Computing mod ℓ Galois representations associated to modular forms for small primes

In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute th...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 12; pp. 28766 - 28779
Main Authors Peng Tian, Ha Thanh Nguyen Tran, Dung Hoang Duong
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute the mod $ \ell $ projective Galois representations associated to $ \Delta_{k} $ for $ k = 16, 20, 22, 26 $ and all the unexceptional primes $ \ell $, with $ \ell < k-1 $. As an application, for $ k = 16, 20, 22, 26 $, we obtain the new bounds $ B_k $ of $ n $ such that $ a_n(\Delta_k)\ne0 $ for all $ n < B_k $.
AbstractList In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute the mod $ \ell $ projective Galois representations associated to $ \Delta_{k} $ for $ k = 16, 20, 22, 26 $ and all the unexceptional primes $ \ell $, with $ \ell < k-1 $. As an application, for $ k = 16, 20, 22, 26 $, we obtain the new bounds $ B_k $ of $ n $ such that $ a_n(\Delta_k)\ne0 $ for all $ n < B_k $.
Author Peng Tian
Ha Thanh Nguyen Tran
Dung Hoang Duong
Author_xml – sequence: 1
  fullname: Peng Tian
  organization: 1. School of Mathematics, East China University of Science and Technology, Shanghai, 200237, China
– sequence: 2
  fullname: Ha Thanh Nguyen Tran
  organization: 2. Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Edmonton, T5B 4E4, Canada
– sequence: 3
  fullname: Dung Hoang Duong
  organization: 3. School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522, Australia
BookMark eNotjT1OAzEUhC0EEiGkpPcFNvgP21uiCEKkSDSkXr3Yz8HR7jqynYKeG3BDTkICNPNJM6OZG3I5phEJueNsLlup7geo73PBhOTKyAsyESc0urX2msxK2TPGBBdKGDUhm0UaDscaxx0dkqffn190CX2KhWY8ZCw4VqgxjYVCKclFqOhpTefysYdMQ8pDOSstA_Q9PeQ4YLklVwH6grN_Tsnm-elt8dKsX5erxeO68UKz2qAxyhgtlbYagjWtDN6gFbwN3nMUGh1457ANXGkjFViG2yCYP8VGayWnZPW36xPsu_M35I8uQex-jZR3HeQaXY8d91oHKd1pB5Viwfotw8AejHJCBNbKHzSBYls
ContentType Journal Article
DBID DOA
DOI 10.3934/math.20231473
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 28779
ExternalDocumentID oai_doaj_org_article_1d66f33c673e440f8db0ef0574c22f09
GroupedDBID ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-d260t-e77477634686af8793fd7e8219fdd1e26ecadcce9f146734a80ebf20dfdd76643
IEDL.DBID DOA
IngestDate Tue Oct 22 15:14:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d260t-e77477634686af8793fd7e8219fdd1e26ecadcce9f146734a80ebf20dfdd76643
OpenAccessLink https://doaj.org/article/1d66f33c673e440f8db0ef0574c22f09
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_1d66f33c673e440f8db0ef0574c22f09
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
SSID ssj0002124274
Score 2.2603335
Snippet In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We...
SourceID doaj
SourceType Open Website
StartPage 28766
SubjectTerms fourier coefficients of modular forms
mod $ \ell $ galois representations
modular forms
polynomials associated to modular galois representations
unexceptional primes
Title Computing mod ℓ Galois representations associated to modular forms for small primes
URI https://doaj.org/article/1d66f33c673e440f8db0ef0574c22f09
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTsMwELRQT3BAPMVbPnCNmsauH0dAlAqpnKjUW-TYawmpTSoS_oA_6B_yJewmAfXGhUsOieVIO_LsbGLPMnaLGiAzIx2SMUiVSMw5iS0CkqGXUFgPPgMqFGcvajqXz4vxYqvVF-0J6-yBu8ANR0GpKIRXWoCUaTShSCGiypA-y2J_dC-1W8UUcTASssR6qzPVFFbIIeo_-veAckZSj_Qtg_42k0wO2H4vAfld9-pDtgPlEdub_fqn1sds3jVbwLTCV1XgX58b_uSW1VvNWxPKnwNDZc1dH14IvKloMG0r5aREa7ryeuWWS74mE__6hM0nj68P06RvgJAELDOaBFCbaSQAqYxy0eBSikGDQZKJIYwgU-Bd8B5sJL4T0pkUipilAR9rhVrjlA3KqoQzxr1HXRQxeysjpIhgceVa0AHVjNfW2XN2TxHJ153HRU6u0-0NxCLvscj_wuLiPya5ZLsEU_eZ44oNmvcPuMbE3xQ3LcbfYsut_w
link.rule.ids 315,783,787,867,2109,27938,27939
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+mod+%E2%84%93+Galois+representations+associated+to+modular+forms+for+small+primes&rft.jtitle=AIMS+mathematics&rft.au=Peng+Tian&rft.au=Ha+Thanh+Nguyen+Tran&rft.au=Dung+Hoang+Duong&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=12&rft.spage=28766&rft.epage=28779&rft_id=info:doi/10.3934%2Fmath.20231473&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1d66f33c673e440f8db0ef0574c22f09