WAVELET ESTIMATION OF REGRESSION DERIVATIVES FOR BIASED AND NEGATIVELY ASSOCIATED DATA
* This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet e...
Saved in:
Published in | Revstat Vol. 20; no. 3; p. 353 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Instituto Nacional de Estatistica
01.07.2022
Instituto Nacional de Estatística | Statistics Portugal |
Subjects | |
Online Access | Get full text |
ISSN | 1645-6726 2183-0371 |
DOI | 10.57805/revstat.v20i3.375 |
Cover
Abstract | * This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet estimator and a nonlinear wavelet estimator using the hard thresholding rule. Their theoretical performance is evaluated by determining sharp rates of convergence under [L.sup.p] risk, assuming that the unknown function of interest belongs to a ball of Besov spaces [B.sub.p,q.sup.s] (R). The obtained results extend some existing works on biased data in the independent case to the negatively associated case. Keywords: * regression derivatives estimation; negatively associated; Lp risk; wavelets. AMS Subject Classification: * 62G07, 62G20, 42C40. |
---|---|
AbstractList | This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet estimator and a nonlinear wavelet estimator using the hard thresholding rule. Their theoretical performance is evaluated by determining sharp rates of convergence under Lp risk, assuming that the unknown function of interest belongs to a ball of Besov spaces Bsp,q (ℝ). The obtained results extend some existing works on biased data in the independent case to the negatively associated case. * This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet estimator and a nonlinear wavelet estimator using the hard thresholding rule. Their theoretical performance is evaluated by determining sharp rates of convergence under [L.sup.p] risk, assuming that the unknown function of interest belongs to a ball of Besov spaces [B.sub.p,q.sup.s] (R). The obtained results extend some existing works on biased data in the independent case to the negatively associated case. Keywords: * regression derivatives estimation; negatively associated; Lp risk; wavelets. AMS Subject Classification: * 62G07, 62G20, 42C40. * This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet estimator and a nonlinear wavelet estimator using the hard thresholding rule. Their theoretical performance is evaluated by determining sharp rates of convergence under [L.sup.p] risk, assuming that the unknown function of interest belongs to a ball of Besov spaces [B.sub.p,q.sup.s] (R). The obtained results extend some existing works on biased data in the independent case to the negatively associated case. |
Audience | Academic |
Author | Kou, Junke Chesneau, Christophe |
Author_xml | – sequence: 1 fullname: Kou, Junke – sequence: 2 fullname: Chesneau, Christophe |
BookMark | eNptkU1rwkAQhpdiodb6B3oK9By7X9lNjltdbcAaMKmlp7DZD4moKUkQ-u-7ag89dOYwzLzvPDDMPRgcm6MF4BHBScRjGD239tT1qp-cMKzJhPDoBgwxikkICUcDMESMRiHjmN2BcdftoA-CKCNoCDYfYiOXsghkXqRvokizVZDNg7VcrGWen7uZXKcbL2xkHsyzdfCSilzOArGaBSu5uAjLz0DkeTZNReGVmSjEA7h1at_Z8W8dgfe5LKav4TJbpFOxDA2O4z4kODIEEVVRZjQmjCnNKI1QkhhmGCSEKaoTEzuqqsRyFGt_MKYQRVXErWZkBNIr1zRqV3619UG132Wj6vIyaNptqdq-1ntbujPXQUoptLTCXMGqUs5QmFisnEs86-nK2ipvr4-u6VulD3WnS8ERxwlFhHjX5B-XT2MPtfaPcbWf_1n4AbPFd0w |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Instituto Nacional de Estatistica |
Copyright_xml | – notice: COPYRIGHT 2022 Instituto Nacional de Estatistica |
DBID | INF DOA |
DOI | 10.57805/revstat.v20i3.375 |
DatabaseName | Gale OneFile: Informe Academico DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2183-0371 |
ExternalDocumentID | oai_doaj_org_article_f4519f04440e4b27a0bbafd409e2aff9 A717294133 |
GroupedDBID | 123 29P 2WC ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ GX1 IAO INF INS ITC J9A RNS OVT |
ID | FETCH-LOGICAL-d288t-325d313ab46dc2366ac6445199d6d60336a4c9d8f4ab9e718c57824015b57ec63 |
IEDL.DBID | DOA |
ISSN | 1645-6726 |
IngestDate | Wed Aug 27 01:31:56 EDT 2025 Tue Feb 18 23:14:50 EST 2025 Wed Feb 12 06:28:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d288t-325d313ab46dc2366ac6445199d6d60336a4c9d8f4ab9e718c57824015b57ec63 |
OpenAccessLink | https://doaj.org/article/f4519f04440e4b27a0bbafd409e2aff9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f4519f04440e4b27a0bbafd409e2aff9 gale_infotracmisc_A717294133 gale_infotracacademiconefile_A717294133 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Revstat |
PublicationYear | 2022 |
Publisher | Instituto Nacional de Estatistica Instituto Nacional de Estatística | Statistics Portugal |
Publisher_xml | – name: Instituto Nacional de Estatistica – name: Instituto Nacional de Estatística | Statistics Portugal |
SSID | ssj0000314631 |
Score | 2.221192 |
Snippet | * This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case... This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case... |
SourceID | doaj gale |
SourceType | Open Website Aggregation Database |
StartPage | 353 |
SubjectTerms | Lp risk negatively associated Regression derivatives estimation wavelets |
Title | WAVELET ESTIMATION OF REGRESSION DERIVATIVES FOR BIASED AND NEGATIVELY ASSOCIATED DATA |
URI | https://doaj.org/article/f4519f04440e4b27a0bbafd409e2aff9 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOQieqtmkzTZH34uwHsTH3srkJYJ0Za0L_ntn0irryYuXHjppGWaSzAzM9w1jhxYiZvY-ZK4PMcsDqAwIyWVzL6MtwBtB2OHRrR4-5DfjYjw36ot6wlp64NZwJ5H4TyKxmomQWzkAYfH_HsuSICHGBN0TRswVU-kOVngDpGGEWA5Qd73ULWKmIA7_k2mYEV7neCbFizpW1GSYGPu7e3kuwlytspUuNeSnrUprbCHU62x59MOr-r7BHp-ABkU0_BJPZgs65JPI78Jz285a8wvcUbNE5v3OMR_lZy8YpjyH2vPb8JwEr5_82ykouYAGNtnD1eX9-TDrJiNkXpZlkylZeNVXYHPtnVRag9PENGaM114LpTTkzvgy5mBNwPDjiLUeS6nCFoPgtNpii_WkDtuMCwPCSSPLfhzk-Kkto_UhgvTBFyaIHjsjy1RvLflFRXTU6QU6qeqcVP3lpB47IrtWdGiaKTjoev9RBaKfqk6xqJQG46nqsb1fK3Gzuznxzn9os8uWJIEYUtPtHltsph9hH1OLxh6kXYTP63H_C9qszbM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WAVELET+ESTIMATION+OF+REGRESSION+DERIVATIVES+FOR+BIASED+AND+NEGATIVELY+ASSOCIATED+DATA&rft.jtitle=Revstat&rft.au=Kou%2C+Junke&rft.au=Chesneau%2C+Christophe&rft.date=2022-07-01&rft.pub=Instituto+Nacional+de+Estatistica&rft.issn=1645-6726&rft.volume=20&rft.issue=3&rft.spage=353&rft_id=info:doi/10.57805%2Frevstat.v20i3.375&rft.externalDocID=A717294133 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1645-6726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1645-6726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1645-6726&client=summon |