Electrical Manipulation of Intervalley Trions in Twisted MoSe2 Homobilayers at Room Temperature

The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling platforms for exploring the manipulation of their optoelectronic properties through electrical fields. This work studies the electrical control...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 4; no. 5
Main Authors Rosa, Bárbara L. T., Junior, Paulo E. Faria, Cadore, Alisson R., Yang, Yuhui, Koulas‐Simos, Aris, Palekar, Chirag C., Tongay, Seth Ariel, Fabian, Jaroslav, Reitzenstein, Stephan
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.05.2025
Subjects
Online AccessGet full text
ISSN2751-1200
2751-1200
DOI10.1002/apxr.202400135

Cover

Loading…
Abstract The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling platforms for exploring the manipulation of their optoelectronic properties through electrical fields. This work studies the electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent micro‐photoluminescence spectroscopy reveals an energy tunability of several meVs originating from the emission of excitonic complexes. Furthermore, this study investigates the twist‐angle dependence of valley properties by fabricating devices with stacking angles of θ ∼ 1°, θ ∼ 4° and θ ∼ 18°. Strengthened by density functional theory calculations, the results suggest that, depending on the twist angle, the conduction band minima and hybridized states at the Q‐point promote the formation of intervalley hybrid trions involving the Q‐and K‐points in the conduction band and the K‐point in the valence band. By revealing the gate control of exciton species in twisted homobilayers, these findings open new avenues for engineering multifunctional optoelectronic devices based on ultrathin semiconducting systems. This study explores electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent photoluminescence reveals distinct exciton‐trion conversion response, analyzed for angles of ∼1°, ∼4°, and ∼18°. Density functional theory calculations suggest the formation of intervalley hybrid trions that exhibit a clear twist‐angle‐dependent behavior.
AbstractList Abstract The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling platforms for exploring the manipulation of their optoelectronic properties through electrical fields. This work studies the electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent micro‐photoluminescence spectroscopy reveals an energy tunability of several meVs originating from the emission of excitonic complexes. Furthermore, this study investigates the twist‐angle dependence of valley properties by fabricating devices with stacking angles of θ ∼ 1°, θ ∼ 4° and θ ∼ 18°. Strengthened by density functional theory calculations, the results suggest that, depending on the twist angle, the conduction band minima and hybridized states at the Q‐point promote the formation of intervalley hybrid trions involving the Q‐and K‐points in the conduction band and the K‐point in the valence band. By revealing the gate control of exciton species in twisted homobilayers, these findings open new avenues for engineering multifunctional optoelectronic devices based on ultrathin semiconducting systems.
The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling platforms for exploring the manipulation of their optoelectronic properties through electrical fields. This work studies the electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent micro‐photoluminescence spectroscopy reveals an energy tunability of several meVs originating from the emission of excitonic complexes. Furthermore, this study investigates the twist‐angle dependence of valley properties by fabricating devices with stacking angles of θ ∼ 1°, θ ∼ 4° and θ ∼ 18°. Strengthened by density functional theory calculations, the results suggest that, depending on the twist angle, the conduction band minima and hybridized states at the Q‐point promote the formation of intervalley hybrid trions involving the Q‐and K‐points in the conduction band and the K‐point in the valence band. By revealing the gate control of exciton species in twisted homobilayers, these findings open new avenues for engineering multifunctional optoelectronic devices based on ultrathin semiconducting systems. This study explores electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent photoluminescence reveals distinct exciton‐trion conversion response, analyzed for angles of ∼1°, ∼4°, and ∼18°. Density functional theory calculations suggest the formation of intervalley hybrid trions that exhibit a clear twist‐angle‐dependent behavior.
Author Tongay, Seth Ariel
Reitzenstein, Stephan
Junior, Paulo E. Faria
Cadore, Alisson R.
Yang, Yuhui
Rosa, Bárbara L. T.
Koulas‐Simos, Aris
Palekar, Chirag C.
Fabian, Jaroslav
Author_xml – sequence: 1
  givenname: Bárbara L. T.
  surname: Rosa
  fullname: Rosa, Bárbara L. T.
  email: rosa@physik.tu-berlin.de
  organization: State University of Campinas
– sequence: 2
  givenname: Paulo E. Faria
  surname: Junior
  fullname: Junior, Paulo E. Faria
  organization: University of Regensburg
– sequence: 3
  givenname: Alisson R.
  orcidid: 0000-0003-1081-0915
  surname: Cadore
  fullname: Cadore, Alisson R.
  organization: Universidade Federal de Mato Grosso
– sequence: 4
  givenname: Yuhui
  surname: Yang
  fullname: Yang, Yuhui
  organization: Technische Universität Berlin
– sequence: 5
  givenname: Aris
  surname: Koulas‐Simos
  fullname: Koulas‐Simos, Aris
  organization: Technische Universität Berlin
– sequence: 6
  givenname: Chirag C.
  surname: Palekar
  fullname: Palekar, Chirag C.
  organization: Technische Universität Berlin
– sequence: 7
  givenname: Seth Ariel
  orcidid: 0000-0001-8294-984X
  surname: Tongay
  fullname: Tongay, Seth Ariel
  organization: Arizona State University
– sequence: 8
  givenname: Jaroslav
  surname: Fabian
  fullname: Fabian, Jaroslav
  organization: University of Regensburg
– sequence: 9
  givenname: Stephan
  orcidid: 0000-0002-1381-9838
  surname: Reitzenstein
  fullname: Reitzenstein, Stephan
  email: stephan.reitzenstein@physik.tu-berlin.de
  organization: Technische Universität Berlin
BookMark eNpNkEFLw0AQhRdRsNZePe8fSN2dzSbpsZRqCy1KjeBtmSQT2ZJkyya19t-bWime5vHgfTDfHbtuXEOMPUgxlkLAI-6-_RgEhEJIpa_YAGItAwlCXP_Lt2zUtlvRD5KJVKEcMDOvKO-8zbHia2zsbl9hZ13DXcmXTUf-C6uKjjz1fdly2_D0YNuOCr52bwR84WqX2QqP5FuOHd84V_OU6h157Pae7tlNiVVLo787ZO9P83S2CFYvz8vZdBUUoGIRaFRaxagRlIZyklFcZCKRmCtALHQZAeQUCSUySpROyiRRkMWYyyJSiKVWQ7Y8cwuHW7PztkZ_NA6t-S2c_zToO5tXZKKJ1kBRGUpIQur3MclCRjHoEiGRec_SZ9bB9q9fYFKYk2pzUm0uqs309WMjQYFQP_bkdgs
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
Copyright_xml – notice: 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
DBID 24P
DOA
DOI 10.1002/apxr.202400135
DatabaseName Wiley Open Access Collection
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_69552e6f41284e63a7e1d16725fa281c
APXR12320
Genre researchArticle
GrantInformation_xml – fundername: National Council for Scientific and Technological Development (CNPq)
  funderid: N.309920/2021‐3
– fundername: Horizon 2020 Framework Programme
  funderid: 881603
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 410408989; 443416027; 314695032; 443416183
GroupedDBID 0R~
24P
88I
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
M~E
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
AAFWJ
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ARCSS
PQGLB
PUEGO
WIN
ID FETCH-LOGICAL-d2370-5a3537a5a2352f9be7db081ac32aad5f622ce6030be8358f8832b7ac1d63aaf53
IEDL.DBID DOA
ISSN 2751-1200
IngestDate Wed Aug 27 01:21:34 EDT 2025
Thu May 08 09:30:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d2370-5a3537a5a2352f9be7db081ac32aad5f622ce6030be8358f8832b7ac1d63aaf53
ORCID 0000-0002-1381-9838
0000-0003-1081-0915
0000-0001-8294-984X
OpenAccessLink https://doaj.org/article/69552e6f41284e63a7e1d16725fa281c
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_69552e6f41284e63a7e1d16725fa281c
wiley_primary_10_1002_apxr_202400135_APXR12320
PublicationCentury 2000
PublicationDate May 2025
2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Advanced Physics Research
PublicationYear 2025
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 2023; 10
2021; 7
2017; 8
2021; 21
2023; 13
2021; 20
2015; 5
2013; 4
2017; 2
2017; 4
2023; 5
2013; 21
2010; 105
2023; 6
2023; 7
2021; 125
2019; 10
2023; 19
2019; 567
2020; 16
2020; 15
2024; 11
2020; 11
2022; 22
2002
2024; 14
2015; 9
2004; 306
2012; 12
2016; 16
2019; 364
2024; 18
2020; 19
1981; 44
2017; 95
2014; 1
2016; 7
2015; 115
2020; 31
2023; 130
2018; 556
2017; 17
2022; 14
2024; 24
2022; 11
2018; 98
2018; 97
2016; 8
References_xml – volume: 8
  start-page: 2589
  year: 2016
  publication-title: Nanoscale
– volume: 17
  start-page: 5156
  year: 2017
  publication-title: Nano Lett.
– volume: 8
  start-page: 2117
  year: 2017
  publication-title: Nat. Commun.
– volume: 364
  start-page: 468
  year: 2019
  publication-title: Science
– volume: 21
  start-page: 4908
  year: 2013
  publication-title: Opt. Express
– volume: 14
  start-page: 5758
  year: 2022
  publication-title: Nanoscale
– volume: 19
  start-page: 624
  year: 2020
  publication-title: Nat. Mater.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 750
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 2330
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  year: 2024
  publication-title: 2D Mater.
– volume: 20
  start-page: 480
  year: 2021
  publication-title: Nat. Mater.
– volume: 16
  start-page: 926
  year: 2020
  publication-title: Nat. Phys.
– volume: 9
  start-page: 647
  year: 2015
  publication-title: ACS Nano
– volume: 16
  start-page: 1989
  year: 2016
  publication-title: Nano Lett.
– volume: 4
  year: 2017
  publication-title: 2D Mater.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2023
  publication-title: 2D Mater.
– volume: 44
  start-page: 1251
  year: 1981
  publication-title: Rep. Prog. Phys.
– volume: 13
  start-page: 1858
  year: 2023
  publication-title: Nanomaterials
– volume: 7
  start-page: 58
  year: 2023
  publication-title: npj 2D Mater. Appl.
– volume: 12
  start-page: 207
  year: 2012
  publication-title: Nat. Mater.
– volume: 4
  start-page: 1474
  year: 2013
  publication-title: Nat. Commun.
– volume: 5
  start-page: 9218
  year: 2015
  publication-title: Sci. Rep.
– volume: 567
  start-page: 81
  year: 2019
  publication-title: Nature
– volume: 18
  year: 2024
  publication-title: ACS Nano
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 1
  year: 2014
  publication-title: 2D Mater.
– volume: 14
  year: 2024
  publication-title: Phys. Rev. X
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 21
  start-page: 4461
  year: 2021
  publication-title: Nano Lett.
– volume: 11
  start-page: 5888
  year: 2020
  publication-title: Nat. Commun.
– volume: 17
  start-page: 5229
  year: 2017
  publication-title: Nano Lett.
– volume: 2
  start-page: 32
  year: 2017
  publication-title: Condensed Matter
– volume: 95
  year: 2017
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 8641
  year: 2022
  publication-title: Nano Lett.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 11
  start-page: 166
  year: 2022
  publication-title: Light: Sci. Appl.
– volume: 24
  start-page: 9459
  year: 2024
  publication-title: Nano Lett.
– volume: 130
  year: 2023
  publication-title: Phys. Rev. Lett.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 2640
  year: 2020
  publication-title: Nat. Commun.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 5
  year: 2023
  publication-title: Phys. Rev. Res.
– year: 2002
– volume: 24
  year: 2024
  publication-title: Nano Lett.
– volume: 19
  start-page: 196
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 6
  year: 2023
  publication-title: Opto‐Electronic Advances
– volume: 567
  start-page: 66
  year: 2019
  publication-title: Nature
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 7
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 556
  start-page: 43
  year: 2018
  publication-title: Nature
SSID ssj0002891341
Score 2.2971268
Snippet The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling...
Abstract The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems...
SourceID doaj
wiley
SourceType Open Website
Publisher
SubjectTerms electrostatic doping
exciton
hybrid states
intervalley trions
MoSe2
trion
twisted‐homobilayers
vdW heterostructures
SummonAdditionalLinks – databaseName: Wiley Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L15EUXH-IgevZU3SpO1xysYQJmN2sFt5aRMZaCtz_vrvzUu76Y5eC00h33t5X9K87yPkxhqTgGIqAK5lEAmlgiRVNpA61W4DHVrru1zHD2o0i-7ncv6ni7_Rh9gcuGFm-PUaExz0W-9XNBRev1DPE-9AMiF3yR7216J6Po8mm1MWjn_hvH0ljyULmIuJtXJjyHvbQ7Sq_dss1ZeZ4SE5aPkh7TeAHpEdUx2TfODNanA-6Riqxdpzi9aW-iO9D3RE-abZEoOILiqafSJ8JR3Xj4bTUf1S68UzIL2msKJTx5ZpZhxjbhSVT8hsOMjuRkHrjBCUXMRhIEFIEYME7viTTbWJS-1qOxSCA5TSKs4Lo1z-auMYVmITl7c6hoKVSgBYKU5Jp6orc0aosZCGpZHSwRS5zYPWIk0sEpEoBs3CLrnFWclfG_GLHOWo_YN6-ZS30Z2rVEpulI2w2hn3jdiwkqmYSws8YUWXNFBuRmnEknmOCOQbBPL-ZD5Fjhee__eFC7LP0ZnXX0W8JJ3V8t1cObqw0tc-In4ALNi4gA
  priority: 102
  providerName: Wiley-Blackwell
Title Electrical Manipulation of Intervalley Trions in Twisted MoSe2 Homobilayers at Room Temperature
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400135
https://doaj.org/article/69552e6f41284e63a7e1d16725fa281c
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ8VB5YQxM7dpKxoFYVUlFVUqmbdU5sqQiSqipfC78dn9NWZWJhyZAhju7ZvnfJ-T1CbqwxKchIBsC0CGIuZZBm0gZCZ9oV0KG1_pTr6FEOp_HDTMx2rL6wJ6yRB24C15WZEMxIG-NGaiSHxERlJBMmLLA0KnD3dTlvp5h6bn6foVLZRqUxZF1YfKL8J7ZMRujt5hX6fzNSn1IGR-RwzQVpr3mHY7JnqhOi-t6YBmNHR1DNN_5atLbUf757R_eTL5ovccLQeUXzD4SqpKP6yTA6rF9rPX8BpNIUVnTimDHNjWPHjXryKZkO-vn9MFi7IAQl40kYCOCCJyCAOa5kM22SUrs8DgVnAKWwkrHCSLdWtXFsKrWpW6M6gSIqXbDACn5GWlVdmXNCjYUsLI0QDpLYFQpa8yy1SDriBHQUtskdRkUtGqELhdLT_oYDRK0BUX8B0ia3PqbbpzTCyEwhAmqLgOqNZxPkc-HFf4x6SQ4YOvP6VsQr0lot38y1owsr3SH7LB53_Pxw19F3_wd2Zr1j
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLYYHMZlYoIJ2GA-cI2In2M7ObKJqmxtVUGQuFnPjY0qQYKqwrZ_j5_TFnHcNVIcyd97fp9f7O9j7Cx4X6IWOkNwKiuk1llZ6ZApV7m4gc5DSLdcxxM9vC1-3an1aUK6C9PrQ2wabpQZab2mBKeG9Pmbaig-_SVBTzoEKaT6wHYKDYZyE4rpps0C9Bsu-VeCUSITMSjW0o05nL8fYiXb_56mpjoz2GOfVgSRX_SIfmZbvt1n9jK51dCE8jG287XpFu8CTz29F7JE-cfrBUURn7e8_kP4NXzc3Xjgw-6xc_MHJH7NccmvI13mtY-UuZdUPmC3g8v65zBbWSNkDUiTZwqlkgYVQiRQoXLeNC4Wd5xJQGxU0AAzr2MCOx8pVhnKmLjO4Ew0WiIGJb-w7bZr_SHjPmCVN16piFMRdw_OyaoMxEQKg07kR-wHzYp96tUvLOlRpwfd4t6uwtvqSinwOhRU7nz8hvGiEdqACgilmB2xHsvNKL1aMlhCwG4QsBfTu2siefnx_77wnX0c1uORHV1Nfn9lu0A2velc4je2vVw8-5PIHZbuNEXHKzj-u-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMQFgQBRVh-4Ro3t2EmOZanKUoRKiyou1rixUSVIqqpsf48nCYUeuUaKI_nNeJ4n9nuEnDprE1BMBcCNDCKhVJCkygXSpMZvoEPnyluu3TvVGUTXQzn8c4u_0oeYN9wwM8r1GhN8krnmr2goTD5RzxPPQDIhl8kqSuX5uF5tPQ6eBvM-C8f_cKWBJY8lC5iPih_txpA3FwepdfsXeWpZaNqbZKNmiLRVQbpFlmy-TfRlaVeDM0q7kI9_XLdo4WjZ1HtHT5Qv2p9iGNFxTvsfCGBGu8WD5bRTvBZm_AJIsCnMaM_zZdq3njNXmso7ZNC-7J93gtobIci4iMNAgpAiBgncMyiXGhtnxld3GAkOkEmnOB9Z5TPYWM-xEpf4zDUxjFimBICTYpes5EVu9wi1DtIws1J6oCK_fTBGpIlDKhLFYFjYIGc4K3pSyV9oFKQuHxTTZ13Ht1aplNwqF2G9s_4bsWUZUzGXDnjCRg1SgTkfpZJL5hoR0HMEdOt-2EOWF-7_94UTsnZ_0da3V3c3B2Sdo01veS7xkKzMpm_2yHOHmTmuw-Mb8Qu85A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Manipulation+of+Intervalley+Trions+in+Twisted+MoSe2+Homobilayers+at+Room+Temperature&rft.jtitle=Advanced+Physics+Research&rft.au=B%C3%A1rbara+L.+T.+Rosa&rft.au=Paulo+E.+Faria+Junior&rft.au=Alisson+R.+Cadore&rft.au=Yuhui+Yang&rft.date=2025-05-01&rft.pub=Wiley-VCH&rft.eissn=2751-1200&rft.volume=4&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400135&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69552e6f41284e63a7e1d16725fa281c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon