A Comparative Study of Short Text Classification with Spiking Neural Networks

Short text classification is an important task widely used in many applications. However, few works investigated applying Spiking Neural Networks (SNNs) for text classification. To the best of our knowledge, there were no attempts to apply SNNs as classifiers of short texts. In this paper, we offer...

Full description

Saved in:
Bibliographic Details
Published in2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS) Vol. 30; pp. 79 - 88
Main Authors Maciag, Piotr S., Sitek, Wojciech, Skonieczny, Lukasz, Rybinski, Henryk
Format Conference Proceeding Journal Article
LanguageEnglish
Published Polish Information Processing Society 01.01.2022
Subjects
Online AccessGet full text
ISSN2300-5963
DOI10.15439/2022F184

Cover

Loading…
Abstract Short text classification is an important task widely used in many applications. However, few works investigated applying Spiking Neural Networks (SNNs) for text classification. To the best of our knowledge, there were no attempts to apply SNNs as classifiers of short texts. In this paper, we offer a comparative study of short text classification using SNNs. To this end, we selected and evaluated three popular implementations of SNNs: evolving Spiking Neural Networks (eSNN), the NeuCube implementation of SNNs, as well as the SNNTorch implementation that is available as the Python language package. In order to test the selected classifiers, we selected and preprocessed three publicly available datasets: 20-newsgroup dataset as well as imbalanced and balanced PubMed datasets of medical publications. The preprocessed 20-newsgroup dataset consists of first 100 words of each text, while for the classification of PubMed datasets we use only a title of each publication. As a text representation of documents, we applied the TF-IDF encoding. In this work, we also offered a new encoding method for eSNN networks, that can effectively encode values of input features having non-uniform distributions. The designed method works especially effectively with the TF-IDF encoding. The results of our study suggest that SNN networks may provide the classification quality is some cases matching or outperforming other types of classifiers.
AbstractList Short text classification is an important task widely used in many applications. However, few works investigated applying Spiking Neural Networks (SNNs) for text classification. To the best of our knowledge, there were no attempts to apply SNNs as classifiers of short texts. In this paper, we offer a comparative study of short text classification using SNNs. To this end, we selected and evaluated three popular implementations of SNNs: evolving Spiking Neural Networks (eSNN), the NeuCube implementation of SNNs, as well as the SNNTorch implementation that is available as the Python language package. In order to test the selected classifiers, we selected and preprocessed three publicly available datasets: 20-newsgroup dataset as well as imbalanced and balanced PubMed datasets of medical publications. The preprocessed 20-newsgroup dataset consists of first 100 words of each text, while for the classification of PubMed datasets we use only a title of each publication. As a text representation of documents, we applied the TF-IDF encoding. In this work, we also offered a new encoding method for eSNN networks, that can effectively encode values of input features having non-uniform distributions. The designed method works especially effectively with the TF-IDF encoding. The results of our study suggest that SNN networks may provide the classification quality is some cases matching or outperforming other types of classifiers.
Author Maciag, Piotr S.
Rybinski, Henryk
Sitek, Wojciech
Skonieczny, Lukasz
Author_xml – sequence: 1
  givenname: Piotr S.
  surname: Maciag
  fullname: Maciag, Piotr S.
  email: piotr.maciag@pw.edu.pl
  organization: Warsaw University of Technology,Institute of Computer Science,Warsaw,Poland,00-665
– sequence: 2
  givenname: Wojciech
  surname: Sitek
  fullname: Sitek, Wojciech
  email: wojciech.sitek@pw.edu.pl
  organization: Warsaw University of Technology,Institute of Computer Science,Warsaw,Poland,00-665
– sequence: 3
  givenname: Lukasz
  surname: Skonieczny
  fullname: Skonieczny, Lukasz
  email: lukasz.skonieczny@pw.edu.pl
  organization: Warsaw University of Technology,Institute of Computer Science,Warsaw,Poland,00-665
– sequence: 4
  givenname: Henryk
  surname: Rybinski
  fullname: Rybinski, Henryk
  email: hrb@ii.pw.edu.pl
  organization: Warsaw University of Technology,Institute of Computer Science,Warsaw,Poland,00-665
BookMark eNo9zM1OAjEUBeBqNBGRhWs3fYHR299pl4SIkqAuwPWkM9NCYZiSThF5eydi3Nxzc3Ly3aKrNrQWoXsCj0Rwpp8oUDolil-gkc6VYlpSTvt7iQaUAWRCS3aDRl23AQBKOFAuB-htjCdhtzfRJP9l8SId6hMODi_WISa8tN8JTxrTdd75qp-EFh99WuPF3m99u8Lv9hBN00c6hrjt7tC1M01nR385RJ_T5-XkNZt_vMwm43lWU8ZT5oQSKtdOl5UWTvcfV4YJayGvKEgwVV0T6WoDAkQOunTUqJxRJSunLFNsiGZntw5mU-yj35l4KoLxxW8R4qowMfmqsYWhOekxVWoruaxJCaZWvNIEqC5zYXrr4Wx5a-2_pTUoSSX7ATPOZxw
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
DOA
DOI 10.15439/2022F184
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9788396242396
8396242399
EISSN 2300-5963
EndPage 88
ExternalDocumentID oai_doaj_org_article_a271d168b9e646d1b0ad84c91029b75a
9908626
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
6IF
6IN
AAJGR
AAWTH
ABLEC
ADBBV
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
GROUPED_DOAJ
IEGSK
M~E
OCL
OK1
Y2W
ID FETCH-LOGICAL-d234t-f585879f9bc95f979f48a35ee07c2060acdd16fda0505709bf2a873286cf8e383
IEDL.DBID DOA
IngestDate Wed Aug 27 01:32:39 EDT 2025
Thu Jan 18 11:14:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d234t-f585879f9bc95f979f48a35ee07c2060acdd16fda0505709bf2a873286cf8e383
OpenAccessLink https://doaj.org/article/a271d168b9e646d1b0ad84c91029b75a
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a271d168b9e646d1b0ad84c91029b75a
ieee_primary_9908626
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS)
PublicationTitleAbbrev FedCSIS
PublicationYear 2022
Publisher Polish Information Processing Society
Publisher_xml – name: Polish Information Processing Society
SSID ssj0002140246
Score 2.1839023
Snippet Short text classification is an important task widely used in many applications. However, few works investigated applying Spiking Neural Networks (SNNs) for...
SourceID doaj
ieee
SourceType Open Website
Publisher
StartPage 79
SubjectTerms Computer science
Encoding
evolving spiking neural networks
medical documents
NeuCube
Neural networks
PubMed documents
short text classification
SNNTorch
spiking neural networks
Task analysis
Text categorization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ0-oYMRXevDo4j7b7VGJhJhgTICEG2m7bTQaILoc9Nc7010wGg8eNtv0sN3MTNt5fgNwKQsjldFxILWWaKDYPNCmKFCRs0mWGB2lliK64wc-mqX382zegKtdLYy11ief2T4NfSy_WJkNucqu8eQkBbwJTRSzqlarBgvK8F4lOx7NUI9TSqllP_ql-Oti2IbxdqEqS-Slvyl133z-wmD875_sQ_e7MI897q6cA2jY5SG0t50ZWL1ROzC-YYNvWG9GyYIfbOXY5Am1bTbFA5n5bpiUJ-RZw8gfyybrZ_KcM0LsUK_48ini712YDe-mg1FQN04IijhJy8ChDZAL6aQ2MnMSR2mukszaUJg45KFCbkTcFYra2IlQahernFB7uHG5RZv1CFrL1dIeA0uMEEYnPHX4aJVoCrNFgjshDZrWvAe3ROvFusLGWBBatZ9Aci1q4V-oWES4YK6l5SkvIh2qIk8Naiqx1CJTPegQiXcfqal78vf0KewRpys_yBm0yreNPUfNoNQXXiS-AG95u2s
  priority: 102
  providerName: IEEE
Title A Comparative Study of Short Text Classification with Spiking Neural Networks
URI https://ieeexplore.ieee.org/document/9908626
https://doaj.org/article/a271d168b9e646d1b0ad84c91029b75a
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxZeBVEelQfWiMRx_BhLRVUhtUtbqVvkp2BpKwgD_547J0CZWBgiRRl80p3iu-98_j5C7rR32jjLMm2tBoASVGad91DIhbIqnS14wBPd2VxMV_xpXa33pL5wJqylB24dd2-YLHwhlNVBcOELmxuvuIMsx7SVVSqNcp3vgSncgxngBsZFRyVUQdZFlA8gNbGYopFfaiopmUxOyFFXBdJRa_2UHITNGTn-Ulig3Q_XJ7MRHf_Qc1Mc-vug20gXz1A10yVsrDSpWuK8T3Ixxb4qXexesANOkXkDzMzbUe-3c7KaPC7H06wTQMg8K3mTRajlldRRW6erqOGNK1NWIeTSsVzkBrxaiOgNytHJXNvIjEL2HeGiCoA9L0hvs92ES0JLJ6WzpeARHmtKi8dlhRRRagcQWQzIA3ql3rUcFzWyTqcPEIu6i0X9VywGpI8-_V4EMh0Cpqv_WPuaHGIE2-7HDek1r-_hFuqBxg5T6Ifp6t4n3k2zeQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGGDi0SLK0wMjKXna8QgVVXm0QqJIbJHt2AKB2grSAX49d25aBGJgiGJ5iKM72_f-DuBElkYqo-NAai3RQLF5oE1ZoiJnkywxOkotRXT7A957SK8fs8clOF3UwlhrffKZbdPQx_LLsZmSq-wMb05SwJdhFeV-ms2qtWq4oAwlK1nyaIh6pFJKLvvRMcULjO4G9OdLzfJEXtrTSrfN5y8Uxv_-yyY0v0vz2N1C6GzBkh1tw8a8NwOrj2oD-ues8w3szShd8IONHbt_Qn2bDfFKZr4fJmUKeeYw8siy-8kz-c4ZYXaoV3z5JPH3Jjx0L4edXlC3TgjKOEmrwKEVkAvppDYycxJHaa6SzNpQmDjkoUJ-RNyVihrZiVBqF6uccHu4cblFq3UHVkbjkd0FlhghjE546vDRKtEUaIsEd0IaNK55Cy6I1sVkho5REF61n0ByFfX2L1QsIlww19LylJeRDlWZpwZ1lVhqkakWNIjEi4_U1N37e_oY1nrD_m1xezW42Yd14vrMK3IAK9Xb1B6inlDpI789vgBp-764
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+17th+Conference+on+Computer+Science+and+Intelligence+Systems+%28FedCSIS%29&rft.atitle=A+Comparative+Study+of+Short+Text+Classification+with+Spiking+Neural+Networks&rft.au=Maciag%2C+Piotr+S.&rft.au=Sitek%2C+Wojciech&rft.au=Skonieczny%2C+Lukasz&rft.au=Rybinski%2C+Henryk&rft.date=2022-01-01&rft.pub=Polish+Information+Processing+Society&rft.spage=79&rft.epage=88&rft_id=info:doi/10.15439%2F2022F184&rft.externalDocID=9908626