Transferable and Flexible Artificial Memristive Synapse Based on WOx Schottky Junction on Arbitrary Substrates

The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here, a transferable WOx‐based memristive synapse is demonstrated using a nondestructive water‐dissolution method in which the NaCl substrate is s...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 4; no. 12
Main Authors Lin, Ya, Zeng, Tao, Xu, Haiyang, Wang, Zhongqiang, Zhao, Xiaoning, Liu, Weizhen, Ma, Jiangang, Liu, Yichun
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here, a transferable WOx‐based memristive synapse is demonstrated using a nondestructive water‐dissolution method in which the NaCl substrate is selected as the sacrificial layer due to its thermotolerance and water‐solubility. The essential synaptic learning functions are achieved to comprehensively mimic the biological synapse, such as short‐term/long‐term plasticity, paired‐pulse facilitation, and spike‐timing‐dependent plasticity. This artificial synapse can be transferred and conformed onto various unconventional substrates to manifest the flexibility, 3D conformality, and biocompatibility. There is no mechanical damage during the transfer process, and all these transferred devices present excellent synaptic emulations. The memristive behavior shows no degeneration after large‐angle bending or 100 times bending tests. This result may pave a feasible way for the realization of wearable neuromorphic computing systems in the future. Using a nondestructive water‐dissolution method, a transferable WOX memristor is demonstrated when selecting NaCl substrate as the sacrificial layer. The synaptic devices are transferred onto diverse substrates, presenting excellent flexibility and high mechanical endurance. The essential functions of synaptic plasticity are obtained in the device on the bent state. The work offers a feasible method to enable inorganic memristors for transferable applications.
AbstractList The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here, a transferable WOx‐based memristive synapse is demonstrated using a nondestructive water‐dissolution method in which the NaCl substrate is selected as the sacrificial layer due to its thermotolerance and water‐solubility. The essential synaptic learning functions are achieved to comprehensively mimic the biological synapse, such as short‐term/long‐term plasticity, paired‐pulse facilitation, and spike‐timing‐dependent plasticity. This artificial synapse can be transferred and conformed onto various unconventional substrates to manifest the flexibility, 3D conformality, and biocompatibility. There is no mechanical damage during the transfer process, and all these transferred devices present excellent synaptic emulations. The memristive behavior shows no degeneration after large‐angle bending or 100 times bending tests. This result may pave a feasible way for the realization of wearable neuromorphic computing systems in the future. Using a nondestructive water‐dissolution method, a transferable WOX memristor is demonstrated when selecting NaCl substrate as the sacrificial layer. The synaptic devices are transferred onto diverse substrates, presenting excellent flexibility and high mechanical endurance. The essential functions of synaptic plasticity are obtained in the device on the bent state. The work offers a feasible method to enable inorganic memristors for transferable applications.
Abstract The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here, a transferable WOx‐based memristive synapse is demonstrated using a nondestructive water‐dissolution method in which the NaCl substrate is selected as the sacrificial layer due to its thermotolerance and water‐solubility. The essential synaptic learning functions are achieved to comprehensively mimic the biological synapse, such as short‐term/long‐term plasticity, paired‐pulse facilitation, and spike‐timing‐dependent plasticity. This artificial synapse can be transferred and conformed onto various unconventional substrates to manifest the flexibility, 3D conformality, and biocompatibility. There is no mechanical damage during the transfer process, and all these transferred devices present excellent synaptic emulations. The memristive behavior shows no degeneration after large‐angle bending or 100 times bending tests. This result may pave a feasible way for the realization of wearable neuromorphic computing systems in the future.
Author Liu, Yichun
Lin, Ya
Zhao, Xiaoning
Zeng, Tao
Liu, Weizhen
Ma, Jiangang
Wang, Zhongqiang
Xu, Haiyang
Author_xml – sequence: 1
  givenname: Ya
  surname: Lin
  fullname: Lin, Ya
  organization: Ministry of Education
– sequence: 2
  givenname: Tao
  surname: Zeng
  fullname: Zeng, Tao
  organization: Ministry of Education
– sequence: 3
  givenname: Haiyang
  surname: Xu
  fullname: Xu, Haiyang
  email: hyxu@nenu.edu.cn
  organization: Ministry of Education
– sequence: 4
  givenname: Zhongqiang
  surname: Wang
  fullname: Wang, Zhongqiang
  email: wangzq752@nenu.edu.cn
  organization: Ministry of Education
– sequence: 5
  givenname: Xiaoning
  surname: Zhao
  fullname: Zhao, Xiaoning
  organization: Ministry of Education
– sequence: 6
  givenname: Weizhen
  surname: Liu
  fullname: Liu, Weizhen
  organization: Ministry of Education
– sequence: 7
  givenname: Jiangang
  surname: Ma
  fullname: Ma, Jiangang
  organization: Ministry of Education
– sequence: 8
  givenname: Yichun
  surname: Liu
  fullname: Liu, Yichun
  organization: Ministry of Education
BookMark eNpNkEtPAjEUhRujiYhsXfcPoH3MtMwSiSgGwgKM7prblxaHGdIOCv_eQQwxuck59yxO7v2u0HlVVw6hG0puKSHsDly5vmWEDgjhkp-hDqNF0aeCvJ3_85eol9KKEEKl4FnOO6haRqiSdxF06TBUFo9LtwuHZRib4IMJUOKZW8eQmvDl8GJfwSY5fA_JWVxX-HW-wwvzUTfN5x4_byvThDZtZxh1aCLEPV5sdWpd49I1uvBQJtf70y56GT8sR0_96fxxMhpO-5ZJyvvA_WAAufTcSCMLkHmhhfS51sAyAQxaMUCNyEVhrDc5oRyoAO2py43JeRdNjr22hpXaxLBu71A1BPUb1PFdQfueKZ2S1gAj2stM2sxkABlYw7hlTAqhW5hdVBy7vkPp9qcyStSBvDqQVyfyavgwnZ02_gNRdH4c
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID DOA
DOI 10.1002/aelm.201800373
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7dca20bf747d4c4aa4adc23d22766b37
AELM201800373
Genre article
GrantInformation_xml – fundername: “111” Project
  funderid: B13013
– fundername: NSFC
  funderid: 51701037; 51732003; 61774031; 61574031; 51872043
– fundername: Jilin Province
  funderid: 20160101324JC; 20180520186JH
– fundername: NSFC for Excellent Young Scholars
  funderid: 51422201
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAMMB
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFPKN
AGXDD
AIACR
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
M~E
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
ID FETCH-LOGICAL-d2713-a3f88a57f3c7c79a759b67f5bba246a2aa24ca1c6569cdfc5013a16abf1e5cc53
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Wed Aug 27 01:29:16 EDT 2025
Wed Aug 20 07:26:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d2713-a3f88a57f3c7c79a759b67f5bba246a2aa24ca1c6569cdfc5013a16abf1e5cc53
OpenAccessLink https://doaj.org/article/7dca20bf747d4c4aa4adc23d22766b37
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_7dca20bf747d4c4aa4adc23d22766b37
wiley_primary_10_1002_aelm_201800373_AELM201800373
PublicationCentury 2000
PublicationDate December 2018
2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationTitle Advanced electronic materials
PublicationYear 2018
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2010; 10
2017; 7
2017; 8
2013; 25
1990; 56
1991; 59
2000; 3
2015; 584
2005; 64
2011; 11
2011; 10
2014; 24
2017; 110
2013; 8
1998; 395
2010; 22
2013; 14
2018; 1
1992; 357
1997; 387
2011; 22
2008; 20
2012; 24
2014; 6
2012; 22
2015; 1
2011; 334
2018; 28
2009; 180
2006; 17
1999; 25
2006; 7
2007; 91
2003; 38
2012; 8460
2013; 102
2017; 29
2008; 11
2003
2015; 9
1996; 16
2011; 5
2006; 114
2016; 4
2011; 102
2015; 25
2012; 2
2015; 27
2012; 3
2009; 32
2016; 2
2002; 64
2017; 16
2017; 12
2013; 80
2014
2016; 28
2016; 8
2012; 8
References_xml – volume: 25
  start-page: 1161
  year: 1999
  publication-title: J. Exp. Psychol.: Learn. Mem. Cognit.
– volume: 29
  start-page: 1701780
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1600100
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 10
  start-page: 1297
  year: 2010
  publication-title: Nano Lett.
– volume: 3
  start-page: 763
  year: 2012
  publication-title: Nat. Commun.
– volume: 24
  start-page: 1430
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 5599
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2994
  year: 2012
  publication-title: Small
– volume: 59
  start-page: 3159
  year: 1991
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 744
  year: 2008
  publication-title: Nat. Neurosci.
– volume: 9
  start-page: 419
  year: 2015
  publication-title: ACS Nano
– volume: 25
  start-page: 2733
  year: 2013
  publication-title: Adv. Mater.
– volume: 110
  start-page: 163902
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 591
  year: 2011
  publication-title: Nat. Mater.
– volume: 25
  start-page: 5425
  year: 2013
  publication-title: Adv. Mater.
– volume: 56
  start-page: 2419
  year: 1990
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 2947
  year: 2008
  publication-title: Adv. Mater.
– volume: 91
  start-page: 379
  year: 2007
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 38
  start-page: 95
  year: 2003
  publication-title: Exp. Gerontol.
– volume: 8460
  start-page: 846011
  year: 2012
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– volume: 6
  start-page: 7
  year: 2014
  publication-title: NPG Asia Mater.
– volume: 102
  start-page: 183510
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 180
  start-page: 99
  year: 2009
  publication-title: Solid State Ionics
– volume: 80
  start-page: 691
  year: 2013
  publication-title: Neuron
– volume: 28
  start-page: 1704455
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 584
  start-page: 94
  year: 2015
  publication-title: Thin Solid Films
– volume: 1
  start-page: 1700035
  year: 2018
  publication-title: Adv. The. Simul.
– volume: 11
  start-page: 5438
  year: 2011
  publication-title: Nano Lett.
– volume: 114
  start-page: 410
  year: 2006
  publication-title: Sens. Actuators, B
– volume: 16
  start-page: 5661
  year: 1996
  publication-title: J. Neurosci.
– volume: 2
  start-page: 1000
  year: 2012
  publication-title: Sci. Rep.
– volume: 334
  start-page: 623
  year: 2011
  publication-title: Science
– volume: 25
  start-page: 2677
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 254023
  year: 2011
  publication-title: Nanotechnology
– volume: 25
  start-page: 4290
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 387
  start-page: 278
  year: 1997
  publication-title: Nature
– volume: 64
  start-page: 2004
  year: 2005
  publication-title: Neurology
– volume: 22
  start-page: 2448
  year: 2010
  publication-title: Adv. Mater.
– volume: 5
  start-page: 7669
  year: 2011
  publication-title: ACS Nano
– volume: 8
  start-page: 15199
  year: 2017
  publication-title: Nat. Commun.
– volume: 17
  start-page: 211
  year: 2006
  publication-title: IEEE Trans. Neural Networks
– volume: 3
  start-page: 1178
  year: 2000
  publication-title: Nat. Neurosci.
– volume: 110
  start-page: 193503
  year: 2017
  publication-title: Appl. Phys. Lett.
– year: 2003
– volume: 102
  start-page: 857
  year: 2011
  publication-title: Appl. Phys. A
– volume: 3
  start-page: 1171
  year: 2000
  publication-title: Nat. Neurosci.
– volume: 16
  start-page: 414
  year: 2017
  publication-title: Nat. Mater.
– volume: 28
  start-page: 4250
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 32114
  year: 2017
  publication-title: RSC Adv.
– volume: 4
  start-page: 3217
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 22
  start-page: 2759
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 357
  start-page: 477
  year: 1992
  publication-title: Nature
– volume: 12
  start-page: 784
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 13967
  year: 2016
  publication-title: Nanoscale
– volume: 32
  start-page: 421
  year: 2009
  publication-title: Trends Neurosci.
– volume: 1
  start-page: 1500030
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 14
  start-page: 2528
  year: 2013
  publication-title: Org. Electron.
– start-page: 195
  year: 2014
– volume: 16
  start-page: 101
  year: 2017
  publication-title: Nat. Mater.
– volume: 24
  start-page: 2929
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 100
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 24
  start-page: 4499
  year: 2012
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1500298
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 395
  start-page: 37
  year: 1998
  publication-title: Nature
– volume: 7
  start-page: 1104
  year: 2006
  publication-title: EMBO Rep.
– volume: 10
  start-page: 4381
  year: 2010
  publication-title: Nano Lett.
– volume: 8
  start-page: 752
  year: 2017
  publication-title: Nat. Commun.
– volume: 28
  start-page: 1705320
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 64
  start-page: 355
  year: 2002
  publication-title: Annu. Rev. Physiol.
SSID ssj0001763453
Score 2.4029424
Snippet The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here,...
Abstract The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial...
SourceID doaj
wiley
SourceType Open Website
Publisher
SubjectTerms artificial synapses
flexible
memristors
transferable
water‐dissolution method
Title Transferable and Flexible Artificial Memristive Synapse Based on WOx Schottky Junction on Arbitrary Substrates
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201800373
https://doaj.org/article/7dca20bf747d4c4aa4adc23d22766b37
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EL15EUfGz7MFrMNmPpD220lLE6kGjxUuY_QJRo9Qq9t87s4lFT148hU3CJryXzbxJdt4ydtIzCkxIbRIchER5aROjbTcJuXAoYHWaeapGnlzm41KdT_X0x1JfNCessQdugDstnAWRmoCy1ymrABQ4K6QToshzI2MdOca8H8lU_LqCw0Zp-e3SmIpT8E9UeJ51yXFFtg79vxVpDCmjTbbRakHeb-5hi634epvVMXoEP6OaJo55Ph-RZyU16MTG8IFP_HMcnR-eXy9qeH3zfIDxyPGXmt9dfXIy15zPHxf8HOMWYU8H-jPzEKvsOb0uoi3t2w4rR8Obs3HSLoqQOIEJZQIydLugiyBtYYseFLpn8iJoY0CoHATgxkJmUaf1rAsW0ZaQ5UhI5rW1Wu6y1fql9nuMZ0GkDnEis3IlbG6AfpLJ1EvMl1F37bMBgVS9Nr4XFTlRxx3IT9XyU_3Fzz4TEeJlL41PsqiIkGpJSNUfXkyWrYP_uPIhW6cOm7knR2x1Pnv3x6gg5qbD1vq35X3ZiQ_NF95DxqY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEIAtKAMsCASINx5YIxLbcZKxoFYFWhiggFii8wshIK1KQfTf43NCEStTZCfxcOfz3Tm-L4QcF0qAcrGOnAEXCct1pFKdR04y4wPYNE4sViMPrmRvKC4e0p_ThFgLU_Mh5htuaBlhvUYDxw3pk19qKNhXLCVPcmSo8EWyhKFN3iJL7bvh4_B3o8VbkAg0Sm-cRZTI-OEH3hizk7-DNOD-v4Fq8DTdNbLahIi0Xet0nSzYaoNUwak4O8FSJ-rTf9pFlCU28MGaA0EH9i0Y7aelN7MKxu-Wnno3ZeioovfXXxSZm9Ppy4xeeHeGKsEb7Yl6DsX3FFeRQKt93yTDbuf2rBc1_0qIDPN5ZgTc5TmkmeM601kBWVoomblUKWBCAgN_0ZBoH74V2jjtlcAhkV5PiU21TvkWaVWjym4TmjgWGy8zZJgLpqUC_HbGY8t9Gu3DsR1yikIqxzUOo0RAdegYTZ7KZr6XmdHAYuV8tmKEFgACjGbcMJZJqXi2Q1gQ8XyUGp_MSlRIOVdI2e70B_PW7n9eOiLLvdtBv-yfX13ukRXsr4-j7JPWdPJhD3xQMVWHzbT5BmojxlI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dT9swEMCtARLiBW0aiK8xP-w1IrEdp3ksjKqwlk2CQsVLdP5CCEirtpvgv9-dE8p43VNkJ_GD7853Z-d-YexbaRSYkNokOAiJ8tImJredJGjhMIDN08xTNfLwQvdH6nycj_-p4m_4EMsNN7KMuF6TgU9dOHqDhoJ_pEryrEMIFbnC1giVh3q91r0e3Y7e9lnQgFSEUaJtlkmm0_EruzEVR-8Habn97-PU6Gh6H9lmGyHybiPST-yDrz-zOvqU4GdU6cQx--c9IllSgx5sMBB86J-izf7x_PKlhunc82P0Uo5Pan7z85kTcnOxeHjh5-jNSCJ0ozsz97H2ntMiEmG18y026p1enfST9lcJiROYZiYgQ6cDeRGkLWxRQpGXRhchNwaE0iAALxYyi9FbaV2wKAMJmUYxZT63NpfbbLWe1H6H8SyI1OGcEcJcCasN0NGZTL3ELBqjsV12TJNUTRsaRkV86tgxmd1VrbpXhbMgUhMwWXHKKgAFzgrphCi0NrLYZSJO8XKUhp4sKhJItRRI1T0dDJetvf956Stb__W9Vw3OLn7ssw3qbj5GOWCri9lv_wVDioU5bLXmL12IxXs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferable+and+Flexible+Artificial+Memristive+Synapse+Based+on+WOx+Schottky+Junction+on+Arbitrary+Substrates&rft.jtitle=Advanced+electronic+materials&rft.au=Lin%2C+Ya&rft.au=Zeng%2C+Tao&rft.au=Xu%2C+Haiyang&rft.au=Wang%2C+Zhongqiang&rft.date=2018-12-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=4&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.201800373&rft.externalDBID=10.1002%252Faelm.201800373&rft.externalDocID=AELM201800373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon