Risk analysis and retrospective unbalanced data

This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope with unbalanced data. Logistic regression for matched case-control studies, logistic regression for a random balanced data sample and logistic...

Full description

Saved in:
Bibliographic Details
Published inRevstat Vol. 14; no. 2; p. 157
Main Authors Pierri, Francesca, Stanghellini, Elena, Bistoni, Nicolo
Format Journal Article
LanguageEnglish
Published Instituto Nacional de Estatistica 01.04.2016
Instituto Nacional de Estatística | Statistics Portugal
Subjects
Online AccessGet full text
ISSN1645-6726
2183-0371
DOI10.57805/revstat.v14i2.184

Cover

Loading…
Abstract This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope with unbalanced data. Logistic regression for matched case-control studies, logistic regression for a random balanced data sample and logistic regression for a sample balanced by ROSE (Random OverSampling Examples, Lunardon, Menardi and Torelli, 2014) are tested. We applied the methods to real data: balance sheets indicators of small and medium-sized enterprises and their legal status are considered. The event of interest is the opening of insolvency proceedings of bankruptcy. Key-Words: * bankruptcy; case-control studies; data augmentation; logistic regression; ROSE method; unbalanced data. AMS Subject Classification: * 62J05, 62M20, 62P20, 91G40.
AbstractList This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope with unbalanced data. Logistic regression for matched case-control studies, logistic regression for a random balanced data sample and logistic regression for a sample balanced by ROSE (Random OverSampling Examples, Lunardon, Menardi and Torelli, 2014) are tested. We applied the methods to real data: balance sheets indicators of small and medium-sized enterprises and their legal status are considered. The event of interest is the opening of insolvency proceedings of bankruptcy.
This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope with unbalanced data. Logistic regression for matched case-control studies, logistic regression for a random balanced data sample and logistic regression for a sample balanced by ROSE (Random OverSampling Examples, Lunardon, Menardi and Torelli, 2014) are tested. We applied the methods to real data: balance sheets indicators of small and medium-sized enterprises and their legal status are considered. The event of interest is the opening of insolvency proceedings of bankruptcy. Key-Words: * bankruptcy; case-control studies; data augmentation; logistic regression; ROSE method; unbalanced data. AMS Subject Classification: * 62J05, 62M20, 62P20, 91G40.
Audience Academic
Author Pierri, Francesca
Bistoni, Nicolo
Stanghellini, Elena
Author_xml – sequence: 1
  fullname: Pierri, Francesca
– sequence: 2
  fullname: Stanghellini, Elena
– sequence: 3
  fullname: Bistoni, Nicolo
BookMark eNptkE1LAzEQhoNUsNb-AU8Lnne7-dzssRQ_CgVB9LxMktmS2u6WJBb67w3WgwdnDvPy8s7DMLdkMowDEnJP60o2upaLgKeYIFUnKjyrqBZXZMqo5mXNGzohU6qELFXD1A2Zx7irc3EqFKdTsnjz8bOAAfbn6GMWrgiYwhiPaJM_YfE1GNjDYNEVDhLckese9hHnv3NGPp4e31cv5eb1eb1abkrHtE5ljw6BN6iZRdkLKRUK19ZMCs20BG6skMYCiFY7w7GVrjWGGdpiKxrRMz4j6wvXjbDrjsEfIJy7EXz3Y4xh20FI3u6xs7YHylqNNVOCOaW5FMqAclxIRRnPrIcLaws57od-TAHswUfbLYXUMh-h65yq_knldnjwNn-899n_s_ANuhlyNg
ContentType Journal Article
Copyright COPYRIGHT 2016 Instituto Nacional de Estatistica
Copyright_xml – notice: COPYRIGHT 2016 Instituto Nacional de Estatistica
DBID INF
DOA
DOI 10.57805/revstat.v14i2.184
DatabaseName Gale OneFile: Informe Academico
DOAJ Directory of Open Access Journals
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2183-0371
ExternalDocumentID oai_doaj_org_article_ccfa1298e02642d683546ba6d3456123
A458549880
GroupedDBID 123
29P
2WC
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
GX1
IAO
INF
INS
ITC
J9A
RNS
OVT
ID FETCH-LOGICAL-d288t-fedea37e82ce5f4556e4d902548285a3bc45bcaa498db3e95d9bb2b19e9474f23
IEDL.DBID DOA
ISSN 1645-6726
IngestDate Wed Aug 27 01:31:27 EDT 2025
Wed Mar 19 00:39:52 EDT 2025
Sat Mar 08 18:44:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d288t-fedea37e82ce5f4556e4d902548285a3bc45bcaa498db3e95d9bb2b19e9474f23
OpenAccessLink https://doaj.org/article/ccfa1298e02642d683546ba6d3456123
ParticipantIDs doaj_primary_oai_doaj_org_article_ccfa1298e02642d683546ba6d3456123
gale_infotracmisc_A458549880
gale_infotracacademiconefile_A458549880
PublicationCentury 2000
PublicationDate 20160401
2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 20160401
  day: 01
PublicationDecade 2010
PublicationTitle Revstat
PublicationYear 2016
Publisher Instituto Nacional de Estatistica
Instituto Nacional de Estatística | Statistics Portugal
Publisher_xml – name: Instituto Nacional de Estatistica
– name: Instituto Nacional de Estatística | Statistics Portugal
SSID ssj0000314631
Score 1.9899081
Snippet This paper considers three different techniques applicable in the context of credit scoring when the event under study is rare and therefore we have to cope...
SourceID doaj
gale
SourceType Open Website
Aggregation Database
StartPage 157
SubjectTerms bankruptcy
case-control studies
Credit ratings
data augmentation
Evaluation
logistic regression
Methods
Regression analysis
Risk assessment
ROSE method
unbalanced data
Title Risk analysis and retrospective unbalanced data
URI https://doaj.org/article/ccfa1298e02642d683546ba6d3456123
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6xWyUHwlDbZV7LH-qhFqIdiobewj1koQipt7O93J4kST1685JAEMhk2M_Nlv_mGkFufUm8F-NgzRwNAsSxWiYXYGZkax43MHDYnz17ldMFflmLZGfWFnLBGHrhx3Mhar0NOyiGABU6dxB8V0mjpGKZ-Wut8JirpgKk6BrMQAephhAEOILueyqZjRqCG_2gDO-zXGe5SvqLDtJY2xSe3cbmTYSZH5LAtDaNxY9Ix2YPyhBzMfnRVt6dkNF9t36NvIZFIly6aQ7VZf_dLRovSIFfRgosedaXPyGLy9PYwjduRB7GjeV7FHhxolkFOLQjPhZDAHe4EclSa08xYLozVmqvcGQZKOGUMNakCxTPuKTsnvXJdwgWJ0ixRxhqWOR1qHg85tgZyjcNFINRUrk_u8ZWLj0bVokCd6fpE8H7Rer_4y_t9cocOK_BrqDba6pbUH0xAXalizAMcCcbmSZ8Mft0ZVrHtXL78D2uuyH6oZ2RDrBmQXrX5hOtQM1Tmpl4e4fi8TL8AvLS85A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+analysis+and+retrospective+unbalanced+data&rft.jtitle=Revstat&rft.au=Pierri%2C+Francesca&rft.au=Stanghellini%2C+Elena&rft.au=Bistoni%2C+Nicolo&rft.date=2016-04-01&rft.pub=Instituto+Nacional+de+Estatistica&rft.issn=1645-6726&rft.volume=14&rft.issue=2&rft.spage=157&rft_id=info:doi/10.57805%2Frevstat.v14i2.184&rft.externalDBID=INF&rft.externalDocID=A458549880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1645-6726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1645-6726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1645-6726&client=summon