Electrical Manipulation of Intervalley Trions in Twisted MoSe2 Homobilayers at Room Temperature
The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling platforms for exploring the manipulation of their optoelectronic properties through electrical fields. This work studies the electrical control...
Saved in:
Published in | Advanced Physics Research Vol. 4; no. 5 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2751-1200 2751-1200 |
DOI | 10.1002/apxr.202400135 |
Cover
Loading…
Abstract | The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling platforms for exploring the manipulation of their optoelectronic properties through electrical fields. This work studies the electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent micro‐photoluminescence spectroscopy reveals an energy tunability of several meVs originating from the emission of excitonic complexes. Furthermore, this study investigates the twist‐angle dependence of valley properties by fabricating devices with stacking angles of θ ∼ 1°, θ ∼ 4° and θ ∼ 18°. Strengthened by density functional theory calculations, the results suggest that, depending on the twist angle, the conduction band minima and hybridized states at the Q‐point promote the formation of intervalley hybrid trions involving the Q‐and K‐points in the conduction band and the K‐point in the valence band. By revealing the gate control of exciton species in twisted homobilayers, these findings open new avenues for engineering multifunctional optoelectronic devices based on ultrathin semiconducting systems.
This study explores electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent photoluminescence reveals distinct exciton‐trion conversion response, analyzed for angles of ∼1°, ∼4°, and ∼18°. Density functional theory calculations suggest the formation of intervalley hybrid trions that exhibit a clear twist‐angle‐dependent behavior. |
---|---|
AbstractList | Abstract The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling platforms for exploring the manipulation of their optoelectronic properties through electrical fields. This work studies the electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent micro‐photoluminescence spectroscopy reveals an energy tunability of several meVs originating from the emission of excitonic complexes. Furthermore, this study investigates the twist‐angle dependence of valley properties by fabricating devices with stacking angles of θ ∼ 1°, θ ∼ 4° and θ ∼ 18°. Strengthened by density functional theory calculations, the results suggest that, depending on the twist angle, the conduction band minima and hybridized states at the Q‐point promote the formation of intervalley hybrid trions involving the Q‐and K‐points in the conduction band and the K‐point in the valence band. By revealing the gate control of exciton species in twisted homobilayers, these findings open new avenues for engineering multifunctional optoelectronic devices based on ultrathin semiconducting systems. The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling platforms for exploring the manipulation of their optoelectronic properties through electrical fields. This work studies the electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent micro‐photoluminescence spectroscopy reveals an energy tunability of several meVs originating from the emission of excitonic complexes. Furthermore, this study investigates the twist‐angle dependence of valley properties by fabricating devices with stacking angles of θ ∼ 1°, θ ∼ 4° and θ ∼ 18°. Strengthened by density functional theory calculations, the results suggest that, depending on the twist angle, the conduction band minima and hybridized states at the Q‐point promote the formation of intervalley hybrid trions involving the Q‐and K‐points in the conduction band and the K‐point in the valence band. By revealing the gate control of exciton species in twisted homobilayers, these findings open new avenues for engineering multifunctional optoelectronic devices based on ultrathin semiconducting systems. This study explores electrical control of excitonic complexes in twisted MoSe2 homobilayer devices at room temperature. Gate‐dependent photoluminescence reveals distinct exciton‐trion conversion response, analyzed for angles of ∼1°, ∼4°, and ∼18°. Density functional theory calculations suggest the formation of intervalley hybrid trions that exhibit a clear twist‐angle‐dependent behavior. |
Author | Tongay, Seth Ariel Reitzenstein, Stephan Junior, Paulo E. Faria Cadore, Alisson R. Yang, Yuhui Rosa, Bárbara L. T. Koulas‐Simos, Aris Palekar, Chirag C. Fabian, Jaroslav |
Author_xml | – sequence: 1 givenname: Bárbara L. T. surname: Rosa fullname: Rosa, Bárbara L. T. email: rosa@physik.tu-berlin.de organization: State University of Campinas – sequence: 2 givenname: Paulo E. Faria surname: Junior fullname: Junior, Paulo E. Faria organization: University of Regensburg – sequence: 3 givenname: Alisson R. orcidid: 0000-0003-1081-0915 surname: Cadore fullname: Cadore, Alisson R. organization: Universidade Federal de Mato Grosso – sequence: 4 givenname: Yuhui surname: Yang fullname: Yang, Yuhui organization: Technische Universität Berlin – sequence: 5 givenname: Aris surname: Koulas‐Simos fullname: Koulas‐Simos, Aris organization: Technische Universität Berlin – sequence: 6 givenname: Chirag C. surname: Palekar fullname: Palekar, Chirag C. organization: Technische Universität Berlin – sequence: 7 givenname: Seth Ariel orcidid: 0000-0001-8294-984X surname: Tongay fullname: Tongay, Seth Ariel organization: Arizona State University – sequence: 8 givenname: Jaroslav surname: Fabian fullname: Fabian, Jaroslav organization: University of Regensburg – sequence: 9 givenname: Stephan orcidid: 0000-0002-1381-9838 surname: Reitzenstein fullname: Reitzenstein, Stephan email: stephan.reitzenstein@physik.tu-berlin.de organization: Technische Universität Berlin |
BookMark | eNpNkEFLw0AQhRdRsNZePe8fSN2dzSbpsZRqCy1KjeBtmSQT2ZJkyya19t-bWime5vHgfTDfHbtuXEOMPUgxlkLAI-6-_RgEhEJIpa_YAGItAwlCXP_Lt2zUtlvRD5KJVKEcMDOvKO-8zbHia2zsbl9hZ13DXcmXTUf-C6uKjjz1fdly2_D0YNuOCr52bwR84WqX2QqP5FuOHd84V_OU6h157Pae7tlNiVVLo787ZO9P83S2CFYvz8vZdBUUoGIRaFRaxagRlIZyklFcZCKRmCtALHQZAeQUCSUySpROyiRRkMWYyyJSiKVWQ7Y8cwuHW7PztkZ_NA6t-S2c_zToO5tXZKKJ1kBRGUpIQur3MclCRjHoEiGRec_SZ9bB9q9fYFKYk2pzUm0uqs309WMjQYFQP_bkdgs |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH |
DBID | 24P DOA |
DOI | 10.1002/apxr.202400135 |
DatabaseName | Wiley Open Access Collection DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_69552e6f41284e63a7e1d16725fa281c APXR12320 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Council for Scientific and Technological Development (CNPq) funderid: N.309920/2021‐3 – fundername: Horizon 2020 Framework Programme funderid: 881603 – fundername: Deutsche Forschungsgemeinschaft funderid: 410408989; 443416027; 314695032; 443416183 |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG ACCMX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P M~E PCBAR PDBOC PHGZM PHGZT PIMPY AAFWJ AAMMB AEFGJ AGXDD AIDQK AIDYY ARCSS PQGLB PUEGO WIN |
ID | FETCH-LOGICAL-d2370-5a3537a5a2352f9be7db081ac32aad5f622ce6030be8358f8832b7ac1d63aaf53 |
IEDL.DBID | DOA |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:21:34 EDT 2025 Thu May 08 09:30:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d2370-5a3537a5a2352f9be7db081ac32aad5f622ce6030be8358f8832b7ac1d63aaf53 |
ORCID | 0000-0002-1381-9838 0000-0003-1081-0915 0000-0001-8294-984X |
OpenAccessLink | https://doaj.org/article/69552e6f41284e63a7e1d16725fa281c |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_69552e6f41284e63a7e1d16725fa281c wiley_primary_10_1002_apxr_202400135_APXR12320 |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2025 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 2023; 10 2021; 7 2017; 8 2021; 21 2023; 13 2021; 20 2015; 5 2013; 4 2017; 2 2017; 4 2023; 5 2013; 21 2010; 105 2023; 6 2023; 7 2021; 125 2019; 10 2023; 19 2019; 567 2020; 16 2020; 15 2024; 11 2020; 11 2022; 22 2002 2024; 14 2015; 9 2004; 306 2012; 12 2016; 16 2019; 364 2024; 18 2020; 19 1981; 44 2017; 95 2014; 1 2016; 7 2015; 115 2020; 31 2023; 130 2018; 556 2017; 17 2022; 14 2024; 24 2022; 11 2018; 98 2018; 97 2016; 8 |
References_xml | – volume: 8 start-page: 2589 year: 2016 publication-title: Nanoscale – volume: 17 start-page: 5156 year: 2017 publication-title: Nano Lett. – volume: 8 start-page: 2117 year: 2017 publication-title: Nat. Commun. – volume: 364 start-page: 468 year: 2019 publication-title: Science – volume: 21 start-page: 4908 year: 2013 publication-title: Opt. Express – volume: 14 start-page: 5758 year: 2022 publication-title: Nanoscale – volume: 19 start-page: 624 year: 2020 publication-title: Nat. Mater. – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 15 start-page: 750 year: 2020 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 2330 year: 2019 publication-title: Nat. Commun. – volume: 11 year: 2024 publication-title: 2D Mater. – volume: 20 start-page: 480 year: 2021 publication-title: Nat. Mater. – volume: 16 start-page: 926 year: 2020 publication-title: Nat. Phys. – volume: 9 start-page: 647 year: 2015 publication-title: ACS Nano – volume: 16 start-page: 1989 year: 2016 publication-title: Nano Lett. – volume: 4 year: 2017 publication-title: 2D Mater. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 10 year: 2023 publication-title: 2D Mater. – volume: 44 start-page: 1251 year: 1981 publication-title: Rep. Prog. Phys. – volume: 13 start-page: 1858 year: 2023 publication-title: Nanomaterials – volume: 7 start-page: 58 year: 2023 publication-title: npj 2D Mater. Appl. – volume: 12 start-page: 207 year: 2012 publication-title: Nat. Mater. – volume: 4 start-page: 1474 year: 2013 publication-title: Nat. Commun. – volume: 5 start-page: 9218 year: 2015 publication-title: Sci. Rep. – volume: 567 start-page: 81 year: 2019 publication-title: Nature – volume: 18 year: 2024 publication-title: ACS Nano – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 1 year: 2014 publication-title: 2D Mater. – volume: 14 year: 2024 publication-title: Phys. Rev. X – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 21 start-page: 4461 year: 2021 publication-title: Nano Lett. – volume: 11 start-page: 5888 year: 2020 publication-title: Nat. Commun. – volume: 17 start-page: 5229 year: 2017 publication-title: Nano Lett. – volume: 2 start-page: 32 year: 2017 publication-title: Condensed Matter – volume: 95 year: 2017 publication-title: Phys. Rev. B – volume: 22 start-page: 8641 year: 2022 publication-title: Nano Lett. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 11 start-page: 166 year: 2022 publication-title: Light: Sci. Appl. – volume: 24 start-page: 9459 year: 2024 publication-title: Nano Lett. – volume: 130 year: 2023 publication-title: Phys. Rev. Lett. – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 11 start-page: 2640 year: 2020 publication-title: Nat. Commun. – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 5 year: 2023 publication-title: Phys. Rev. Res. – year: 2002 – volume: 24 year: 2024 publication-title: Nano Lett. – volume: 19 start-page: 196 year: 2023 publication-title: Nat. Nanotechnol. – volume: 6 year: 2023 publication-title: Opto‐Electronic Advances – volume: 567 start-page: 66 year: 2019 publication-title: Nature – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 7 year: 2021 publication-title: Adv. Mater. Technol. – volume: 556 start-page: 43 year: 2018 publication-title: Nature |
SSID | ssj0002891341 |
Score | 2.2971268 |
Snippet | The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems compelling... Abstract The impressive physics and applications of intra‐ and interlayer excitons in a transition metal dichalcogenide twisted‐bilayer make these systems... |
SourceID | doaj wiley |
SourceType | Open Website Publisher |
SubjectTerms | electrostatic doping exciton hybrid states intervalley trions MoSe2 trion twisted‐homobilayers vdW heterostructures |
SummonAdditionalLinks | – databaseName: Wiley Open Access Collection dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L15EUXH-IgevZU3SpO1xysYQJmN2sFt5aRMZaCtz_vrvzUu76Y5eC00h33t5X9K87yPkxhqTgGIqAK5lEAmlgiRVNpA61W4DHVrru1zHD2o0i-7ncv6ni7_Rh9gcuGFm-PUaExz0W-9XNBRev1DPE-9AMiF3yR7216J6Po8mm1MWjn_hvH0ljyULmIuJtXJjyHvbQ7Sq_dss1ZeZ4SE5aPkh7TeAHpEdUx2TfODNanA-6Riqxdpzi9aW-iO9D3RE-abZEoOILiqafSJ8JR3Xj4bTUf1S68UzIL2msKJTx5ZpZhxjbhSVT8hsOMjuRkHrjBCUXMRhIEFIEYME7viTTbWJS-1qOxSCA5TSKs4Lo1z-auMYVmITl7c6hoKVSgBYKU5Jp6orc0aosZCGpZHSwRS5zYPWIk0sEpEoBs3CLrnFWclfG_GLHOWo_YN6-ZS30Z2rVEpulI2w2hn3jdiwkqmYSws8YUWXNFBuRmnEknmOCOQbBPL-ZD5Fjhee__eFC7LP0ZnXX0W8JJ3V8t1cObqw0tc-In4ALNi4gA priority: 102 providerName: Wiley-Blackwell |
Title | Electrical Manipulation of Intervalley Trions in Twisted MoSe2 Homobilayers at Room Temperature |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400135 https://doaj.org/article/69552e6f41284e63a7e1d16725fa281c |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ8VB5YQxM7dpKxoFYVUlFVUqmbdU5sqQiSqipfC78dn9NWZWJhyZAhju7ZvnfJ-T1CbqwxKchIBsC0CGIuZZBm0gZCZ9oV0KG1_pTr6FEOp_HDTMx2rL6wJ6yRB24C15WZEMxIG-NGaiSHxERlJBMmLLA0KnD3dTlvp5h6bn6foVLZRqUxZF1YfKL8J7ZMRujt5hX6fzNSn1IGR-RwzQVpr3mHY7JnqhOi-t6YBmNHR1DNN_5atLbUf757R_eTL5ovccLQeUXzD4SqpKP6yTA6rF9rPX8BpNIUVnTimDHNjWPHjXryKZkO-vn9MFi7IAQl40kYCOCCJyCAOa5kM22SUrs8DgVnAKWwkrHCSLdWtXFsKrWpW6M6gSIqXbDACn5GWlVdmXNCjYUsLI0QDpLYFQpa8yy1SDriBHQUtskdRkUtGqELhdLT_oYDRK0BUX8B0ia3PqbbpzTCyEwhAmqLgOqNZxPkc-HFf4x6SQ4YOvP6VsQr0lot38y1owsr3SH7LB53_Pxw19F3_wd2Zr1j |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLYYHMZlYoIJ2GA-cI2In2M7ObKJqmxtVUGQuFnPjY0qQYKqwrZ_j5_TFnHcNVIcyd97fp9f7O9j7Cx4X6IWOkNwKiuk1llZ6ZApV7m4gc5DSLdcxxM9vC1-3an1aUK6C9PrQ2wabpQZab2mBKeG9Pmbaig-_SVBTzoEKaT6wHYKDYZyE4rpps0C9Bsu-VeCUSITMSjW0o05nL8fYiXb_56mpjoz2GOfVgSRX_SIfmZbvt1n9jK51dCE8jG287XpFu8CTz29F7JE-cfrBUURn7e8_kP4NXzc3Xjgw-6xc_MHJH7NccmvI13mtY-UuZdUPmC3g8v65zBbWSNkDUiTZwqlkgYVQiRQoXLeNC4Wd5xJQGxU0AAzr2MCOx8pVhnKmLjO4Ew0WiIGJb-w7bZr_SHjPmCVN16piFMRdw_OyaoMxEQKg07kR-wHzYp96tUvLOlRpwfd4t6uwtvqSinwOhRU7nz8hvGiEdqACgilmB2xHsvNKL1aMlhCwG4QsBfTu2siefnx_77wnX0c1uORHV1Nfn9lu0A2velc4je2vVw8-5PIHZbuNEXHKzj-u-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMQFgQBRVh-4Ro3t2EmOZanKUoRKiyou1rixUSVIqqpsf48nCYUeuUaKI_nNeJ4n9nuEnDprE1BMBcCNDCKhVJCkygXSpMZvoEPnyluu3TvVGUTXQzn8c4u_0oeYN9wwM8r1GhN8krnmr2goTD5RzxPPQDIhl8kqSuX5uF5tPQ6eBvM-C8f_cKWBJY8lC5iPih_txpA3FwepdfsXeWpZaNqbZKNmiLRVQbpFlmy-TfRlaVeDM0q7kI9_XLdo4WjZ1HtHT5Qv2p9iGNFxTvsfCGBGu8WD5bRTvBZm_AJIsCnMaM_zZdq3njNXmso7ZNC-7J93gtobIci4iMNAgpAiBgncMyiXGhtnxld3GAkOkEmnOB9Z5TPYWM-xEpf4zDUxjFimBICTYpes5EVu9wi1DtIws1J6oCK_fTBGpIlDKhLFYFjYIGc4K3pSyV9oFKQuHxTTZ13Ht1aplNwqF2G9s_4bsWUZUzGXDnjCRg1SgTkfpZJL5hoR0HMEdOt-2EOWF-7_94UTsnZ_0da3V3c3B2Sdo01veS7xkKzMpm_2yHOHmTmuw-Mb8Qu85A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Manipulation+of+Intervalley+Trions+in+Twisted+MoSe2+Homobilayers+at+Room+Temperature&rft.jtitle=Advanced+Physics+Research&rft.au=B%C3%A1rbara+L.+T.+Rosa&rft.au=Paulo+E.+Faria+Junior&rft.au=Alisson+R.+Cadore&rft.au=Yuhui+Yang&rft.date=2025-05-01&rft.pub=Wiley-VCH&rft.eissn=2751-1200&rft.volume=4&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400135&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69552e6f41284e63a7e1d16725fa281c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |