On Ulam–Hyers–Mittag-Leffler Stability of Fractional Integral Equations Containing Multiple Variable Delays
In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order math...
Saved in:
Published in | Mathematics (Basel) Vol. 13; no. 4; p. 606 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math13040606 |
Cover
Loading…
Abstract | In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order mathematical models. Thereby, given these considerations, the investigation of qualitative properties, in particular, Ulam-type stabilities of fractional differential equations, fractional integral equations, etc., has now become a highly attractive subject for mathematicians, as this represents an important field of study due to their extensive applications in various branches of aerodynamics, biology, chemistry, the electrodynamics of complex media, polymer science, physics, rheology, and so on. Meanwhile, the qualitative concepts called Ulam–Hyers–Mittag-Leffler (U-H-M-L) stability and Ulam–Hyers–Mittag-Leffler–Rassias (U-H-M-L-R) stability are well-suited for describing the characteristics of fractional Ulam-type stabilities. The Banach contraction principle is a fundamental tool in nonlinear analysis, with numerous applications in operational equations, fractal theory, optimization theory, and various other fields. In this study, we consider a nonlinear fractional Volterra integral equation (FrVIE). The nonlinear terms in the FrVIE contain multiple variable delays. We prove the U-H-M-L stability and U-H-M-L-R stability of the FrVIE on a finite interval. Throughout this article, new sufficient conditions are obtained via six new results with regard to the U-H-M-L stability or the U-H-M-L-R stability of the FrVIE. The proofs depend on Banach’s fixed-point theorem, as well as the Chebyshev and Bielecki norms. In the particular case of the FrVIE, an example is delivered to illustrate U-H-M-L stability. |
---|---|
AbstractList | In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order mathematical models. Thereby, given these considerations, the investigation of qualitative properties, in particular, Ulam-type stabilities of fractional differential equations, fractional integral equations, etc., has now become a highly attractive subject for mathematicians, as this represents an important field of study due to their extensive applications in various branches of aerodynamics, biology, chemistry, the electrodynamics of complex media, polymer science, physics, rheology, and so on. Meanwhile, the qualitative concepts called Ulam–Hyers–Mittag-Leffler (U-H-M-L) stability and Ulam–Hyers–Mittag-Leffler–Rassias (U-H-M-L-R) stability are well-suited for describing the characteristics of fractional Ulam-type stabilities. The Banach contraction principle is a fundamental tool in nonlinear analysis, with numerous applications in operational equations, fractal theory, optimization theory, and various other fields. In this study, we consider a nonlinear fractional Volterra integral equation (FrVIE). The nonlinear terms in the FrVIE contain multiple variable delays. We prove the U-H-M-L stability and U-H-M-L-R stability of the FrVIE on a finite interval. Throughout this article, new sufficient conditions are obtained via six new results with regard to the U-H-M-L stability or the U-H-M-L-R stability of the FrVIE. The proofs depend on Banach’s fixed-point theorem, as well as the Chebyshev and Bielecki norms. In the particular case of the FrVIE, an example is delivered to illustrate U-H-M-L stability. |
Audience | Academic |
Author | Tunç, Osman Tunç, Cemil |
Author_xml | – sequence: 1 fullname: Tunç, Osman – sequence: 2 fullname: Tunç, Cemil |
BookMark | eNpNUbtuGzEQJAIbiGO78wcckPocvo5HloZiRwJkuPCjPSyP5IUCRco8qlDnf_Af5ktCWymyW8xgdneK2W_oJKZoEboi-JoxhX9sofwmDHMssPiCziilfdvXwcl__Cu6nOcNrqUIk1ydofQQm-cA2z9v78uDzXPFe18KTO3aOhdsbh4LaB98OTTJNXcZxuJThNCsYrFTruT2dQ8f2twsUizgo49Tc78Pxe-CbV4ge9CV_LQBDvMFOnUQZnv5D8_R893t02LZrh9-rRY369bQTpSWalCsc1ZgIzSW2GEpCbdWaKWI6kDLjnfCKuYU05QzKw0l0mlBDZddD-wcrY6-JsFm2GW_hXwYEvjhU0h5GiAXPwY7MCME6zXrhdacOi35iJXoiJGjMqNy1ev70WuX0-vezmXYpH2uGcwDIz2pWfakr1vXx60JqqmPLpUaVm1jt36sv3K-6jeSKonrGWd_AZ3jiOk |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math13040606 |
DatabaseName | ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Open Access Full Text |
DatabaseTitle | Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_3d6637b376bb42fb84c09651d8c9dc9f A829803174 |
GeographicLocations | New York United States |
GeographicLocations_xml | – name: New York – name: United States |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-d256t-2ba935fe60d6b080f08814ee6b99195ab85456e93f93b243e8d218fb62d4857a3 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:21:06 EDT 2025 Fri Jul 25 12:00:21 EDT 2025 Tue Jun 10 20:56:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d256t-2ba935fe60d6b080f08814ee6b99195ab85456e93f93b243e8d218fb62d4857a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3171091717?pq-origsite=%requestingapplication% |
PQID | 3171091717 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d6637b376bb42fb84c09651d8c9dc9f proquest_journals_3171091717 gale_infotracacademiconefile_A829803174 |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
SSID | ssj0000913849 |
Score | 2.2885978 |
Snippet | In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world... |
SourceID | doaj proquest gale |
SourceType | Open Website Aggregation Database |
StartPage | 606 |
SubjectTerms | Analysis Banach’s fixed-point theorem Chebyshev and Bielecki norms Chebyshev approximation Complex media Differential equations Electrodynamics Fixed points (mathematics) Fractional calculus fractional Volterra integral equation Integers Integral equations Mathematical analysis Mathematical models Mathematical optimization Nonlinear analysis Norms Ordinary differential equations Rheological properties Rheology Stability U-H-M-L stability U-H-M-L-R stability Volterra integral equations |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1EoyAMSU9Q0cRJ7LNCqIAoLRd0iX2wDUpVCE4Zu_Af-Ib-Es52iLoiFKVIiRdad79076e4dIWeQYh2RCSxL7IQMSyIIICqcvDaTEuFPFq7L9y4djtnNJJmsrPqyPWFeHtgbrhMrzIkZYBwAsMgAZ4UVLOkqXghVCGPRF3PeSjHlMFh0Y86E73SPsa7vIP97RrzG_BUu9fl_Q2GXWgbbZKvhhLTnz7JD1nS5SzZHP4Kq1R6Z3Zd0jM77-vgcWpKMz9FLXcun4FYbM9VziqzR9bku6MzQwdzPK-Bfr70exJT237yqd0WtIpVfDEFHTT8hfcSa2U5R0Ss9lYtqn4wH_YfLYdDsSggUkpY6iECKODE6DVUKyAINokeXaZ0CEkCRSOCWKmkRGxFDxGLNFSZ3g65SjCeZjA_Iejkr9SGhWcgUgFGaFcAMBzQlgpAxBWRJ16Rhi1xY6-WvXg4jtwLV7gW6LW_clv_lthY5t7bPbRjVaBPZTAPgEawgVd7jkeAIOBlrkfbSPXkTX1WOH6yiKdaiR_9xmmOyEdm9vq4bu03W6_m7PkGyUcOpu1fftOjVXA priority: 102 providerName: Directory of Open Access Journals |
Title | On Ulam–Hyers–Mittag-Leffler Stability of Fractional Integral Equations Containing Multiple Variable Delays |
URI | https://www.proquest.com/docview/3171091717 https://doaj.org/article/3d6637b376bb42fb84c09651d8c9dc9f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LTuswELV4bGCBeNwryqPyAolVRJs4ib1CPFoKooDQ7RW7yBPbgFQ10IQFO_6BP-RLmElcWMEqUqJE0Yxz5owzc4axPUgwj0gVpiXUISPiEAII81peW2iN8Kfzusr3KhmMxMVdfOc33EpfVjnDxBqoTZHTHvkBxjnSsMTs4_DpOaCpUfR31Y_QmGeLCMESk6_F497Vze3XLgupXkqhmor3CPP7A-SBD4jbGMc6M53-n9C4DjH9VbbiuSE_apy5xubsZJ0tD7-EVcsNVlxP-Aid-PH2PiCyjMfhY1Xp--DSOje2U47ssa53feWF4_1p07eATz1vdCHGvPfcqHuXnJSpmgERfOjrCvl_zJ2pm4qf2rF-Lf-wUb_372QQ-JkJgUHyUgUhaBXFziYdkwCyQYco0hXWJoBEUMUaJFEmqyKnIghFZKXBIO_QZUbIONXRX7YwKSZ2k_G0IwyAM1bkIJwENCWCkXM5pHHXJZ0WOybrZU-NLEZGQtX1iWJ6n_l1n0UGKU0KeCeACB1IkZPeTNfIXJlcuRbbJ9tn9DlVaBPtuwLwFUiYKjuSoZIIPKlosZ2ZezL_nZXZ96rY-v3yNlsKaXJvXW-9wxaq6YvdRTpRQZvNy_5Z26-cdp2UfwIYis_Y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAeEL9i2wI-gDhFzTpOYh8QKrTLLt0tly7qzdixXSqtNu0mCO2Nd-h79KF4EmbyU05w6ylSrFjJZH6-SWa-AXhtM8wjcoVpCXXIiJTbyPKiodcWxqD7M0VT5Xucjefi82l6ugHXfS8MlVX2PrFx1K4s6Bv5HsY54rDE7OP9xWVEU6Po72o_QqNViyO__okpW_VucoDv9w3no8OTj-OomyoQOQzvdcStUUkafBa7zCJeCmhnQ-F9ZhEqqdRYSaDCqySoxHKReOkwDAZ8KCdkmpsE970Dd0WSKLIoOfp0802HODalUG19Pa7He4g6v2OUwKgZ91MB_uX7m4A2eggPOiTK9lvVeQQbfvkYtmY3NK7VEyi_LNkcVeb3r6sxQXM8zs7r2pxFUx_Cwq8YYtWmunbNysBGq7ZLAnedtCwUC3Z42XKJV4x4sNpxFGzWVTGyr5ipU-8WO_ALs66ewvxWZPkMNpfl0j8HlsfCWRucF4UVQVoUJbq-EAqbp8OQxQP4QNLTFy0JhyZa7OZEuTrTnZXpxCGAyi1eaa3gwUpRELvN0MlCuUKFAbwl2Wsy3hplYroeBLwFosHS-5IriW4uFwPY7V-P7qy60n91cPv_y6_g3vhkNtXTyfHRDtznNDO4qfTehc169cO_QCBT25eN9jD4dtvq-gfj0whq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqHiqoQX2AOJkxVmvH3tAqCWJEtqEChHU27Lj3S1IUdzGRig3_gP_hp_DL2HWj3KCW0-WbNmyZ-fxzXrmG4AXmFAekUpKS3yHjIg5Bsjzml5baE3uT-d1le8imS7Fu_P4fAd-db0wvqyy84m1ozZF7vfIBxTnPIclZR8D15ZFnI0mby6vAj9Byv9p7cZpNCpyYrffKX0rX89GtNYvOZ-MP76dBu2EgcBQqK8CjlpGsbNJaBIk7OTI5obC2gQJNslYY-YBhpWRkxFyEdnMUEh09IFGZHGqI3ruLdhNKSsKe7B7PF6cfbje4fGMm5mQTbV9FMlwQBj0C8UMiqFhNyPgX5GgDm-Te7DX4lJ21CjSfdix6wdwd35N6lo-hOL9mi1JgX7_-Dn1QJ2O869VpS-CU-vcym4YIde61nbLCscmm6Zngp46azgpVmx81TCLl8yzYjXDKdi8rWlknyhv951cbGRXels-guWNSPMx9NbF2u4DS0NhEJ2xIkfhMiRRkiN0Lsc0Hrok7MOxl566bCg5lCfJrk8UmwvV2pyKDMGpFOlORMEdZiL3XDdDk-XS5NL14ZWXvfKmXJFMdNuRQK_gSbHUUcZlRk4vFX047JZHtTZeqr8a-eT_l5_DbVJVdTpbnBzAHe4HCNdl34fQqzbf7FNCNRU-a9WHweeb1tg_POYN_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Ulam%E2%80%93Hyers%E2%80%93Mittag-Leffler+Stability+of+Fractional+Integral+Equations+Containing+Multiple+Variable+Delays&rft.jtitle=Mathematics+%28Basel%29&rft.au=Tun%C3%A7%2C+Osman&rft.au=Tun%C3%A7%2C+Cemil&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=13&rft.issue=4&rft.spage=606&rft_id=info:doi/10.3390%2Fmath13040606&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |