Dual Modulated SiO Particles by Graphene Cord and Si/SiO2 Composite for High‐Performance Lithium‐Ion Battery Anodes
To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor depos...
Saved in:
Published in | Advanced materials interfaces Vol. 9; no. 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.04.2022
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor deposition. Being the fabricated composite, graphene cord not only bridges but also wraps the SiO particles, improving the electrical conductivity and flexibility of the fabricated SiO@Gra anode. Moreover, the increased SiO2 regions in the Si/SiO matrix alleviate volume change and release the strain for Li+ insertion, enhancing the tenacity of the SiO electrode according to the phase transformation flexibility mechanism. Besides, the grain boundaries and interfaces among the Si/SiO2/SiO regions contribute to additional Li+ storage and pledge more channels for Li+ transfer and electrolyte wetting. The merit of Si/SiO2/SiO synergistically contributes to the ascendant electrochemical performance of the SiO anodes. The as‐fabricated SiO@Gra anodes deliver a high reversible capacity of 1127 mAh g−1 at 0.2 A g−1 with 87% capacity retention after 200 cycles. The proposed phase change and cord reinforcing not only deepen the understanding of the electrochemical reaction mechanism of Li+ in SiO, but also inspire a rational design tactic for advanced lithium‐ions batteries.
An octopus‐shape SiO@Gra composite with graphene cord in situ fabricated is realized via chemical vapor deposition method combined with a simple but effective temperature‐mediation strategy. A “phase change mediation combined with cord reinforcing” concept is proposed to dispose the fragility and poor conductivity problems of SiO‐based anode materials. The as‐fabricated SiO@Gra anodes exhibit superior electrochemical properties. |
---|---|
AbstractList | To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor deposition. Being the fabricated composite, graphene cord not only bridges but also wraps the SiO particles, improving the electrical conductivity and flexibility of the fabricated SiO@Gra anode. Moreover, the increased SiO2 regions in the Si/SiO matrix alleviate volume change and release the strain for Li+ insertion, enhancing the tenacity of the SiO electrode according to the phase transformation flexibility mechanism. Besides, the grain boundaries and interfaces among the Si/SiO2/SiO regions contribute to additional Li+ storage and pledge more channels for Li+ transfer and electrolyte wetting. The merit of Si/SiO2/SiO synergistically contributes to the ascendant electrochemical performance of the SiO anodes. The as‐fabricated SiO@Gra anodes deliver a high reversible capacity of 1127 mAh g−1 at 0.2 A g−1 with 87% capacity retention after 200 cycles. The proposed phase change and cord reinforcing not only deepen the understanding of the electrochemical reaction mechanism of Li+ in SiO, but also inspire a rational design tactic for advanced lithium‐ions batteries. Abstract To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor deposition. Being the fabricated composite, graphene cord not only bridges but also wraps the SiO particles, improving the electrical conductivity and flexibility of the fabricated SiO@Gra anode. Moreover, the increased SiO2 regions in the Si/SiO matrix alleviate volume change and release the strain for Li+ insertion, enhancing the tenacity of the SiO electrode according to the phase transformation flexibility mechanism. Besides, the grain boundaries and interfaces among the Si/SiO2/SiO regions contribute to additional Li+ storage and pledge more channels for Li+ transfer and electrolyte wetting. The merit of Si/SiO2/SiO synergistically contributes to the ascendant electrochemical performance of the SiO anodes. The as‐fabricated SiO@Gra anodes deliver a high reversible capacity of 1127 mAh g−1 at 0.2 A g−1 with 87% capacity retention after 200 cycles. The proposed phase change and cord reinforcing not only deepen the understanding of the electrochemical reaction mechanism of Li+ in SiO, but also inspire a rational design tactic for advanced lithium‐ions batteries. To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is proposed, in which graphene cord is in situ fabricated combined with Si and SiO2 nanodomains generated in the SiO matrix via chemical vapor deposition. Being the fabricated composite, graphene cord not only bridges but also wraps the SiO particles, improving the electrical conductivity and flexibility of the fabricated SiO@Gra anode. Moreover, the increased SiO2 regions in the Si/SiO matrix alleviate volume change and release the strain for Li+ insertion, enhancing the tenacity of the SiO electrode according to the phase transformation flexibility mechanism. Besides, the grain boundaries and interfaces among the Si/SiO2/SiO regions contribute to additional Li+ storage and pledge more channels for Li+ transfer and electrolyte wetting. The merit of Si/SiO2/SiO synergistically contributes to the ascendant electrochemical performance of the SiO anodes. The as‐fabricated SiO@Gra anodes deliver a high reversible capacity of 1127 mAh g−1 at 0.2 A g−1 with 87% capacity retention after 200 cycles. The proposed phase change and cord reinforcing not only deepen the understanding of the electrochemical reaction mechanism of Li+ in SiO, but also inspire a rational design tactic for advanced lithium‐ions batteries. An octopus‐shape SiO@Gra composite with graphene cord in situ fabricated is realized via chemical vapor deposition method combined with a simple but effective temperature‐mediation strategy. A “phase change mediation combined with cord reinforcing” concept is proposed to dispose the fragility and poor conductivity problems of SiO‐based anode materials. The as‐fabricated SiO@Gra anodes exhibit superior electrochemical properties. |
Author | Chen, Xiaojing Zhao, Hongda Xu, Jiahao Ding, Xuli He, Pengfei Zhang, Ning |
Author_xml | – sequence: 1 givenname: Hongda surname: Zhao fullname: Zhao, Hongda organization: Jiangsu University of Science and Technology – sequence: 2 givenname: Xuli orcidid: 0000-0001-9129-251X surname: Ding fullname: Ding, Xuli email: xuliding@just.edu.cn organization: Jiangsu University of Science and Technology – sequence: 3 givenname: Ning surname: Zhang fullname: Zhang, Ning organization: Jiangsu University of Science and Technology – sequence: 4 givenname: Xiaojing surname: Chen fullname: Chen, Xiaojing organization: Jiangsu University of Science and Technology – sequence: 5 givenname: Jiahao surname: Xu fullname: Xu, Jiahao organization: Jiangsu University of Science and Technology – sequence: 6 givenname: Pengfei surname: He fullname: He, Pengfei organization: Tongji University |
BookMark | eNpNUctOwzAQtFCReF45W-Lc1l47dnwsBUqlIpCAs-XEDnWVxMVJVPXGJ_CNfAkpRRWn3RmNZnc0Z2hQh9ohdEXJiBICY2MrPwIClABP1RE6BarEULKEDP7tJ-iyaVaEEEqBQspO0ea2MyV-DLYrTessfvFP-NnE1uela3C2xbNo1ktXOzwN0WJT7yTjXgU9Ua1D41uHixDxg39ffn9-PbvYo8rUucML3y59V_XsPNT4xrSti1s8qYN1zQU6LkzZuMu_eY7e7u9epw_DxdNsPp0shhaUUkPplM1pBilnRpiMQ2qYkAlIxvuogoBTGSWJdaBkkohU5owXGS8ES4osSQU7R_O9rw1mpdfRVyZudTBe_xIhvuu_tFpkBREFpxx6kxwyBRwklVwwZY2kqve63nutY_joXNPqVehi3b-vQXAhIQG2U6m9auNLtz2cpETvitK7ovShKD25fZwfEPsBN7mJ_w |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M DOA |
DOI | 10.1002/admi.202102489 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Directory of Open Access Journals |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_6bf06f4142c34c2b92427174639da719 ADMI202102489 |
Genre | article |
GrantInformation_xml | – fundername: Six Talent Peaks Project in Jiangsu Province funderid: 2019‐XNY‐074 – fundername: Vice President Project of Industry‐University‐Research Cooperation in Science and Technology of Jiangsu Province funderid: BY2020675 – fundername: National Natural Science Foundation of China funderid: 11874282; 11604245; 11981240429 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province funderid: KYCX21_3472 – fundername: Young and middle‐aged academic leader of “Qinglan Project” of universities in Jiangsu Province funderid: 2021 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 7SR 7U5 8BQ 8FD JG9 L7M GROUPED_DOAJ |
ID | FETCH-LOGICAL-d2999-7e9dc1b2843a6ab428a36752734210602e9b105de29755687c34fb4f635fb5863 |
IEDL.DBID | DOA |
ISSN | 2196-7350 |
IngestDate | Tue Oct 22 15:07:04 EDT 2024 Thu Oct 10 22:43:42 EDT 2024 Sat Aug 24 00:56:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d2999-7e9dc1b2843a6ab428a36752734210602e9b105de29755687c34fb4f635fb5863 |
ORCID | 0000-0001-9129-251X |
OpenAccessLink | https://doaj.org/article/6bf06f4142c34c2b92427174639da719 |
PQID | 2646725239 |
PQPubID | 2034582 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6bf06f4142c34c2b92427174639da719 proquest_journals_2646725239 wiley_primary_10_1002_admi_202102489_ADMI202102489 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2011; 158 2017; 7 1990; 56 2017; 3 2013; 1 2019; 11 2020; 168 2001; 229 2011; 196 2011; 16 2019; 480 2020; 329 2020; 8 2013; 15 2018; 3 2020; 3 2007; 9 2020; 337 2013; 234 2018; 30 2001; 414 2019; 7 2019; 9 2021; 4 2006; 51 2021; 267 2018; 347 2013; 226 2020; 380 2020; 36 2006; 153 2020; 35 2008; 10 2019; 426 2015; 152 2017; 53 2016; 7 2016; 1 2011; 229 2017; 17 2019; 45 2019; 48 2009; 188 2017; 19 2018; 439 2008; 254 2016; 27 2018; 10 2012; 5 2017; 348 2009; 39 |
References_xml | – volume: 234 start-page: 201 year: 2013 publication-title: J. Power Sources – volume: 19 start-page: 5880 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 337 year: 2020 publication-title: Electrochim. Acta – volume: 229 start-page: 457 year: 2001 publication-title: J. Cryst. Growth – volume: 347 start-page: 273 year: 2018 publication-title: Chem. Eng. J. – volume: 10 start-page: 1876 year: 2008 publication-title: Electrochem. Commun. – volume: 51 start-page: 1636 year: 2006 publication-title: Electrochim. Acta – volume: 254 start-page: 3774 year: 2008 publication-title: Appl. Surf. Sci. – volume: 348 start-page: 16 year: 2017 publication-title: J. Power Sources – volume: 35 start-page: 944 year: 2020 publication-title: Energy Fuels – volume: 168 start-page: 113 year: 2020 publication-title: Carbon – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 4 start-page: 2741 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 329 year: 2020 publication-title: Electrochim. Acta – volume: 5 start-page: 6895 year: 2012 publication-title: Energy Environ. Sci. – volume: 196 start-page: 9774 year: 2011 publication-title: J. Power Sources – volume: 480 start-page: 410 year: 2019 publication-title: Appl. Surf. Sci. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 53 year: 2017 publication-title: Chem. Commun. – volume: 15 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 229 start-page: 457 year: 2011 publication-title: J. Cryst. Growth – volume: 56 start-page: 2379 year: 1990 publication-title: Appl. Phys. Lett. – volume: 17 start-page: 3681 year: 2017 publication-title: Nano Lett. – volume: 380 year: 2020 publication-title: Chem. Eng. J. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 36 start-page: 2003 year: 2020 publication-title: Langmuir – volume: 10 start-page: 233 year: 2008 publication-title: Electrochem. Commun. – volume: 3 start-page: 1063 year: 2017 publication-title: ACS Cent. Sci. – volume: 267 year: 2021 publication-title: Mater. Chem. Phys. – volume: 158 start-page: A417 year: 2011 publication-title: J. Electrochem. Soc. – volume: 45 start-page: 1950 year: 2019 publication-title: Ceram. Int. – volume: 3 start-page: 8662 year: 2018 publication-title: ChemistrySelect – volume: 48 start-page: 285 year: 2019 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1126 year: 2020 publication-title: Batteries Supercaps – volume: 439 start-page: 336 year: 2018 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 388 year: 2020 publication-title: Front. Chem. – volume: 9 start-page: 886 year: 2007 publication-title: Electrochem. Commun. – volume: 16 start-page: 1453 year: 2011 publication-title: J. Solid State Electrochem. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 39 start-page: 1643 year: 2009 publication-title: J. Appl. Electrochem. – volume: 152 start-page: 345 year: 2015 publication-title: Electrochim. Acta – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 226 start-page: 140 year: 2013 publication-title: J. Power Sources – volume: 1 start-page: 9721 year: 2013 publication-title: J. Mater. Chem. A – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 1168 year: 2019 publication-title: J. Mater. Chem. A – volume: 153 start-page: A425 year: 2006 publication-title: J. Electrochem. Soc. – volume: 426 start-page: 116 year: 2019 publication-title: J. Power Sources – volume: 188 start-page: 574 year: 2009 publication-title: J. Power Sources – volume: 27 start-page: 647 year: 2016 publication-title: Nano Energy – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces |
SSID | ssj0001121283 |
Score | 2.4076946 |
Snippet | To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing” concept is... Abstract To dispose the fragility and poor conductivity problems of SiO‐based anode materials, a “phase change mediation combined with cord reinforcing”... |
SourceID | doaj proquest wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Anodes Chemical vapor deposition Electrical resistivity Electrochemical analysis Electrode materials Flexibility Fragility Grain boundaries Graphene graphene cord lithium storage Lithium-ion batteries Phase change phase change of SiO Phase transitions Reaction mechanisms sepia‐like structure Silicon dioxide silicon monoxide Wetting |
Title | Dual Modulated SiO Particles by Graphene Cord and Si/SiO2 Composite for High‐Performance Lithium‐Ion Battery Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202102489 https://www.proquest.com/docview/2646725239 https://doaj.org/article/6bf06f4142c34c2b92427174639da719 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG6MxsSL8WdEkfTgdWHruo4dEUQwoiSKIV6avrWLHBhGIIabf4J_o3-Jrx0gnrx4XNts3Xtr-33Le98j5CLMNGg8xz2NvMvjKeCSYlp5nCsNoYhNBC7a4k60-_xmEA3WSn3ZmLBCHrgwXFVA5ouMB5ylIU8ZIF9gSEE4nqxaxUGRuucna2TK_V0JcEuuhUuVRp9VlR4NkQ5ahsNtTXen0P8LVq6DU3e6tPbI7gIW0noxnX2yYfIDsu3CM9PJIXlvzrC3O9a22JbR9GF4T3vLmDYKc3ptdadx26INJJNU5XZIFUcxahe8DcwyFOEptWEdXx-fvZ90AXo7nL4MZyNs7YxzWuhtzmk9H2szOSL91tVjo-0tSiZ4mlk9gdgkOg0Az5xQCQXILRQa3IqscXxz4TOTACIqbWxCbSRqMRo1A54h7MggqonwmGzm49ycEMogin0wYRSblAexrzKGNwATJEolNQUlcmlNKF8LVQxpdapdA3pPLiwg__JeiZSXDpCLxTORiNFEzJAhYzdzTlk9pBBZZtJ6U668KevNbmd1dfofEzsjO8wmOrgYnTLZnL7NzDnCjylUyFb9qf_cr7gv7hv60dYz |
link.rule.ids | 315,783,787,867,2109,27938,27939,50828,50937 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLb4IcQuEwwQHbD5sGvUxHHs5lh-rd1ahgRF0y6WX-xADyQTbTVx25_A38hfwntJ2sKVY2zHVvzynr_Pev7M2Lc4d-BwHQ8c8q5AZoAuJZwNpLQOYqV9AlW2xYXqjeSP38k8m5DOwtT6EIsNN_KMKl6Tg9OGdHupGmrd_RgJHnEW2UlX2TqufTHyr_XuzejPaLnREmF0ruQ40TlVoOMknIs3hqL9tpNGuP8N2nyNWatF53yLfWzQIu_W5t1mK774xDaqrM1sssP-nc6wdlg6uoPLO341_sUv56luHB75d5KjxmjGT5BjcltQkza2EpziAOVreY6olVO2x_P_p8vlKQI-GE_vxrN7LO2XBa9lOB95tyidn-yy0fnZ9UkvaG5SCJwgmQHtU5dFgEtRbJUFpBwW7UDaaxK_XIXCp4BAy3k6Z5uojs5imYPMEY3kkHRUvMfWirLw-4wLSHQIPk60z2SkQ5sL7AB8lFqbdiy02DFNoflbi2UYkq-uCsqHW9PMgFGQhyqXkRQ4UCYASaBAXikRLjmro7TFDucGMI1PTQxCN6UFEmesFpVRFoPU2svCkDXNwpqmezrsL54-v-elr2yzdz0cmEH_4ucB-yDo7EOVtnPI1qYPM3-EiGQKX5p_7gXhU9fj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZG0RAXxDbQ-LX5wDVq4jh2cyyUQsePVdo6oV0sv9hhPZAg2gpx40_gb-Qv4b0kbeG6Y2zHVvzynr_Pev7M2GGcO3C4jgcOeVcgM0CXEs4GUloHsdI-gSrb4kqdjeSP6-T6zSn-Wh9iseFGnlHFa3LwO5e3l6Kh1t2Okd8RZZGddIWtJqTG1mKr3T-jv6PlPkuEwblS40TfVIGOk3Cu3RiK9vtOGt3-d2DzLWSt1pz-JttowCLv1tb9xD744jP7WCVtZpMv7KE3w9rL0tEVXN7xX-OffDjPdOPwyE9JjRqDGT9GisltQU3a2EpwCgOUruU5glZOyR4vT8_D5SECfjGe_hvPbrF0UBa8VuF85N2idH6yxUb9k9_HZ0FzkULgBKkMaJ-6LAJciWKrLCDjsGgGkl6T-OUqFD4FxFnO0zHbRHV0FsscZI5gJIeko-Jt1irKwn9lXECiQ_Bxon0mIx3aXGAH4KPU2rRjYYcd0RSau1orw5B6dVVQ3t-YZgaMgjxUuYykwIEyAcgBBdJKiWjJWR2lO2x_bgDTuNTEIHJTWiBvxmpRGWUxSC29LAxZ0yysabq9y8Hiafd_XvrO1oa9vrkYXJ3vsXVBJx-qpJ191prez_wB4pEpfGt-uVemb9cM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Modulated+SiO+Particles+by+Graphene+Cord+and+Si%2FSiO2+Composite+for+High%E2%80%90Performance+Lithium%E2%80%90Ion+Battery+Anodes&rft.jtitle=Advanced+materials+interfaces&rft.au=Zhao%2C+Hongda&rft.au=Ding%2C+Xuli&rft.au=Zhang%2C+Ning&rft.au=Chen%2C+Xiaojing&rft.date=2022-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=9&rft.issue=10&rft_id=info:doi/10.1002%2Fadmi.202102489&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |