Increasing the Magnetic Transition Dipole Moment of Chiral Perovskite Through Eu3+ Doping
Chiral hybrid organic‐inorganic perovskites (HOIPs) are widely investigated due to their superior chiroptical and chiral spintronic properties. Research on the enhancement of chiroptical performance is highly important for the real application of chiral HOIPs. This work employed a rare earth doping...
Saved in:
Published in | Advanced Physics Research Vol. 3; no. 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Edinburgh
John Wiley & Sons, Inc
01.12.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chiral hybrid organic‐inorganic perovskites (HOIPs) are widely investigated due to their superior chiroptical and chiral spintronic properties. Research on the enhancement of chiroptical performance is highly important for the real application of chiral HOIPs. This work employed a rare earth doping strategy to increase the magnetic transition dipole moment of chiral 2D HOIPs R‐/S‐NPB (NPB = 1‐(1‐naphthyl) ethylammonium lead bromide). Doping with Eu3+ does not change the original layered NPB microstructure, and R‐/S‐NPB‐Eu exhibited the magnetic dipole‐allowed transition luminescence of Eu3+ at 594 nm (5D0→7F1). Circular polarized luminescence (CPL) spectra combined with theoretical calculations and transient photoluminescence measurements indicated that the introduction of Eu3+ can enhance the magnetic transition dipole moment of R‐/S‐NPB, thus resulting in an unprecedented glum of 0.05. To the best of our knowledge, this is the highest value for chiral perovskite films. This work combines the unique and superior optoelectronic properties of rare‐earth ions with chiral perovskite and develops an efficient strategy to increase its anisotropy factor, which can accelerate the development of chiral optoelectronics and spintronics towards real application.
In this work, Eu(III) with magnetic dipole‐allowed transitions is first introduced into the chiral perovskite, increasing the magnetic transition dipole moment of chiral 2D perovskite (R‐/S‐NPB‐Eu) films and thereby enhancing their circular dichroism and circularly polarized luminescence performance, resulting in a high anisotropy factor of up to 0.05. This work provides important guidance for developing high‐performance chiral optoelectronic materials. |
---|---|
AbstractList | Chiral hybrid organic‐inorganic perovskites (HOIPs) are widely investigated due to their superior chiroptical and chiral spintronic properties. Research on the enhancement of chiroptical performance is highly important for the real application of chiral HOIPs. This work employed a rare earth doping strategy to increase the magnetic transition dipole moment of chiral 2D HOIPs R‐/S‐NPB (NPB = 1‐(1‐naphthyl) ethylammonium lead bromide). Doping with Eu3+ does not change the original layered NPB microstructure, and R‐/S‐NPB‐Eu exhibited the magnetic dipole‐allowed transition luminescence of Eu3+ at 594 nm (5D0→7F1). Circular polarized luminescence (CPL) spectra combined with theoretical calculations and transient photoluminescence measurements indicated that the introduction of Eu3+ can enhance the magnetic transition dipole moment of R‐/S‐NPB, thus resulting in an unprecedented glum of 0.05. To the best of our knowledge, this is the highest value for chiral perovskite films. This work combines the unique and superior optoelectronic properties of rare‐earth ions with chiral perovskite and develops an efficient strategy to increase its anisotropy factor, which can accelerate the development of chiral optoelectronics and spintronics towards real application.
In this work, Eu(III) with magnetic dipole‐allowed transitions is first introduced into the chiral perovskite, increasing the magnetic transition dipole moment of chiral 2D perovskite (R‐/S‐NPB‐Eu) films and thereby enhancing their circular dichroism and circularly polarized luminescence performance, resulting in a high anisotropy factor of up to 0.05. This work provides important guidance for developing high‐performance chiral optoelectronic materials. Chiral hybrid organic‐inorganic perovskites (HOIPs) are widely investigated due to their superior chiroptical and chiral spintronic properties. Research on the enhancement of chiroptical performance is highly important for the real application of chiral HOIPs. This work employed a rare earth doping strategy to increase the magnetic transition dipole moment of chiral 2D HOIPs R‐/S‐NPB (NPB = 1‐(1‐naphthyl) ethylammonium lead bromide). Doping with Eu3+ does not change the original layered NPB microstructure, and R‐/S‐NPB‐Eu exhibited the magnetic dipole‐allowed transition luminescence of Eu3+ at 594 nm (5D0→7F1). Circular polarized luminescence (CPL) spectra combined with theoretical calculations and transient photoluminescence measurements indicated that the introduction of Eu3+ can enhance the magnetic transition dipole moment of R‐/S‐NPB, thus resulting in an unprecedented glum of 0.05. To the best of our knowledge, this is the highest value for chiral perovskite films. This work combines the unique and superior optoelectronic properties of rare‐earth ions with chiral perovskite and develops an efficient strategy to increase its anisotropy factor, which can accelerate the development of chiral optoelectronics and spintronics towards real application. Abstract Chiral hybrid organic‐inorganic perovskites (HOIPs) are widely investigated due to their superior chiroptical and chiral spintronic properties. Research on the enhancement of chiroptical performance is highly important for the real application of chiral HOIPs. This work employed a rare earth doping strategy to increase the magnetic transition dipole moment of chiral 2D HOIPs R‐/S‐NPB (NPB = 1‐(1‐naphthyl) ethylammonium lead bromide). Doping with Eu3+ does not change the original layered NPB microstructure, and R‐/S‐NPB‐Eu exhibited the magnetic dipole‐allowed transition luminescence of Eu3+ at 594 nm (5D0→7F1). Circular polarized luminescence (CPL) spectra combined with theoretical calculations and transient photoluminescence measurements indicated that the introduction of Eu3+ can enhance the magnetic transition dipole moment of R‐/S‐NPB, thus resulting in an unprecedented glum of 0.05. To the best of our knowledge, this is the highest value for chiral perovskite films. This work combines the unique and superior optoelectronic properties of rare‐earth ions with chiral perovskite and develops an efficient strategy to increase its anisotropy factor, which can accelerate the development of chiral optoelectronics and spintronics towards real application. |
Author | Yang, Zhengwei Zhang, Chuang Du, Yaping Wu, Haolin Long, Guankui Zeng, Zhichao Lu, Haolin |
Author_xml | – sequence: 1 givenname: Zhichao surname: Zeng fullname: Zeng, Zhichao organization: Nankai University – sequence: 2 givenname: Haolin surname: Lu fullname: Lu, Haolin organization: Nankai University – sequence: 3 givenname: Zhengwei surname: Yang fullname: Yang, Zhengwei organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Haolin surname: Wu fullname: Wu, Haolin organization: Nankai University – sequence: 5 givenname: Chuang surname: Zhang fullname: Zhang, Chuang email: zhangc@iccas.ac.cn organization: Chinese Academy of Sciences – sequence: 6 givenname: Guankui surname: Long fullname: Long, Guankui email: longgk09@nankai.edu.cn organization: Nankai University – sequence: 7 givenname: Yaping orcidid: 0000-0002-9937-2087 surname: Du fullname: Du, Yaping email: ypdu@nankai.edu.cn organization: Nankai University |
BookMark | eNpNkc1LAzEQxYMoWD-ungMepTWZZLPdo7RVC4oiFfQUJtm0TV2TNbv14793tVI8zTDz-M0b3gHZDTE4Qk44G3DG4BzrzzQABpIxpuQO6UGe8T4Hxnb_9fvkuGlWnQSGBReS98jzNNjksPFhQdulo7e4CK71ls4Shsa3PgY69nWsulV8daGlcU5HS5-wovcuxffmxbeOzpYprhdLOlmLMzqOdYc7IntzrBp3_FcPyePlZDa67t_cXU1HFzf9ElQm-qVhCuYg0IJyRokyMyUCOCw5gwzM3FhXSMhRKcRiOEQwyHJj7VBJax0Xh2S64ZYRV7pO_hXTl47o9e8gpoXG1H1UOa1kkQvIgZncShB5YVnhhFHWKmOYNB3rdMOqU3xbu6bVq7hOobOvBS8AgAOXnSrbqD585b62JznTP1Honyj0Ngp9cf_0wAGkEN_NTH-w |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1002/apxr.202400064 |
DatabaseName | Wiley Online Library Open Access ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Science Database (NC LIVE) ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_649732720b7c42379c09e3b6cc6bb04b APXR12243 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 92256202; 12261131500; 22305129; 22371131; 52103218 – fundername: 111 Project funderid: B12015; B18030 – fundername: Fundamental Research Funds for the Central Universities, Nankai University funderid: 023‐63223021 – fundername: Outstanding Youth Project of Tianjin Natural Science Foundation funderid: 20JCJQJC00130 – fundername: China Postdoctoral Science Foundation funderid: BX20220157; 2022M721698 – fundername: Tianjin Key Lab for Rare Earth Materials and Applications funderid: ZB19500202 |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG ACCMX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P PCBAR PDBOC PIMPY 3V. 7XB 8FE 8FG 8FK AAFWJ AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY ARCSS D1I M~E PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO WIN |
ID | FETCH-LOGICAL-d2653-db062f23ac26eb63d5bda22ead10252bfbce9427a66aa988a2ba07bcc864cce13 |
IEDL.DBID | DOA |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:27:34 EDT 2025 Fri Jul 25 11:54:02 EDT 2025 Wed Jan 22 17:12:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d2653-db062f23ac26eb63d5bda22ead10252bfbce9427a66aa988a2ba07bcc864cce13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9937-2087 |
OpenAccessLink | https://doaj.org/article/649732720b7c42379c09e3b6cc6bb04b |
PQID | 3192221214 |
PQPubID | 6852862 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_649732720b7c42379c09e3b6cc6bb04b proquest_journals_3192221214 wiley_primary_10_1002_apxr_202400064_APXR12243 |
PublicationCentury | 2000 |
PublicationDate | December 2024 20241201 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | Edinburgh |
PublicationPlace_xml | – name: Edinburgh |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2023; 35 2023; 14 2023; 11 2023; 33 1968; 49 2019; 5 2020; 60 2023; 9 2007 2020; 14 2020; 12 2024; 146 2006; 150 2020; 11 2024 2024; 15 2019; 141 2017; 9 2024; 18 2016; 55 2019; 363 2022; 144 2023; 62 2020; 5 2023; 22 2021; 33 2023 2022; 5 2022; 6 2022; 13 2022; 58 2021; 371 2024; 67 2022; 10 2024; 1232 2022; 11 2021; 60 1929; 52 2008; 130 |
References_xml | – volume: 14 start-page: 3124 year: 2023 publication-title: Nat. Commun. – volume: 371 start-page: 1129 year: 2021 publication-title: Science – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2023 publication-title: Adv. Opt. Mater. – volume: 18 start-page: 5122 year: 2024 publication-title: ACS Nano – volume: 14 start-page: 7610 year: 2020 publication-title: ACS Nano – volume: 12 start-page: 922 year: 2020 publication-title: Int. J. Microw. Wirel. T. – year: 2023 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 9065 year: 2016 publication-title: Inorg. Chem. – volume: 9 start-page: 1567 year: 2017 publication-title: Nanoscale – year: 2007 – volume: 10 year: 2022 publication-title: J. Mater. Chem. C – volume: 5 start-page: 423 year: 2020 publication-title: Nat. Rev. Mater. – volume: 1232 year: 2024 publication-title: Comput. Theor. Chem. – volume: 6 year: 2022 publication-title: Phys. Rev. Mater. – volume: 5 start-page: 3058 year: 2019 publication-title: Chem – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 146 start-page: 4687 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1551 year: 2022 publication-title: Nat. Commun. – volume: 363 start-page: 265 year: 2019 publication-title: Science – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 60 start-page: 1004 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 837 year: 2022 publication-title: Matter – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 150 start-page: 21 year: 2006 publication-title: J. Electron Spectrosc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 15 start-page: 138 year: 2024 publication-title: Nat. Commun. – volume: 14 start-page: 8816 year: 2020 publication-title: ACS Nano – volume: 18 start-page: 5890 year: 2024 publication-title: ACS Nano – year: 2024 publication-title: Adv. Mater. – volume: 67 start-page: 1961 year: 2024 publication-title: Sci. China Chem. – volume: 22 start-page: 322 year: 2023 publication-title: Nat. Mater. – volume: 9 year: 2023 publication-title: Sci. Adv. – year: 2023 publication-title: Adv. Theor. Simul. – volume: 11 start-page: 4699 year: 2020 publication-title: Nat. Commun. – volume: 49 start-page: 4450 year: 1968 publication-title: J. Chem. Phys. – volume: 52 start-page: 161 year: 1929 publication-title: Z. Physik – volume: 130 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 150 year: 2022 publication-title: Light Sci. Appl. – volume: 58 start-page: 7650 year: 2022 publication-title: Chem. Commun. – volume: 5 start-page: 109 year: 2020 publication-title: Nat. Rev. Chem. – volume: 11 start-page: 5461 year: 2023 publication-title: J. Mater. Chem. C |
SSID | ssj0002891341 |
Score | 2.2755997 |
Snippet | Chiral hybrid organic‐inorganic perovskites (HOIPs) are widely investigated due to their superior chiroptical and chiral spintronic properties. Research on the... Abstract Chiral hybrid organic‐inorganic perovskites (HOIPs) are widely investigated due to their superior chiroptical and chiral spintronic properties.... |
SourceID | doaj proquest wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | 2D chiral perovskite Anisotropy Charged particles Circularly polarized luminescence Dipole moments Doping Europium Hybrid organic‐inorganic perovskite Luminescence Magnetic dipoles Magnetic transition dipole Magnetic transitions Optoelectronics Perovskites Photoluminescence Rare earth doping Spintronics Thin films |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-wwEA8-vXh5KCquTyUHbxJtJ2mansSPFRGURRTWU8hXVZDtvt1V_PPNtNlVL14bmsLMJPPrfPyGkAPvK27KKmdKOctE4JyZiCMYQBZKaUJRKGxOvrmVVw_ielgMU8Btmsoq53die1H7xmGM_DiaSnRlOeTiZPyf4dQozK6mERp_yEpcUvHna-Wsfzu4W0RZALNw7fhKKIuc5dEm5syNGRyb8QdSgmIZZSZFYu3_ATW_A9bW41yukb8JKtLTTrfrZCmMNshjPNBYRx49Do3Yjd6YpxH2IdLW6bT1V_TiZdy8xiUkV5jRpqbnzy-TuNMgTJr3KYZr6X03nof23_ghvWibpjbJw2X__vyKpfEIzIMsOPM2k1ADNw5ksJL7wnoDEE0jgoYCbG1dqASURkpjKqUMWJOV1jklhXMh51tkedSMwjahypfgXQ2CSytyXytR1CGqq65VxLPe98gZikaPOwYMjZzU7YNm8qSTiWspkPmnhMyWDottKpdVgVvpnLQ2E7ZHdueC1emgTPWXWnvkqBX24iMdoTJo1JJeaEmfDoZ3mA7kO7_v94-s4ktd6ckuWZ5N3sJeBBAzu5-s5BPlZ8MW priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XryIouL6IgdvUmwnaZoedR8swsoiCusp5FUVZLvsQ_z5Ztpa16PXhCSQmcl8TGa-IeTKuZzpLE8iKa2JuGcs0gFHRACxz4T2aSqxOHn8IEbP_H6aTjeq-Gt-iDbghpZRvddo4Nosb35JQ_X8C_k8MQcyuNVtsoP1tcieD3zSRlkAf-Gq9pWQpUmUBJ34YW6M4ebvFg1r_x-ouQlYK48z3Cd7DVSkt7VsD8iWnx2Sl2DQmEcePA4N2I2O9esM6xBp5XSq_Cvaf5-XH2EKyRVWtCxo7-19EXaa-EX5ucRwLX2q2_PQwZpd035VNHVEnoeDp94oatojRA5EyiJnYgEFMG1BeCOYS43TAEE1AmhIwRTG-pxDpoXQOpdSg9FxZqyVglvrE3ZMOrNy5k8IlS4DZwvgTBieuELytPBBXEUhA551rkvu8GrUvGbAUMhJXQ2Ui1fVqLgSHJl_MohNZjHZJrdx7pkR1gpjYm665PznYlVjKEsVXoCAUBJIeJfU4m4PqQmVQaGUVCsldTuZPuJ3IDv974IzsoujdTLKOemsFmt_ESDFylxWWvMNMbTEsg priority: 102 providerName: Wiley-Blackwell |
Title | Increasing the Magnetic Transition Dipole Moment of Chiral Perovskite Through Eu3+ Doping |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400064 https://www.proquest.com/docview/3192221214 https://doaj.org/article/649732720b7c42379c09e3b6cc6bb04b |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTuswELV4bNggEFzRC1ResEOBZOw4zpJHC0IqqhBIvSvLr_AQaqtSECu-nZkkoLK6GzZeJJJjzfFkTuKZM4wdhFAKW5RZorV3iYxCJBZ5RAKQxkLZmOeaipMH1-ryTl6N8tFCqy_KCWvkgRvDHStJejIFpK7wlMJR-rSMwinvlXOpdPT2xZi38DH11ByfkVLZl0pjCsd2-k7yn5QymSrZKvT_oJWL5LSOLv0Ntt7SQn7SLGeTLcXxFvuHzks54xhdOPI0PrD3Y6o55HWAqXOt-PnjdPKMt0hIYc4nFT97eJzhTMM4m7y90K9Zftu04uG9V3HIz-sCqW121-_dnl0mbSuEJIDKRRJcqqACYT2o6JQIuQsWALcBEoQcXOV8LCUUVilrS60tOJsWznutpPcxE3_YyngyjjuM61BA8BVIoZzMQqVlXkWEpqo0ctcQOuyUTGOmjdqFIf3p-gKiYlpUzP9Q6bC9L8Oa1ileDHo7spEMMtlhR7Wxvx_SiCeDIZTMN0rmZDi6oaM_8fc3FrXL1mjqJhllj63MZ69xHynF3HXZMsghjrp_0WWrp73r4U233lE4Dj56n7PjzFs |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOcAFgQCxpYAPcEKmydhxnANCpdtlS7tVhbbScjL-SqmENsvulo8_xW_E4yQLXLj1mkgTafzG82LPvCHkufcVN2WVM6WcZSJwzkzkEQwgC6U0oSgUNidPTuX4XLyfFbMt8qvvhcGyyn5PTBu1bxyeke9FqMRUlkMu3iy-Mpwahber_QiNFhbH4ef3-Mu2en00jOv7AmB0OD0Ys26qAPMgC868zSTUwI0DGazkvrDeAESPxlxbgK2tC5WA0khpTKWUAWuy0jqnpHAu5DzavUFuCs4rjCg1erc50wG880vDMqEscpZHBPY6kRnsmcUPFCDFos1Mim5GwD_E9m96nPLb6C650xFTut8i6R7ZCvP75GPcPrBqPeY3GpkinZiLOXY90pTiUrUXHV4umi_xFUo5rGlT04PPl8to6Swsm28rPBym03YYED284i_pMLVoPSDn1-K2h2R73szDI0KVL8G7GgSXVuS-VqKoQwRHXavInr0fkLfoGr1o9TY0KmCnB83yQncBpaVAnaESMls6LO2pXFYFbqVz0tpM2AHZ7R2ru7Bc6T8gGpBXydmbj7TyzaBxlfRmlfT-2ewDXj7ynf_be0ZujaeTE31ydHr8mNxGA23Ryy7ZXi-vwpNIXdb2acILJZ-uG6C_ATQKAEM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZYkdBeEBOgFRj4gTcUkZwdx3nsWiq2AaoQRd1eLP-ESqip2oL258-XhAKPe41jW_Ld-T6d774j5NS5kumizBIprUm4ZyzREUckAKkvhPZ5LrE4-fpGXI75z0k-eVfF3_BDrANuaBn1fY0GPnfh_I00VM__Ip8n5kBGt_qJbCJVXtTrzd79-M94HWcBfIerG1hCkWdJFrXilbsxhfOPi7S8_R_A5nvIWvuc4Q7ZbsEi7TXS_UI2_GyX_I4mjZnk0efQiN7otX6YYSUird1OnYFFB9N59RSHkF5hRatA-4_TRVxp5BfVyxIDtvSuadBDL57ZGR3UZVN7ZDy8uOtfJm2DhMSByFniTCogANMWhDeCudw4DRCVI8KGHEww1pccCi2E1qWUGoxOC2OtFNxan7F90plVM_-VUOkKcDYAZ8LwzAXJ8-CjwEKQEdE61yXf8WjUvOHAUMhKXX-oFg-qVXIlOHL_FJCawmK6TWnT0jMjrBXGpNx0ydHrwarWVJYq3gERo2SQ8S5pBL7epKFUBoVSUmspqd5ocosPguzgfyeckK3RYKiuftz8OiSf8YcmM-WIdFaLZ_8t4ouVOW5V6B-2LckW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+the+Magnetic+Transition+Dipole+Moment+of+Chiral+Perovskite+Through+Eu3%2B+Doping&rft.jtitle=Advanced+Physics+Research&rft.au=Zhichao+Zeng&rft.au=Haolin+Lu&rft.au=Zhengwei+Yang&rft.au=Haolin+Wu&rft.date=2024-12-01&rft.pub=Wiley-VCH&rft.eissn=2751-1200&rft.volume=3&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400064&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_649732720b7c42379c09e3b6cc6bb04b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |