Risk analysis and retrospective unbalanced data
This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope with unbalanced data. Logistic regression for matched case-control studies, logistic regression for a random balanced data sample and logistic...
Saved in:
Published in | Revstat Vol. 14; no. 2; p. 157 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Instituto Nacional de Estatistica
01.04.2016
Instituto Nacional de Estatística | Statistics Portugal |
Subjects | |
Online Access | Get full text |
ISSN | 1645-6726 2183-0371 |
DOI | 10.57805/revstat.v14i2.184 |
Cover
Loading…
Abstract | This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope with unbalanced data. Logistic regression for matched case-control studies, logistic regression for a random balanced data sample and logistic regression for a sample balanced by ROSE (Random OverSampling Examples, Lunardon, Menardi and Torelli, 2014) are tested. We applied the methods to real data: balance sheets indicators of small and medium-sized enterprises and their legal status are considered. The event of interest is the opening of insolvency proceedings of bankruptcy. Key-Words: * bankruptcy; case-control studies; data augmentation; logistic regression; ROSE method; unbalanced data. AMS Subject Classification: * 62J05, 62M20, 62P20, 91G40. |
---|---|
AbstractList | This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope with unbalanced data. Logistic regression for matched case-control studies, logistic regression for a random balanced data sample and logistic regression for a sample balanced by ROSE (Random OverSampling Examples, Lunardon, Menardi and Torelli, 2014) are tested. We applied the methods to real data: balance sheets indicators of small and medium-sized enterprises and their legal status are considered. The event of interest is the opening of insolvency proceedings of bankruptcy. This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope with unbalanced data. Logistic regression for matched case-control studies, logistic regression for a random balanced data sample and logistic regression for a sample balanced by ROSE (Random OverSampling Examples, Lunardon, Menardi and Torelli, 2014) are tested. We applied the methods to real data: balance sheets indicators of small and medium-sized enterprises and their legal status are considered. The event of interest is the opening of insolvency proceedings of bankruptcy. Key-Words: * bankruptcy; case-control studies; data augmentation; logistic regression; ROSE method; unbalanced data. AMS Subject Classification: * 62J05, 62M20, 62P20, 91G40. |
Audience | Academic |
Author | Pierri, Francesca Bistoni, Nicolo Stanghellini, Elena |
Author_xml | – sequence: 1 fullname: Pierri, Francesca – sequence: 2 fullname: Stanghellini, Elena – sequence: 3 fullname: Bistoni, Nicolo |
BookMark | eNptkE1LAzEQhoNUsNb-AU8Lnne7-dzssRQ_CgVB9LxMktmS2u6WJBb67w3WgwdnDvPy8s7DMLdkMowDEnJP60o2upaLgKeYIFUnKjyrqBZXZMqo5mXNGzohU6qELFXD1A2Zx7irc3EqFKdTsnjz8bOAAfbn6GMWrgiYwhiPaJM_YfE1GNjDYNEVDhLckese9hHnv3NGPp4e31cv5eb1eb1abkrHtE5ljw6BN6iZRdkLKRUK19ZMCs20BG6skMYCiFY7w7GVrjWGGdpiKxrRMz4j6wvXjbDrjsEfIJy7EXz3Y4xh20FI3u6xs7YHylqNNVOCOaW5FMqAclxIRRnPrIcLaws57od-TAHswUfbLYXUMh-h65yq_knldnjwNn-899n_s_ANuhlyNg |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 Instituto Nacional de Estatistica |
Copyright_xml | – notice: COPYRIGHT 2016 Instituto Nacional de Estatistica |
DBID | INF DOA |
DOI | 10.57805/revstat.v14i2.184 |
DatabaseName | Gale OneFile: Informe Academico DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2183-0371 |
ExternalDocumentID | oai_doaj_org_article_ccfa1298e02642d683546ba6d3456123 A458549880 |
GroupedDBID | 123 29P 2WC ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ GX1 IAO INF INS ITC J9A RNS OVT |
ID | FETCH-LOGICAL-d288t-fedea37e82ce5f4556e4d902548285a3bc45bcaa498db3e95d9bb2b19e9474f23 |
IEDL.DBID | DOA |
ISSN | 1645-6726 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Wed Mar 19 00:39:52 EDT 2025 Sat Mar 08 18:44:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d288t-fedea37e82ce5f4556e4d902548285a3bc45bcaa498db3e95d9bb2b19e9474f23 |
OpenAccessLink | https://doaj.org/article/ccfa1298e02642d683546ba6d3456123 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ccfa1298e02642d683546ba6d3456123 gale_infotracmisc_A458549880 gale_infotracacademiconefile_A458549880 |
PublicationCentury | 2000 |
PublicationDate | 20160401 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 20160401 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Revstat |
PublicationYear | 2016 |
Publisher | Instituto Nacional de Estatistica Instituto Nacional de Estatística | Statistics Portugal |
Publisher_xml | – name: Instituto Nacional de Estatistica – name: Instituto Nacional de Estatística | Statistics Portugal |
SSID | ssj0000314631 |
Score | 1.9899081 |
Snippet | This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope... |
SourceID | doaj gale |
SourceType | Open Website Aggregation Database |
StartPage | 157 |
SubjectTerms | bankruptcy case-control studies Credit ratings data augmentation Evaluation logistic regression Methods Regression analysis Risk assessment ROSE method unbalanced data |
Title | Risk analysis and retrospective unbalanced data |
URI | https://doaj.org/article/ccfa1298e02642d683546ba6d3456123 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6xWyUHwlDbZV7LH-qhFqIdiobewj1koQipt7O93J4kST1685JAEMhk2M_Nlv_mGkFufUm8F-NgzRwNAsSxWiYXYGZkax43MHDYnz17ldMFflmLZGfWFnLBGHrhx3Mhar0NOyiGABU6dxB8V0mjpGKZ-Wut8JirpgKk6BrMQAephhAEOILueyqZjRqCG_2gDO-zXGe5SvqLDtJY2xSe3cbmTYSZH5LAtDaNxY9Ix2YPyhBzMfnRVt6dkNF9t36NvIZFIly6aQ7VZf_dLRovSIFfRgosedaXPyGLy9PYwjduRB7GjeV7FHhxolkFOLQjPhZDAHe4EclSa08xYLozVmqvcGQZKOGUMNakCxTPuKTsnvXJdwgWJ0ixRxhqWOR1qHg85tgZyjcNFINRUrk_u8ZWLj0bVokCd6fpE8H7Rer_4y_t9cocOK_BrqDba6pbUH0xAXalizAMcCcbmSZ8Mft0ZVrHtXL78D2uuyH6oZ2RDrBmQXrX5hOtQM1Tmpl4e4fi8TL8AvLS85A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+analysis+and+retrospective+unbalanced+data&rft.jtitle=Revstat&rft.au=Pierri%2C+Francesca&rft.au=Stanghellini%2C+Elena&rft.au=Bistoni%2C+Nicolo&rft.date=2016-04-01&rft.pub=Instituto+Nacional+de+Estatistica&rft.issn=1645-6726&rft.volume=14&rft.issue=2&rft.spage=157&rft_id=info:doi/10.57805%2Frevstat.v14i2.184&rft.externalDBID=INF&rft.externalDocID=A458549880 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1645-6726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1645-6726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1645-6726&client=summon |