Transferable and Flexible Artificial Memristive Synapse Based on WOx Schottky Junction on Arbitrary Substrates
The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here, a transferable WOx‐based memristive synapse is demonstrated using a nondestructive water‐dissolution method in which the NaCl substrate is s...
Saved in:
Published in | Advanced electronic materials Vol. 4; no. 12 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here, a transferable WOx‐based memristive synapse is demonstrated using a nondestructive water‐dissolution method in which the NaCl substrate is selected as the sacrificial layer due to its thermotolerance and water‐solubility. The essential synaptic learning functions are achieved to comprehensively mimic the biological synapse, such as short‐term/long‐term plasticity, paired‐pulse facilitation, and spike‐timing‐dependent plasticity. This artificial synapse can be transferred and conformed onto various unconventional substrates to manifest the flexibility, 3D conformality, and biocompatibility. There is no mechanical damage during the transfer process, and all these transferred devices present excellent synaptic emulations. The memristive behavior shows no degeneration after large‐angle bending or 100 times bending tests. This result may pave a feasible way for the realization of wearable neuromorphic computing systems in the future.
Using a nondestructive water‐dissolution method, a transferable WOX memristor is demonstrated when selecting NaCl substrate as the sacrificial layer. The synaptic devices are transferred onto diverse substrates, presenting excellent flexibility and high mechanical endurance. The essential functions of synaptic plasticity are obtained in the device on the bent state. The work offers a feasible method to enable inorganic memristors for transferable applications. |
---|---|
AbstractList | The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here, a transferable WOx‐based memristive synapse is demonstrated using a nondestructive water‐dissolution method in which the NaCl substrate is selected as the sacrificial layer due to its thermotolerance and water‐solubility. The essential synaptic learning functions are achieved to comprehensively mimic the biological synapse, such as short‐term/long‐term plasticity, paired‐pulse facilitation, and spike‐timing‐dependent plasticity. This artificial synapse can be transferred and conformed onto various unconventional substrates to manifest the flexibility, 3D conformality, and biocompatibility. There is no mechanical damage during the transfer process, and all these transferred devices present excellent synaptic emulations. The memristive behavior shows no degeneration after large‐angle bending or 100 times bending tests. This result may pave a feasible way for the realization of wearable neuromorphic computing systems in the future.
Using a nondestructive water‐dissolution method, a transferable WOX memristor is demonstrated when selecting NaCl substrate as the sacrificial layer. The synaptic devices are transferred onto diverse substrates, presenting excellent flexibility and high mechanical endurance. The essential functions of synaptic plasticity are obtained in the device on the bent state. The work offers a feasible method to enable inorganic memristors for transferable applications. Abstract The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here, a transferable WOx‐based memristive synapse is demonstrated using a nondestructive water‐dissolution method in which the NaCl substrate is selected as the sacrificial layer due to its thermotolerance and water‐solubility. The essential synaptic learning functions are achieved to comprehensively mimic the biological synapse, such as short‐term/long‐term plasticity, paired‐pulse facilitation, and spike‐timing‐dependent plasticity. This artificial synapse can be transferred and conformed onto various unconventional substrates to manifest the flexibility, 3D conformality, and biocompatibility. There is no mechanical damage during the transfer process, and all these transferred devices present excellent synaptic emulations. The memristive behavior shows no degeneration after large‐angle bending or 100 times bending tests. This result may pave a feasible way for the realization of wearable neuromorphic computing systems in the future. |
Author | Liu, Yichun Lin, Ya Zhao, Xiaoning Zeng, Tao Liu, Weizhen Ma, Jiangang Wang, Zhongqiang Xu, Haiyang |
Author_xml | – sequence: 1 givenname: Ya surname: Lin fullname: Lin, Ya organization: Ministry of Education – sequence: 2 givenname: Tao surname: Zeng fullname: Zeng, Tao organization: Ministry of Education – sequence: 3 givenname: Haiyang surname: Xu fullname: Xu, Haiyang email: hyxu@nenu.edu.cn organization: Ministry of Education – sequence: 4 givenname: Zhongqiang surname: Wang fullname: Wang, Zhongqiang email: wangzq752@nenu.edu.cn organization: Ministry of Education – sequence: 5 givenname: Xiaoning surname: Zhao fullname: Zhao, Xiaoning organization: Ministry of Education – sequence: 6 givenname: Weizhen surname: Liu fullname: Liu, Weizhen organization: Ministry of Education – sequence: 7 givenname: Jiangang surname: Ma fullname: Ma, Jiangang organization: Ministry of Education – sequence: 8 givenname: Yichun surname: Liu fullname: Liu, Yichun organization: Ministry of Education |
BookMark | eNpNkEtPAjEUhRujiYhsXfcPoH3MtMwSiSgGwgKM7prblxaHGdIOCv_eQQwxuck59yxO7v2u0HlVVw6hG0puKSHsDly5vmWEDgjhkp-hDqNF0aeCvJ3_85eol9KKEEKl4FnOO6haRqiSdxF06TBUFo9LtwuHZRib4IMJUOKZW8eQmvDl8GJfwSY5fA_JWVxX-HW-wwvzUTfN5x4_byvThDZtZxh1aCLEPV5sdWpd49I1uvBQJtf70y56GT8sR0_96fxxMhpO-5ZJyvvA_WAAufTcSCMLkHmhhfS51sAyAQxaMUCNyEVhrDc5oRyoAO2py43JeRdNjr22hpXaxLBu71A1BPUb1PFdQfueKZ2S1gAj2stM2sxkABlYw7hlTAqhW5hdVBy7vkPp9qcyStSBvDqQVyfyavgwnZ02_gNRdH4c |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | DOA |
DOI | 10.1002/aelm.201800373 |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7dca20bf747d4c4aa4adc23d22766b37 AELM201800373 |
Genre | article |
GrantInformation_xml | – fundername: “111” Project funderid: B13013 – fundername: NSFC funderid: 51701037; 51732003; 61774031; 61574031; 51872043 – fundername: Jilin Province funderid: 20160101324JC; 20180520186JH – fundername: NSFC for Excellent Young Scholars funderid: 51422201 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAFWJ AAMMB AAXRX AAZKR ABCUV ABJNI ACAHQ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFPKN AGXDD AIACR AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI M~E O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW |
ID | FETCH-LOGICAL-d2713-a3f88a57f3c7c79a759b67f5bba246a2aa24ca1c6569cdfc5013a16abf1e5cc53 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:29:16 EDT 2025 Wed Aug 20 07:26:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d2713-a3f88a57f3c7c79a759b67f5bba246a2aa24ca1c6569cdfc5013a16abf1e5cc53 |
OpenAccessLink | https://doaj.org/article/7dca20bf747d4c4aa4adc23d22766b37 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7dca20bf747d4c4aa4adc23d22766b37 wiley_primary_10_1002_aelm_201800373_AELM201800373 |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2018 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2010; 10 2017; 7 2017; 8 2013; 25 1990; 56 1991; 59 2000; 3 2015; 584 2005; 64 2011; 11 2011; 10 2014; 24 2017; 110 2013; 8 1998; 395 2010; 22 2013; 14 2018; 1 1992; 357 1997; 387 2011; 22 2008; 20 2012; 24 2014; 6 2012; 22 2015; 1 2011; 334 2018; 28 2009; 180 2006; 17 1999; 25 2006; 7 2007; 91 2003; 38 2012; 8460 2013; 102 2017; 29 2008; 11 2003 2015; 9 1996; 16 2011; 5 2006; 114 2016; 4 2011; 102 2015; 25 2012; 2 2015; 27 2012; 3 2009; 32 2016; 2 2002; 64 2017; 16 2017; 12 2013; 80 2014 2016; 28 2016; 8 2012; 8 |
References_xml | – volume: 25 start-page: 1161 year: 1999 publication-title: J. Exp. Psychol.: Learn. Mem. Cognit. – volume: 29 start-page: 1701780 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 1600100 year: 2016 publication-title: Adv. Electron. Mater. – volume: 10 start-page: 1297 year: 2010 publication-title: Nano Lett. – volume: 3 start-page: 763 year: 2012 publication-title: Nat. Commun. – volume: 24 start-page: 1430 year: 2014 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 5599 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 2994 year: 2012 publication-title: Small – volume: 59 start-page: 3159 year: 1991 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 744 year: 2008 publication-title: Nat. Neurosci. – volume: 9 start-page: 419 year: 2015 publication-title: ACS Nano – volume: 25 start-page: 2733 year: 2013 publication-title: Adv. Mater. – volume: 110 start-page: 163902 year: 2017 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 591 year: 2011 publication-title: Nat. Mater. – volume: 25 start-page: 5425 year: 2013 publication-title: Adv. Mater. – volume: 56 start-page: 2419 year: 1990 publication-title: Appl. Phys. Lett. – volume: 20 start-page: 2947 year: 2008 publication-title: Adv. Mater. – volume: 91 start-page: 379 year: 2007 publication-title: Sol. Energy Mater. Sol. Cells – volume: 38 start-page: 95 year: 2003 publication-title: Exp. Gerontol. – volume: 8460 start-page: 846011 year: 2012 publication-title: Proc. SPIE Int. Soc. Opt. Eng. – volume: 6 start-page: 7 year: 2014 publication-title: NPG Asia Mater. – volume: 102 start-page: 183510 year: 2013 publication-title: Appl. Phys. Lett. – volume: 180 start-page: 99 year: 2009 publication-title: Solid State Ionics – volume: 80 start-page: 691 year: 2013 publication-title: Neuron – volume: 28 start-page: 1704455 year: 2018 publication-title: Adv. Funct. Mater. – volume: 584 start-page: 94 year: 2015 publication-title: Thin Solid Films – volume: 1 start-page: 1700035 year: 2018 publication-title: Adv. The. Simul. – volume: 11 start-page: 5438 year: 2011 publication-title: Nano Lett. – volume: 114 start-page: 410 year: 2006 publication-title: Sens. Actuators, B – volume: 16 start-page: 5661 year: 1996 publication-title: J. Neurosci. – volume: 2 start-page: 1000 year: 2012 publication-title: Sci. Rep. – volume: 334 start-page: 623 year: 2011 publication-title: Science – volume: 25 start-page: 2677 year: 2015 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 254023 year: 2011 publication-title: Nanotechnology – volume: 25 start-page: 4290 year: 2015 publication-title: Adv. Funct. Mater. – volume: 387 start-page: 278 year: 1997 publication-title: Nature – volume: 64 start-page: 2004 year: 2005 publication-title: Neurology – volume: 22 start-page: 2448 year: 2010 publication-title: Adv. Mater. – volume: 5 start-page: 7669 year: 2011 publication-title: ACS Nano – volume: 8 start-page: 15199 year: 2017 publication-title: Nat. Commun. – volume: 17 start-page: 211 year: 2006 publication-title: IEEE Trans. Neural Networks – volume: 3 start-page: 1178 year: 2000 publication-title: Nat. Neurosci. – volume: 110 start-page: 193503 year: 2017 publication-title: Appl. Phys. Lett. – year: 2003 – volume: 102 start-page: 857 year: 2011 publication-title: Appl. Phys. A – volume: 3 start-page: 1171 year: 2000 publication-title: Nat. Neurosci. – volume: 16 start-page: 414 year: 2017 publication-title: Nat. Mater. – volume: 28 start-page: 4250 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 32114 year: 2017 publication-title: RSC Adv. – volume: 4 start-page: 3217 year: 2016 publication-title: J. Mater. Chem. C – volume: 22 start-page: 2759 year: 2012 publication-title: Adv. Funct. Mater. – volume: 357 start-page: 477 year: 1992 publication-title: Nature – volume: 12 start-page: 784 year: 2017 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 13967 year: 2016 publication-title: Nanoscale – volume: 32 start-page: 421 year: 2009 publication-title: Trends Neurosci. – volume: 1 start-page: 1500030 year: 2015 publication-title: Adv. Electron. Mater. – volume: 14 start-page: 2528 year: 2013 publication-title: Org. Electron. – start-page: 195 year: 2014 – volume: 16 start-page: 101 year: 2017 publication-title: Nat. Mater. – volume: 24 start-page: 2929 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 100 year: 2013 publication-title: Nat. Nanotechnol. – volume: 24 start-page: 4499 year: 2012 publication-title: Adv. Mater. – volume: 2 start-page: 1500298 year: 2016 publication-title: Adv. Electron. Mater. – volume: 395 start-page: 37 year: 1998 publication-title: Nature – volume: 7 start-page: 1104 year: 2006 publication-title: EMBO Rep. – volume: 10 start-page: 4381 year: 2010 publication-title: Nano Lett. – volume: 8 start-page: 752 year: 2017 publication-title: Nat. Commun. – volume: 28 start-page: 1705320 year: 2018 publication-title: Adv. Funct. Mater. – volume: 64 start-page: 355 year: 2002 publication-title: Annu. Rev. Physiol. |
SSID | ssj0001763453 |
Score | 2.4029424 |
Snippet | The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial synapses. Here,... Abstract The absence of an effective approach to achieve free‐standing inorganic memristors seriously hinders the development of transferable artificial... |
SourceID | doaj wiley |
SourceType | Open Website Publisher |
SubjectTerms | artificial synapses flexible memristors transferable water‐dissolution method |
Title | Transferable and Flexible Artificial Memristive Synapse Based on WOx Schottky Junction on Arbitrary Substrates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201800373 https://doaj.org/article/7dca20bf747d4c4aa4adc23d22766b37 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EL15EUfGz7MFrMNmPpD220lLE6kGjxUuY_QJRo9Qq9t87s4lFT148hU3CJryXzbxJdt4ydtIzCkxIbRIchER5aROjbTcJuXAoYHWaeapGnlzm41KdT_X0x1JfNCessQdugDstnAWRmoCy1ymrABQ4K6QToshzI2MdOca8H8lU_LqCw0Zp-e3SmIpT8E9UeJ51yXFFtg79vxVpDCmjTbbRakHeb-5hi634epvVMXoEP6OaJo55Ph-RZyU16MTG8IFP_HMcnR-eXy9qeH3zfIDxyPGXmt9dfXIy15zPHxf8HOMWYU8H-jPzEKvsOb0uoi3t2w4rR8Obs3HSLoqQOIEJZQIydLugiyBtYYseFLpn8iJoY0CoHATgxkJmUaf1rAsW0ZaQ5UhI5rW1Wu6y1fql9nuMZ0GkDnEis3IlbG6AfpLJ1EvMl1F37bMBgVS9Nr4XFTlRxx3IT9XyU_3Fzz4TEeJlL41PsqiIkGpJSNUfXkyWrYP_uPIhW6cOm7knR2x1Pnv3x6gg5qbD1vq35X3ZiQ_NF95DxqY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEIAtKAMsCASINx5YIxLbcZKxoFYFWhiggFii8wshIK1KQfTf43NCEStTZCfxcOfz3Tm-L4QcF0qAcrGOnAEXCct1pFKdR04y4wPYNE4sViMPrmRvKC4e0p_ThFgLU_Mh5htuaBlhvUYDxw3pk19qKNhXLCVPcmSo8EWyhKFN3iJL7bvh4_B3o8VbkAg0Sm-cRZTI-OEH3hizk7-DNOD-v4Fq8DTdNbLahIi0Xet0nSzYaoNUwak4O8FSJ-rTf9pFlCU28MGaA0EH9i0Y7aelN7MKxu-Wnno3ZeioovfXXxSZm9Ppy4xeeHeGKsEb7Yl6DsX3FFeRQKt93yTDbuf2rBc1_0qIDPN5ZgTc5TmkmeM601kBWVoomblUKWBCAgN_0ZBoH74V2jjtlcAhkV5PiU21TvkWaVWjym4TmjgWGy8zZJgLpqUC_HbGY8t9Gu3DsR1yikIqxzUOo0RAdegYTZ7KZr6XmdHAYuV8tmKEFgACjGbcMJZJqXi2Q1gQ8XyUGp_MSlRIOVdI2e70B_PW7n9eOiLLvdtBv-yfX13ukRXsr4-j7JPWdPJhD3xQMVWHzbT5BmojxlI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dT9swEMCtARLiBW0aiK8xP-w1IrEdp3ksjKqwlk2CQsVLdP5CCEirtpvgv9-dE8p43VNkJ_GD7853Z-d-YexbaRSYkNokOAiJ8tImJredJGjhMIDN08xTNfLwQvdH6nycj_-p4m_4EMsNN7KMuF6TgU9dOHqDhoJ_pEryrEMIFbnC1giVh3q91r0e3Y7e9lnQgFSEUaJtlkmm0_EruzEVR-8Habn97-PU6Gh6H9lmGyHybiPST-yDrz-zOvqU4GdU6cQx--c9IllSgx5sMBB86J-izf7x_PKlhunc82P0Uo5Pan7z85kTcnOxeHjh5-jNSCJ0ozsz97H2ntMiEmG18y026p1enfST9lcJiROYZiYgQ6cDeRGkLWxRQpGXRhchNwaE0iAALxYyi9FbaV2wKAMJmUYxZT63NpfbbLWe1H6H8SyI1OGcEcJcCasN0NGZTL3ELBqjsV12TJNUTRsaRkV86tgxmd1VrbpXhbMgUhMwWXHKKgAFzgrphCi0NrLYZSJO8XKUhp4sKhJItRRI1T0dDJetvf956Stb__W9Vw3OLn7ssw3qbj5GOWCri9lv_wVDioU5bLXmL12IxXs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferable+and+Flexible+Artificial+Memristive+Synapse+Based+on+WOx+Schottky+Junction+on+Arbitrary+Substrates&rft.jtitle=Advanced+electronic+materials&rft.au=Lin%2C+Ya&rft.au=Zeng%2C+Tao&rft.au=Xu%2C+Haiyang&rft.au=Wang%2C+Zhongqiang&rft.date=2018-12-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=4&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.201800373&rft.externalDBID=10.1002%252Faelm.201800373&rft.externalDocID=AELM201800373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |