fabricated composite, graphene cord not only bridges but also wraps the SiO particles, improving the electrical conductivity and flexibility of the fabricated SiO@Gra anode. Moreover, the increased SiO2 regions in the Si/SiO matrix alleviate volume change and release the strain for Li+ insertion, enhancing the tenacity of the SiO electrode according to the phase transformation flexibility mechanism. Besides, the grain boundaries and interfaces among the Si/SiO2/SiO regions contribute to additional Li+ storage and pledge more channels for Li+ transfer and electrolyte wetting. The merit of Si/SiO2/SiO synergistically contributes to the ascendant electrochemical performance of the SiO anodes. The as‐fabricated SiO@Gra anodes deliver a high reversible capacity of 1127 mAh g−1 at 0.2 A g−1 with 87% capacity retention after 200 cycles. The proposed phase change and cord reinforcing not only deepen the understanding of the electrochemical reaction mechanism of Li+ in SiO, but also inspire a rational design tactic for advanced lithium‐ions batteries. An octopus‐shape SiO@Gra composite with graphene cord in situ fabricated is realized via chemical vapor deposition method combined with a simple but effective temperature‐mediation strategy. A “phase change mediation combined with cord reinforcing” concept is proposed to dispose the fragility and poor conductivity problems of SiO‐based anode materials. The as‐fabricated SiO@Gra anodes exhibit superior electrochemical properties.
AbstractList To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor deposition. Being the fabricated composite, graphene cord not only bridges but also wraps the SiO particles, improving the electrical conductivity and flexibility of the fabricated SiO@Gra anode. Moreover, the increased SiO2 regions in the Si/SiO matrix alleviate volume change and release the strain for Li+ insertion, enhancing the tenacity of the SiO electrode according to the phase transformation flexibility mechanism. Besides, the grain boundaries and interfaces among the Si/SiO2/SiO regions contribute to additional Li+ storage and pledge more channels for Li+ transfer and electrolyte wetting. The merit of Si/SiO2/SiO synergistically contributes to the ascendant electrochemical performance of the SiO anodes. The as‐fabricated SiO@Gra anodes deliver a high reversible capacity of 1127 mAh g−1 at 0.2 A g−1 with 87% capacity retention after 200 cycles. The proposed phase change and cord reinforcing not only deepen the understanding of the electrochemical reaction mechanism of Li+ in SiO, but also inspire a rational design tactic for advanced lithium‐ions batteries.
Abstract To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor deposition. Being the fabricated composite, graphene cord not only bridges but also wraps the SiO particles, improving the electrical conductivity and flexibility of the fabricated SiO@Gra anode. Moreover, the increased SiO2 regions in the Si/SiO matrix alleviate volume change and release the strain for Li+ insertion, enhancing the tenacity of the SiO electrode according to the phase transformation flexibility mechanism. Besides, the grain boundaries and interfaces among the Si/SiO2/SiO regions contribute to additional Li+ storage and pledge more channels for Li+ transfer and electrolyte wetting. The merit of Si/SiO2/SiO synergistically contributes to the ascendant electrochemical performance of the SiO anodes. The as‐fabricated SiO@Gra anodes deliver a high reversible capacity of 1127 mAh g−1 at 0.2 A g−1 with 87% capacity retention after 200 cycles. The proposed phase change and cord reinforcing not only deepen the understanding of the electrochemical reaction mechanism of Li+ in SiO, but also inspire a rational design tactic for advanced lithium‐ions batteries.
To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor deposition. Being the fabricated composite, graphene cord not only bridges but also wraps the SiO particles, improving the electrical conductivity and flexibility of the fabricated SiO@Gra anode. Moreover, the increased SiO2 regions in the Si/SiO matrix alleviate volume change and release the strain for Li+ insertion, enhancing the tenacity of the SiO electrode according to the phase transformation flexibility mechanism. Besides, the grain boundaries and interfaces among the Si/SiO2/SiO regions contribute to additional Li+ storage and pledge more channels for Li+ transfer and electrolyte wetting. The merit of Si/SiO2/SiO synergistically contributes to the ascendant electrochemical performance of the SiO anodes. The as‐fabricated SiO@Gra anodes deliver a high reversible capacity of 1127 mAh g−1 at 0.2 A g−1 with 87% capacity retention after 200 cycles. The proposed phase change and cord reinforcing not only deepen the understanding of the electrochemical reaction mechanism of Li+ in SiO, but also inspire a rational design tactic for advanced lithium‐ions batteries. An octopus‐shape SiO@Gra composite with graphene cord in situ fabricated is realized via chemical vapor deposition method combined with a simple but effective temperature‐mediation strategy. A “phase change mediation combined with cord reinforcing” concept is proposed to dispose the fragility and poor conductivity problems of SiO‐based anode materials. The as‐fabricated SiO@Gra anodes exhibit superior electrochemical properties.
Author Chen, Xiaojing
Zhao, Hongda
Xu, Jiahao
Ding, Xuli
He, Pengfei
Zhang, Ning
Author_xml – sequence: 1
  givenname: Hongda
  surname: Zhao
  fullname: Zhao, Hongda
  organization: Jiangsu University of Science and Technology
– sequence: 2
  givenname: Xuli
  orcidid: 0000-0001-9129-251X
  surname: Ding
  fullname: Ding, Xuli
  email: xuliding@just.edu.cn
  organization: Jiangsu University of Science and Technology
– sequence: 3
  givenname: Ning
  surname: Zhang
  fullname: Zhang, Ning
  organization: Jiangsu University of Science and Technology
– sequence: 4
  givenname: Xiaojing
  surname: Chen
  fullname: Chen, Xiaojing
  organization: Jiangsu University of Science and Technology
– sequence: 5
  givenname: Jiahao
  surname: Xu
  fullname: Xu, Jiahao
  organization: Jiangsu University of Science and Technology
– sequence: 6
  givenname: Pengfei
  surname: He
  fullname: He, Pengfei
  organization: Tongji University
BookMark eNpNUctOwzAQtFCReF45W-Lc1l47dnwsBUqlIpCAs-XEDnWVxMVJVPXGJ_CNfAkpRRWn3RmNZnc0Z2hQh9ohdEXJiBICY2MrPwIClABP1RE6BarEULKEDP7tJ-iyaVaEEEqBQspO0ea2MyV-DLYrTessfvFP-NnE1uela3C2xbNo1ktXOzwN0WJT7yTjXgU9Ua1D41uHixDxg39ffn9-PbvYo8rUucML3y59V_XsPNT4xrSti1s8qYN1zQU6LkzZuMu_eY7e7u9epw_DxdNsPp0shhaUUkPplM1pBilnRpiMQ2qYkAlIxvuogoBTGSWJdaBkkohU5owXGS8ES4osSQU7R_O9rw1mpdfRVyZudTBe_xIhvuu_tFpkBREFpxx6kxwyBRwklVwwZY2kqve63nutY_joXNPqVehi3b-vQXAhIQG2U6m9auNLtz2cpETvitK7ovShKD25fZwfEPsBN7mJ_w
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOA
DOI 10.1002/admi.202102489
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Directory of Open Access Journals
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_6bf06f4142c34c2b92427174639da719
ADMI202102489
Genre article
GrantInformation_xml – fundername: Six Talent Peaks Project in Jiangsu Province
  funderid: 2019‐XNY‐074
– fundername: Vice President Project of Industry‐University‐Research Cooperation in Science and Technology of Jiangsu Province
  funderid: BY2020675
– fundername: National Natural Science Foundation of China
  funderid: 11874282; 11604245; 11981240429
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  funderid: KYCX21_3472
– fundername: Young and middle‐aged academic leader of “Qinglan Project” of universities in Jiangsu Province
  funderid: 2021
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
7SR
7U5
8BQ
8FD
JG9
L7M
GROUPED_DOAJ
ID FETCH-LOGICAL-d2999-7e9dc1b2843a6ab428a36752734210602e9b105de29755687c34fb4f635fb5863
IEDL.DBID DOA
ISSN 2196-7350
IngestDate Tue Oct 22 15:07:04 EDT 2024
Thu Oct 10 22:43:42 EDT 2024
Sat Aug 24 00:56:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d2999-7e9dc1b2843a6ab428a36752734210602e9b105de29755687c34fb4f635fb5863
ORCID 0000-0001-9129-251X
OpenAccessLink https://doaj.org/article/6bf06f4142c34c2b92427174639da719
PQID 2646725239
PQPubID 2034582
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6bf06f4142c34c2b92427174639da719
proquest_journals_2646725239
wiley_primary_10_1002_admi_202102489_ADMI202102489
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2011; 158
2017; 7
1990; 56
2017; 3
2013; 1
2019; 11
2020; 168
2001; 229
2011; 196
2011; 16
2019; 480
2020; 329
2020; 8
2013; 15
2018; 3
2020; 3
2007; 9
2020; 337
2013; 234
2018; 30
2001; 414
2019; 7
2019; 9
2021; 4
2006; 51
2021; 267
2018; 347
2013; 226
2020; 380
2020; 36
2006; 153
2020; 35
2008; 10
2019; 426
2015; 152
2017; 53
2016; 7
2016; 1
2011; 229
2017; 17
2019; 45
2019; 48
2009; 188
2017; 19
2018; 439
2008; 254
2016; 27
2018; 10
2012; 5
2017; 348
2009; 39
References_xml – volume: 234
  start-page: 201
  year: 2013
  publication-title: J. Power Sources
– volume: 19
  start-page: 5880
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 337
  year: 2020
  publication-title: Electrochim. Acta
– volume: 229
  start-page: 457
  year: 2001
  publication-title: J. Cryst. Growth
– volume: 347
  start-page: 273
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 1876
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 51
  start-page: 1636
  year: 2006
  publication-title: Electrochim. Acta
– volume: 254
  start-page: 3774
  year: 2008
  publication-title: Appl. Surf. Sci.
– volume: 348
  start-page: 16
  year: 2017
  publication-title: J. Power Sources
– volume: 35
  start-page: 944
  year: 2020
  publication-title: Energy Fuels
– volume: 168
  start-page: 113
  year: 2020
  publication-title: Carbon
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2741
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 329
  year: 2020
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 6895
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 196
  start-page: 9774
  year: 2011
  publication-title: J. Power Sources
– volume: 480
  start-page: 410
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 53
  year: 2017
  publication-title: Chem. Commun.
– volume: 15
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 229
  start-page: 457
  year: 2011
  publication-title: J. Cryst. Growth
– volume: 56
  start-page: 2379
  year: 1990
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 3681
  year: 2017
  publication-title: Nano Lett.
– volume: 380
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 36
  start-page: 2003
  year: 2020
  publication-title: Langmuir
– volume: 10
  start-page: 233
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 3
  start-page: 1063
  year: 2017
  publication-title: ACS Cent. Sci.
– volume: 267
  year: 2021
  publication-title: Mater. Chem. Phys.
– volume: 158
  start-page: A417
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 45
  start-page: 1950
  year: 2019
  publication-title: Ceram. Int.
– volume: 3
  start-page: 8662
  year: 2018
  publication-title: ChemistrySelect
– volume: 48
  start-page: 285
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 1126
  year: 2020
  publication-title: Batteries Supercaps
– volume: 439
  start-page: 336
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 388
  year: 2020
  publication-title: Front. Chem.
– volume: 9
  start-page: 886
  year: 2007
  publication-title: Electrochem. Commun.
– volume: 16
  start-page: 1453
  year: 2011
  publication-title: J. Solid State Electrochem.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 39
  start-page: 1643
  year: 2009
  publication-title: J. Appl. Electrochem.
– volume: 152
  start-page: 345
  year: 2015
  publication-title: Electrochim. Acta
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 226
  start-page: 140
  year: 2013
  publication-title: J. Power Sources
– volume: 1
  start-page: 9721
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1168
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 153
  start-page: A425
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 426
  start-page: 116
  year: 2019
  publication-title: J. Power Sources
– volume: 188
  start-page: 574
  year: 2009
  publication-title: J. Power Sources
– volume: 27
  start-page: 647
  year: 2016
  publication-title: Nano Energy
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
SSID ssj0001121283
Score 2.4076946
Snippet To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is...
Abstract To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing”...
SourceID doaj
proquest
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Anodes
Chemical vapor deposition
Electrical resistivity
Electrochemical analysis
Electrode materials
Flexibility
Fragility
Grain boundaries
Graphene
graphene cord
lithium storage
Lithium-ion batteries
Phase change
phase change of SiO
Phase transitions
Reaction mechanisms
sepia‐like structure
Silicon dioxide
silicon monoxide
Wetting
Title Dual Modulated SiO Particles by Graphene Cord and Si/SiO2 Composite for High‐Performance Lithium‐Ion Battery Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202102489
https://www.proquest.com/docview/2646725239
https://doaj.org/article/6bf06f4142c34c2b92427174639da719
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG6MxsSL8WdEkfTgdWHruo4dEUQwoiSKIV6avrWLHBhGIIabf4J_o3-Jrx0gnrx4XNts3Xtr-33Le98j5CLMNGg8xz2NvMvjKeCSYlp5nCsNoYhNBC7a4k60-_xmEA3WSn3ZmLBCHrgwXFVA5ouMB5ylIU8ZIF9gSEE4nqxaxUGRuucna2TK_V0JcEuuhUuVRp9VlR4NkQ5ahsNtTXen0P8LVq6DU3e6tPbI7gIW0noxnX2yYfIDsu3CM9PJIXlvzrC3O9a22JbR9GF4T3vLmDYKc3ptdadx26INJJNU5XZIFUcxahe8DcwyFOEptWEdXx-fvZ90AXo7nL4MZyNs7YxzWuhtzmk9H2szOSL91tVjo-0tSiZ4mlk9gdgkOg0Az5xQCQXILRQa3IqscXxz4TOTACIqbWxCbSRqMRo1A54h7MggqonwmGzm49ycEMogin0wYRSblAexrzKGNwATJEolNQUlcmlNKF8LVQxpdapdA3pPLiwg__JeiZSXDpCLxTORiNFEzJAhYzdzTlk9pBBZZtJ6U668KevNbmd1dfofEzsjO8wmOrgYnTLZnL7NzDnCjylUyFb9qf_cr7gv7hv60dYz
link.rule.ids 315,783,787,867,2109,27938,27939,50828,50937
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLb4IcQuEwwQHbD5sGvUxHHs5lh-rd1ahgRF0y6WX-xADyQTbTVx25_A38hfwntJ2sKVY2zHVvzynr_Pev7M2Lc4d-BwHQ8c8q5AZoAuJZwNpLQOYqV9AlW2xYXqjeSP38k8m5DOwtT6EIsNN_KMKl6Tg9OGdHupGmrd_RgJHnEW2UlX2TqufTHyr_XuzejPaLnREmF0ruQ40TlVoOMknIs3hqL9tpNGuP8N2nyNWatF53yLfWzQIu_W5t1mK774xDaqrM1sssP-nc6wdlg6uoPLO341_sUv56luHB75d5KjxmjGT5BjcltQkza2EpziAOVreY6olVO2x_P_p8vlKQI-GE_vxrN7LO2XBa9lOB95tyidn-yy0fnZ9UkvaG5SCJwgmQHtU5dFgEtRbJUFpBwW7UDaaxK_XIXCp4BAy3k6Z5uojs5imYPMEY3kkHRUvMfWirLw-4wLSHQIPk60z2SkQ5sL7AB8lFqbdiy02DFNoflbi2UYkq-uCsqHW9PMgFGQhyqXkRQ4UCYASaBAXikRLjmro7TFDucGMI1PTQxCN6UFEmesFpVRFoPU2svCkDXNwpqmezrsL54-v-elr2yzdz0cmEH_4ucB-yDo7EOVtnPI1qYPM3-EiGQKX5p_7gXhU9fj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZG0RAXxDbQ-LX5wDVq4jh2cyyUQsePVdo6oV0sv9hhPZAg2gpx40_gb-Qv4b0kbeG6Y2zHVvzynr_Pev7M2GGcO3C4jgcOeVcgM0CXEs4GUloHsdI-gSrb4kqdjeSP6-T6zSn-Wh9iseFGnlHFa3LwO5e3l6Kh1t2Okd8RZZGddIWtJqTG1mKr3T-jv6PlPkuEwblS40TfVIGOk3Cu3RiK9vtOGt3-d2DzLWSt1pz-JttowCLv1tb9xD744jP7WCVtZpMv7KE3w9rL0tEVXN7xX-OffDjPdOPwyE9JjRqDGT9GisltQU3a2EpwCgOUruU5glZOyR4vT8_D5SECfjGe_hvPbrF0UBa8VuF85N2idH6yxUb9k9_HZ0FzkULgBKkMaJ-6LAJciWKrLCDjsGgGkl6T-OUqFD4FxFnO0zHbRHV0FsscZI5gJIeko-Jt1irKwn9lXECiQ_Bxon0mIx3aXGAH4KPU2rRjYYcd0RSau1orw5B6dVVQ3t-YZgaMgjxUuYykwIEyAcgBBdJKiWjJWR2lO2x_bgDTuNTEIHJTWiBvxmpRGWUxSC29LAxZ0yysabq9y8Hiafd_XvrO1oa9vrkYXJ3vsXVBJx-qpJ191prez_wB4pEpfGt-uVemb9cM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Modulated+SiO+Particles+by+Graphene+Cord+and+Si%2FSiO2+Composite+for+High%E2%80%90Performance+Lithium%E2%80%90Ion+Battery+Anodes&rft.jtitle=Advanced+materials+interfaces&rft.au=Zhao%2C+Hongda&rft.au=Ding%2C+Xuli&rft.au=Zhang%2C+Ning&rft.au=Chen%2C+Xiaojing&rft.date=2022-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=9&rft.issue=10&rft_id=info:doi/10.1002%2Fadmi.202102489&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon