WAVELET ESTIMATION OF REGRESSION DERIVATIVES FOR BIASED AND NEGATIVELY ASSOCIATED DATA

* This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet e...

Full description

Saved in:
Bibliographic Details
Published inRevstat Vol. 20; no. 3; p. 353
Main Authors Kou, Junke, Chesneau, Christophe
Format Journal Article
LanguageEnglish
Published Instituto Nacional de Estatistica 01.07.2022
Instituto Nacional de Estatística | Statistics Portugal
Subjects
Online AccessGet full text
ISSN1645-6726
2183-0371
DOI10.57805/revstat.v20i3.375

Cover

Abstract * This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet estimator and a nonlinear wavelet estimator using the hard thresholding rule. Their theoretical performance is evaluated by determining sharp rates of convergence under [L.sup.p] risk, assuming that the unknown function of interest belongs to a ball of Besov spaces [B.sub.p,q.sup.s] (R). The obtained results extend some existing works on biased data in the independent case to the negatively associated case. Keywords: * regression derivatives estimation; negatively associated; Lp risk; wavelets. AMS Subject Classification: * 62G07, 62G20, 42C40.
AbstractList This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet estimator and a nonlinear wavelet estimator using the hard thresholding rule. Their theoretical performance is evaluated by determining sharp rates of convergence under Lp risk, assuming that the unknown function of interest belongs to a ball of Besov spaces Bsp,q (ℝ). The obtained results extend some existing works on biased data in the independent case to the negatively associated case.
* This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet estimator and a nonlinear wavelet estimator using the hard thresholding rule. Their theoretical performance is evaluated by determining sharp rates of convergence under [L.sup.p] risk, assuming that the unknown function of interest belongs to a ball of Besov spaces [B.sub.p,q.sup.s] (R). The obtained results extend some existing works on biased data in the independent case to the negatively associated case. Keywords: * regression derivatives estimation; negatively associated; Lp risk; wavelets. AMS Subject Classification: * 62G07, 62G20, 42C40.
* This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case where the data comes from a negatively associated process. In this context, two different wavelet estimators are introduced: a linear wavelet estimator and a nonlinear wavelet estimator using the hard thresholding rule. Their theoretical performance is evaluated by determining sharp rates of convergence under [L.sup.p] risk, assuming that the unknown function of interest belongs to a ball of Besov spaces [B.sub.p,q.sup.s] (R). The obtained results extend some existing works on biased data in the independent case to the negatively associated case.
Audience Academic
Author Kou, Junke
Chesneau, Christophe
Author_xml – sequence: 1
  fullname: Kou, Junke
– sequence: 2
  fullname: Chesneau, Christophe
BookMark eNptkU1rwkAQhpdiodb6B3oK9By7X9lNjltdbcAaMKmlp7DZD4moKUkQ-u-7ag89dOYwzLzvPDDMPRgcm6MF4BHBScRjGD239tT1qp-cMKzJhPDoBgwxikkICUcDMESMRiHjmN2BcdftoA-CKCNoCDYfYiOXsghkXqRvokizVZDNg7VcrGWen7uZXKcbL2xkHsyzdfCSilzOArGaBSu5uAjLz0DkeTZNReGVmSjEA7h1at_Z8W8dgfe5LKav4TJbpFOxDA2O4z4kODIEEVVRZjQmjCnNKI1QkhhmGCSEKaoTEzuqqsRyFGt_MKYQRVXErWZkBNIr1zRqV3619UG132Wj6vIyaNptqdq-1ntbujPXQUoptLTCXMGqUs5QmFisnEs86-nK2ipvr4-u6VulD3WnS8ERxwlFhHjX5B-XT2MPtfaPcbWf_1n4AbPFd0w
ContentType Journal Article
Copyright COPYRIGHT 2022 Instituto Nacional de Estatistica
Copyright_xml – notice: COPYRIGHT 2022 Instituto Nacional de Estatistica
DBID INF
DOA
DOI 10.57805/revstat.v20i3.375
DatabaseName Gale OneFile: Informe Academico
DOAJ Directory of Open Access Journals
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2183-0371
ExternalDocumentID oai_doaj_org_article_f4519f04440e4b27a0bbafd409e2aff9
A717294133
GroupedDBID 123
29P
2WC
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
GX1
IAO
INF
INS
ITC
J9A
RNS
OVT
ID FETCH-LOGICAL-d288t-325d313ab46dc2366ac6445199d6d60336a4c9d8f4ab9e718c57824015b57ec63
IEDL.DBID DOA
ISSN 1645-6726
IngestDate Wed Aug 27 01:31:56 EDT 2025
Tue Feb 18 23:14:50 EST 2025
Wed Feb 12 06:28:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d288t-325d313ab46dc2366ac6445199d6d60336a4c9d8f4ab9e718c57824015b57ec63
OpenAccessLink https://doaj.org/article/f4519f04440e4b27a0bbafd409e2aff9
ParticipantIDs doaj_primary_oai_doaj_org_article_f4519f04440e4b27a0bbafd409e2aff9
gale_infotracmisc_A717294133
gale_infotracacademiconefile_A717294133
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Revstat
PublicationYear 2022
Publisher Instituto Nacional de Estatistica
Instituto Nacional de Estatística | Statistics Portugal
Publisher_xml – name: Instituto Nacional de Estatistica
– name: Instituto Nacional de Estatística | Statistics Portugal
SSID ssj0000314631
Score 2.221192
Snippet * This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case...
This paper considers the estimation of the derivatives of a regression function based on biased data. The main feature of the study is to explore the case...
SourceID doaj
gale
SourceType Open Website
Aggregation Database
StartPage 353
SubjectTerms Lp risk
negatively associated
Regression derivatives estimation
wavelets
Title WAVELET ESTIMATION OF REGRESSION DERIVATIVES FOR BIASED AND NEGATIVELY ASSOCIATED DATA
URI https://doaj.org/article/f4519f04440e4b27a0bbafd409e2aff9
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOQieqtmkzTZH34uwHsTH3srkJYJ0Za0L_ntn0irryYuXHjppGWaSzAzM9w1jhxYiZvY-ZK4PMcsDqAwIyWVzL6MtwBtB2OHRrR4-5DfjYjw36ot6wlp64NZwJ5H4TyKxmomQWzkAYfH_HsuSICHGBN0TRswVU-kOVngDpGGEWA5Qd73ULWKmIA7_k2mYEV7neCbFizpW1GSYGPu7e3kuwlytspUuNeSnrUprbCHU62x59MOr-r7BHp-ABkU0_BJPZgs65JPI78Jz285a8wvcUbNE5v3OMR_lZy8YpjyH2vPb8JwEr5_82ykouYAGNtnD1eX9-TDrJiNkXpZlkylZeNVXYHPtnVRag9PENGaM114LpTTkzvgy5mBNwPDjiLUeS6nCFoPgtNpii_WkDtuMCwPCSSPLfhzk-Kkto_UhgvTBFyaIHjsjy1RvLflFRXTU6QU6qeqcVP3lpB47IrtWdGiaKTjoev9RBaKfqk6xqJQG46nqsb1fK3Gzuznxzn9os8uWJIEYUtPtHltsph9hH1OLxh6kXYTP63H_C9qszbM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WAVELET+ESTIMATION+OF+REGRESSION+DERIVATIVES+FOR+BIASED+AND+NEGATIVELY+ASSOCIATED+DATA&rft.jtitle=Revstat&rft.au=Kou%2C+Junke&rft.au=Chesneau%2C+Christophe&rft.date=2022-07-01&rft.pub=Instituto+Nacional+de+Estatistica&rft.issn=1645-6726&rft.volume=20&rft.issue=3&rft.spage=353&rft_id=info:doi/10.57805%2Frevstat.v20i3.375&rft.externalDocID=A717294133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1645-6726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1645-6726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1645-6726&client=summon