Computing mod ℓ Galois representations associated to modular forms for small primes
In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute th...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 12; pp. 28766 - 28779 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute the mod $ \ell $ projective Galois representations associated to $ \Delta_{k} $ for $ k = 16, 20, 22, 26 $ and all the unexceptional primes $ \ell $, with $ \ell < k-1 $. As an application, for $ k = 16, 20, 22, 26 $, we obtain the new bounds $ B_k $ of $ n $ such that $ a_n(\Delta_k)\ne0 $ for all $ n < B_k $. |
---|---|
AbstractList | In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute the mod $ \ell $ projective Galois representations associated to $ \Delta_{k} $ for $ k = 16, 20, 22, 26 $ and all the unexceptional primes $ \ell $, with $ \ell < k-1 $. As an application, for $ k = 16, 20, 22, 26 $, we obtain the new bounds $ B_k $ of $ n $ such that $ a_n(\Delta_k)\ne0 $ for all $ n < B_k $. |
Author | Peng Tian Ha Thanh Nguyen Tran Dung Hoang Duong |
Author_xml | – sequence: 1 fullname: Peng Tian organization: 1. School of Mathematics, East China University of Science and Technology, Shanghai, 200237, China – sequence: 2 fullname: Ha Thanh Nguyen Tran organization: 2. Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Edmonton, T5B 4E4, Canada – sequence: 3 fullname: Dung Hoang Duong organization: 3. School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522, Australia |
BookMark | eNotjT1OAzEUhC0EEiGkpPcFNvgP21uiCEKkSDSkXr3Yz8HR7jqynYKeG3BDTkICNPNJM6OZG3I5phEJueNsLlup7geo73PBhOTKyAsyESc0urX2msxK2TPGBBdKGDUhm0UaDscaxx0dkqffn190CX2KhWY8ZCw4VqgxjYVCKclFqOhpTefysYdMQ8pDOSstA_Q9PeQ4YLklVwH6grN_Tsnm-elt8dKsX5erxeO68UKz2qAxyhgtlbYagjWtDN6gFbwN3nMUGh1457ANXGkjFViG2yCYP8VGayWnZPW36xPsu_M35I8uQex-jZR3HeQaXY8d91oHKd1pB5Viwfotw8AejHJCBNbKHzSBYls |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.3934/math.20231473 |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 28779 |
ExternalDocumentID | oai_doaj_org_article_1d66f33c673e440f8db0ef0574c22f09 |
GroupedDBID | ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-d260t-e77477634686af8793fd7e8219fdd1e26ecadcce9f146734a80ebf20dfdd76643 |
IEDL.DBID | DOA |
IngestDate | Tue Oct 22 15:14:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d260t-e77477634686af8793fd7e8219fdd1e26ecadcce9f146734a80ebf20dfdd76643 |
OpenAccessLink | https://doaj.org/article/1d66f33c673e440f8db0ef0574c22f09 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d66f33c673e440f8db0ef0574c22f09 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
SSID | ssj0002124274 |
Score | 2.2603335 |
Snippet | In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 28766 |
SubjectTerms | fourier coefficients of modular forms mod $ \ell $ galois representations modular forms polynomials associated to modular galois representations unexceptional primes |
Title | Computing mod ℓ Galois representations associated to modular forms for small primes |
URI | https://doaj.org/article/1d66f33c673e440f8db0ef0574c22f09 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTsMwELRQT3BAPMVbPnCNmsauH0dAlAqpnKjUW-TYawmpTSoS_oA_6B_yJewmAfXGhUsOieVIO_LsbGLPMnaLGiAzIx2SMUiVSMw5iS0CkqGXUFgPPgMqFGcvajqXz4vxYqvVF-0J6-yBu8ANR0GpKIRXWoCUaTShSCGiypA-y2J_dC-1W8UUcTASssR6qzPVFFbIIeo_-veAckZSj_Qtg_42k0wO2H4vAfld9-pDtgPlEdub_fqn1sds3jVbwLTCV1XgX58b_uSW1VvNWxPKnwNDZc1dH14IvKloMG0r5aREa7ryeuWWS74mE__6hM0nj68P06RvgJAELDOaBFCbaSQAqYxy0eBSikGDQZKJIYwgU-Bd8B5sJL4T0pkUipilAR9rhVrjlA3KqoQzxr1HXRQxeysjpIhgceVa0AHVjNfW2XN2TxHJ153HRU6u0-0NxCLvscj_wuLiPya5ZLsEU_eZ44oNmvcPuMbE3xQ3LcbfYsut_w |
link.rule.ids | 315,783,787,867,2109,27938,27939 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+mod+%E2%84%93+Galois+representations+associated+to+modular+forms+for+small+primes&rft.jtitle=AIMS+mathematics&rft.au=Peng+Tian&rft.au=Ha+Thanh+Nguyen+Tran&rft.au=Dung+Hoang+Duong&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=12&rft.spage=28766&rft.epage=28779&rft_id=info:doi/10.3934%2Fmath.20231473&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1d66f33c673e440f8db0ef0574c22f09 |