On Ulam–Hyers–Mittag-Leffler Stability of Fractional Integral Equations Containing Multiple Variable Delays

In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order math...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 13; no. 4; p. 606
Main Authors Tunç, Osman, Tunç, Cemil
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2025
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math13040606

Cover

Loading…
Abstract In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order mathematical models. Thereby, given these considerations, the investigation of qualitative properties, in particular, Ulam-type stabilities of fractional differential equations, fractional integral equations, etc., has now become a highly attractive subject for mathematicians, as this represents an important field of study due to their extensive applications in various branches of aerodynamics, biology, chemistry, the electrodynamics of complex media, polymer science, physics, rheology, and so on. Meanwhile, the qualitative concepts called Ulam–Hyers–Mittag-Leffler (U-H-M-L) stability and Ulam–Hyers–Mittag-Leffler–Rassias (U-H-M-L-R) stability are well-suited for describing the characteristics of fractional Ulam-type stabilities. The Banach contraction principle is a fundamental tool in nonlinear analysis, with numerous applications in operational equations, fractal theory, optimization theory, and various other fields. In this study, we consider a nonlinear fractional Volterra integral equation (FrVIE). The nonlinear terms in the FrVIE contain multiple variable delays. We prove the U-H-M-L stability and U-H-M-L-R stability of the FrVIE on a finite interval. Throughout this article, new sufficient conditions are obtained via six new results with regard to the U-H-M-L stability or the U-H-M-L-R stability of the FrVIE. The proofs depend on Banach’s fixed-point theorem, as well as the Chebyshev and Bielecki norms. In the particular case of the FrVIE, an example is delivered to illustrate U-H-M-L stability.
AbstractList In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order mathematical models. Thereby, given these considerations, the investigation of qualitative properties, in particular, Ulam-type stabilities of fractional differential equations, fractional integral equations, etc., has now become a highly attractive subject for mathematicians, as this represents an important field of study due to their extensive applications in various branches of aerodynamics, biology, chemistry, the electrodynamics of complex media, polymer science, physics, rheology, and so on. Meanwhile, the qualitative concepts called Ulam–Hyers–Mittag-Leffler (U-H-M-L) stability and Ulam–Hyers–Mittag-Leffler–Rassias (U-H-M-L-R) stability are well-suited for describing the characteristics of fractional Ulam-type stabilities. The Banach contraction principle is a fundamental tool in nonlinear analysis, with numerous applications in operational equations, fractal theory, optimization theory, and various other fields. In this study, we consider a nonlinear fractional Volterra integral equation (FrVIE). The nonlinear terms in the FrVIE contain multiple variable delays. We prove the U-H-M-L stability and U-H-M-L-R stability of the FrVIE on a finite interval. Throughout this article, new sufficient conditions are obtained via six new results with regard to the U-H-M-L stability or the U-H-M-L-R stability of the FrVIE. The proofs depend on Banach’s fixed-point theorem, as well as the Chebyshev and Bielecki norms. In the particular case of the FrVIE, an example is delivered to illustrate U-H-M-L stability.
Audience Academic
Author Tunç, Osman
Tunç, Cemil
Author_xml – sequence: 1
  fullname: Tunç, Osman
– sequence: 2
  fullname: Tunç, Cemil
BookMark eNpNUbtuGzEQJAIbiGO78wcckPocvo5HloZiRwJkuPCjPSyP5IUCRco8qlDnf_Af5ktCWymyW8xgdneK2W_oJKZoEboi-JoxhX9sofwmDHMssPiCziilfdvXwcl__Cu6nOcNrqUIk1ydofQQm-cA2z9v78uDzXPFe18KTO3aOhdsbh4LaB98OTTJNXcZxuJThNCsYrFTruT2dQ8f2twsUizgo49Tc78Pxe-CbV4ge9CV_LQBDvMFOnUQZnv5D8_R893t02LZrh9-rRY369bQTpSWalCsc1ZgIzSW2GEpCbdWaKWI6kDLjnfCKuYU05QzKw0l0mlBDZddD-wcrY6-JsFm2GW_hXwYEvjhU0h5GiAXPwY7MCME6zXrhdacOi35iJXoiJGjMqNy1ev70WuX0-vezmXYpH2uGcwDIz2pWfakr1vXx60JqqmPLpUaVm1jt36sv3K-6jeSKonrGWd_AZ3jiOk
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math13040606
DatabaseName ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Open Access Full Text
DatabaseTitle Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_3d6637b376bb42fb84c09651d8c9dc9f
A829803174
GeographicLocations New York
United States
GeographicLocations_xml – name: New York
– name: United States
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-d256t-2ba935fe60d6b080f08814ee6b99195ab85456e93f93b243e8d218fb62d4857a3
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Wed Aug 27 01:21:06 EDT 2025
Fri Jul 25 12:00:21 EDT 2025
Tue Jun 10 20:56:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d256t-2ba935fe60d6b080f08814ee6b99195ab85456e93f93b243e8d218fb62d4857a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3171091717?pq-origsite=%requestingapplication%
PQID 3171091717
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_3d6637b376bb42fb84c09651d8c9dc9f
proquest_journals_3171091717
gale_infotracacademiconefile_A829803174
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0000913849
Score 2.2885978
Snippet In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world...
SourceID doaj
proquest
gale
SourceType Open Website
Aggregation Database
StartPage 606
SubjectTerms Analysis
Banach’s fixed-point theorem
Chebyshev and Bielecki norms
Chebyshev approximation
Complex media
Differential equations
Electrodynamics
Fixed points (mathematics)
Fractional calculus
fractional Volterra integral equation
Integers
Integral equations
Mathematical analysis
Mathematical models
Mathematical optimization
Nonlinear analysis
Norms
Ordinary differential equations
Rheological properties
Rheology
Stability
U-H-M-L stability
U-H-M-L-R stability
Volterra integral equations
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1EoyAMSU9Q0cRJ7LNCqIAoLRd0iX2wDUpVCE4Zu_Af-Ib-Es52iLoiFKVIiRdad79076e4dIWeQYh2RCSxL7IQMSyIIICqcvDaTEuFPFq7L9y4djtnNJJmsrPqyPWFeHtgbrhMrzIkZYBwAsMgAZ4UVLOkqXghVCGPRF3PeSjHlMFh0Y86E73SPsa7vIP97RrzG_BUu9fl_Q2GXWgbbZKvhhLTnz7JD1nS5SzZHP4Kq1R6Z3Zd0jM77-vgcWpKMz9FLXcun4FYbM9VziqzR9bku6MzQwdzPK-Bfr70exJT237yqd0WtIpVfDEFHTT8hfcSa2U5R0Ss9lYtqn4wH_YfLYdDsSggUkpY6iECKODE6DVUKyAINokeXaZ0CEkCRSOCWKmkRGxFDxGLNFSZ3g65SjCeZjA_Iejkr9SGhWcgUgFGaFcAMBzQlgpAxBWRJ16Rhi1xY6-WvXg4jtwLV7gW6LW_clv_lthY5t7bPbRjVaBPZTAPgEawgVd7jkeAIOBlrkfbSPXkTX1WOH6yiKdaiR_9xmmOyEdm9vq4bu03W6_m7PkGyUcOpu1fftOjVXA
  priority: 102
  providerName: Directory of Open Access Journals
Title On Ulam–Hyers–Mittag-Leffler Stability of Fractional Integral Equations Containing Multiple Variable Delays
URI https://www.proquest.com/docview/3171091717
https://doaj.org/article/3d6637b376bb42fb84c09651d8c9dc9f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LTuswELV4bGCBeNwryqPyAolVRJs4ib1CPFoKooDQ7RW7yBPbgFQ10IQFO_6BP-RLmElcWMEqUqJE0Yxz5owzc4axPUgwj0gVpiXUISPiEAII81peW2iN8Kfzusr3KhmMxMVdfOc33EpfVjnDxBqoTZHTHvkBxjnSsMTs4_DpOaCpUfR31Y_QmGeLCMESk6_F497Vze3XLgupXkqhmor3CPP7A-SBD4jbGMc6M53-n9C4DjH9VbbiuSE_apy5xubsZJ0tD7-EVcsNVlxP-Aid-PH2PiCyjMfhY1Xp--DSOje2U47ssa53feWF4_1p07eATz1vdCHGvPfcqHuXnJSpmgERfOjrCvl_zJ2pm4qf2rF-Lf-wUb_372QQ-JkJgUHyUgUhaBXFziYdkwCyQYco0hXWJoBEUMUaJFEmqyKnIghFZKXBIO_QZUbIONXRX7YwKSZ2k_G0IwyAM1bkIJwENCWCkXM5pHHXJZ0WOybrZU-NLEZGQtX1iWJ6n_l1n0UGKU0KeCeACB1IkZPeTNfIXJlcuRbbJ9tn9DlVaBPtuwLwFUiYKjuSoZIIPKlosZ2ZezL_nZXZ96rY-v3yNlsKaXJvXW-9wxaq6YvdRTpRQZvNy_5Z26-cdp2UfwIYis_Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAeEL9i2wI-gDhFzTpOYh8QKrTLLt0tly7qzdixXSqtNu0mCO2Nd-h79KF4EmbyU05w6ylSrFjJZH6-SWa-AXhtM8wjcoVpCXXIiJTbyPKiodcWxqD7M0VT5Xucjefi82l6ugHXfS8MlVX2PrFx1K4s6Bv5HsY54rDE7OP9xWVEU6Po72o_QqNViyO__okpW_VucoDv9w3no8OTj-OomyoQOQzvdcStUUkafBa7zCJeCmhnQ-F9ZhEqqdRYSaDCqySoxHKReOkwDAZ8KCdkmpsE970Dd0WSKLIoOfp0802HODalUG19Pa7He4g6v2OUwKgZ91MB_uX7m4A2eggPOiTK9lvVeQQbfvkYtmY3NK7VEyi_LNkcVeb3r6sxQXM8zs7r2pxFUx_Cwq8YYtWmunbNysBGq7ZLAnedtCwUC3Z42XKJV4x4sNpxFGzWVTGyr5ipU-8WO_ALs66ewvxWZPkMNpfl0j8HlsfCWRucF4UVQVoUJbq-EAqbp8OQxQP4QNLTFy0JhyZa7OZEuTrTnZXpxCGAyi1eaa3gwUpRELvN0MlCuUKFAbwl2Wsy3hplYroeBLwFosHS-5IriW4uFwPY7V-P7qy60n91cPv_y6_g3vhkNtXTyfHRDtznNDO4qfTehc169cO_QCBT25eN9jD4dtvq-gfj0whq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqHiqoQX2AOJkxVmvH3tAqCWJEtqEChHU27Lj3S1IUdzGRig3_gP_hp_DL2HWj3KCW0-WbNmyZ-fxzXrmG4AXmFAekUpKS3yHjIg5Bsjzml5baE3uT-d1le8imS7Fu_P4fAd-db0wvqyy84m1ozZF7vfIBxTnPIclZR8D15ZFnI0mby6vAj9Byv9p7cZpNCpyYrffKX0rX89GtNYvOZ-MP76dBu2EgcBQqK8CjlpGsbNJaBIk7OTI5obC2gQJNslYY-YBhpWRkxFyEdnMUEh09IFGZHGqI3ruLdhNKSsKe7B7PF6cfbje4fGMm5mQTbV9FMlwQBj0C8UMiqFhNyPgX5GgDm-Te7DX4lJ21CjSfdix6wdwd35N6lo-hOL9mi1JgX7_-Dn1QJ2O869VpS-CU-vcym4YIde61nbLCscmm6Zngp46azgpVmx81TCLl8yzYjXDKdi8rWlknyhv951cbGRXels-guWNSPMx9NbF2u4DS0NhEJ2xIkfhMiRRkiN0Lsc0Hrok7MOxl566bCg5lCfJrk8UmwvV2pyKDMGpFOlORMEdZiL3XDdDk-XS5NL14ZWXvfKmXJFMdNuRQK_gSbHUUcZlRk4vFX047JZHtTZeqr8a-eT_l5_DbVJVdTpbnBzAHe4HCNdl34fQqzbf7FNCNRU-a9WHweeb1tg_POYN_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Ulam%E2%80%93Hyers%E2%80%93Mittag-Leffler+Stability+of+Fractional+Integral+Equations+Containing+Multiple+Variable+Delays&rft.jtitle=Mathematics+%28Basel%29&rft.au=Tun%C3%A7%2C+Osman&rft.au=Tun%C3%A7%2C+Cemil&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=4&rft.spage=606&rft_id=info:doi/10.3390%2Fmath13040606&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon