Fuzzy Quantifier-Based Fuzzy Rough Sets
In this paper we apply vague quantification to fuzzy rough sets to introduce fuzzy quantifier-based fuzzy rough sets (FQFRS), an intuitive generalization of fuzzy rough sets. We show how several existing models fit in this generalization as well as how it inspires novel models that may improve these...
Saved in:
Published in | 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS) Vol. 30; pp. 269 - 278 |
---|---|
Main Authors | , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
Polish Information Processing Society
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2300-5963 |
DOI | 10.15439/2022F231 |
Cover
Abstract | In this paper we apply vague quantification to fuzzy rough sets to introduce fuzzy quantifier-based fuzzy rough sets (FQFRS), an intuitive generalization of fuzzy rough sets. We show how several existing models fit in this generalization as well as how it inspires novel models that may improve these existing models. In addition, we introduce several new binary quantification models. Finally, we introduce an adaptation of FQFRS that allows seamless integration of outlier detection algorithms to enhance the robustness of the applications based on FQFRS. |
---|---|
AbstractList | In this paper we apply vague quantification to fuzzy rough sets to introduce fuzzy quantifier-based fuzzy rough sets (FQFRS), an intuitive generalization of fuzzy rough sets. We show how several existing models fit in this generalization as well as how it inspires novel models that may improve these existing models. In addition, we introduce several new binary quantification models. Finally, we introduce an adaptation of FQFRS that allows seamless integration of outlier detection algorithms to enhance the robustness of the applications based on FQFRS. |
Author | Cornelis, Chris Theerens, Adnan |
Author_xml | – sequence: 1 givenname: Adnan surname: Theerens fullname: Theerens, Adnan email: adnan.theerens@ugent.be organization: Ghent University,Ghent,Belgium – sequence: 2 givenname: Chris surname: Cornelis fullname: Cornelis, Chris email: chris.cornelis@ugent.be organization: Ghent University,Ghent,Belgium |
BookMark | eNo9jjtPw0AQhA8EEiGkoKZJR2U47-2db0uICESKhHjV1nK3Do5CjPwokl-PwYhmRhqNvplTdbSttqLUeaqvUouGrkEDzMGkB2pCmfeGHCD0eqhGYLROLDlzoiZNs9ZaQ4oa0I3U5bzb73fTp463bVmUUie33EicDvFz1a0-pi_SNmfquOBNI5M_H6u3-d3r7CFZPt4vZjfLJILBNomeM-h3oxRGJFJG0Yj2ETmyZfYmZCmysRTQBA8YHDiG0LcJWZM3Y7UYuLHidf5Vl59c7_KKy_w3qOpVznVbho3kKO_OUYEh9RZdsL5fDT7LPFF_QX5YFwOrFJF_FpH23mrzDaArWR4 |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IL CBEJK RIE RIL DOA |
DOI | 10.15439/2022F231 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9788396242396 8396242399 |
EISSN | 2300-5963 |
EndPage | 278 |
ExternalDocumentID | oai_doaj_org_article_4eb669f4c18546c582dec877899224e8 9908850 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL 6IF 6IN AAJGR AAWTH ABLEC ADBBV ADZIZ ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO GROUPED_DOAJ IEGSK M~E OCL OK1 Y2W |
ID | FETCH-LOGICAL-d234t-d8a72242def3eed979d3e08d4ada5aa83c714a359c43c824c626a2cef394a0983 |
IEDL.DBID | DOA |
IngestDate | Wed Aug 27 01:14:24 EDT 2025 Thu Jan 18 11:14:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d234t-d8a72242def3eed979d3e08d4ada5aa83c714a359c43c824c626a2cef394a0983 |
OpenAccessLink | https://doaj.org/article/4eb669f4c18546c582dec877899224e8 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9908850 doaj_primary_oai_doaj_org_article_4eb669f4c18546c582dec877899224e8 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS) |
PublicationTitleAbbrev | FedCSIS |
PublicationYear | 2022 |
Publisher | Polish Information Processing Society |
Publisher_xml | – name: Polish Information Processing Society |
SSID | ssj0002140246 |
Score | 2.1901436 |
Snippet | In this paper we apply vague quantification to fuzzy rough sets to introduce fuzzy quantifier-based fuzzy rough sets (FQFRS), an intuitive generalization of... |
SourceID | doaj ieee |
SourceType | Open Website Publisher |
StartPage | 269 |
SubjectTerms | Adaptation models Anomaly detection Computational efficiency Computational modeling Computer science Robustness Rough sets |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1qT56qtmL9Yg-CF7e2yWQ3uVYsRaj4VehtySazF6EV3T3YX2-S3VYUD97CEJIwyfKY2Zn3AC50QQ63hY2lVT5bNaI4L0YqdkhWcMMEYSjGnN0n0zneLcSiBVfbXhgiCsVnNPDD8C_frkzlU2XXyhfl-AB9xz2zulerIQsSDld9HM8mzMvFBfr9H3opAS4mHZhtNqqrRF4HVZkPzPoXB-N_T7IHve_GvOhhCzn70KLlAXQ2ygxR86F24XJSrdef0WOlQy0Qvcdjh1Y2qs1PXpkneqbyowfzye3LzTRuJBFiyziWsZU6daDLLBXcbaVSZTkNpUVttdBacpOOUHOhDHIjGRoXr2hm3GyFeqgkP4T2crWkI4jYUHOmU0yMJsyVVAU5sE-lMDkxQuzD2Hsxe6tZLzLPQx0MzhFZ86wzpDxJVIHGwb5bSUh3MiPTVHq6WyTZh6533naRxm_Hf5tPYNffYZ3hOIV2-V7RmcP8Mj8Pl_0FW3ytDw priority: 102 providerName: IEEE |
Title | Fuzzy Quantifier-Based Fuzzy Rough Sets |
URI | https://ieeexplore.ieee.org/document/9908850 https://doaj.org/article/4eb669f4c18546c582dec877899224e8 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3iyo2vKtZHmYXgKjhNbibJ0opDERR8FLobMsmdZZU6Xdiv9yYzSl25cRtCHickJzfcnMPYpWuQeFsFboKNr1Vj5HUztpyYrJFeKISUjPnwWExncD9X8w2rr5gT1skDd8BdA9ZFYRvwRCxQeGVEQG-0NlFQFTB9881tvhFMxTNYUNwgoOilhBSxbozyRSmimVwS5__lppLIpNxnu_0tMLvpej9gW7g4ZHvfDgtZv-EG7Kpcrdef2dPKpZweXPIJsU7IuuLn6LCTvWD7ccRm5d3r7ZT31gY8CAktD8ZpGj7NpZHEUlbbIDE3AVxwyjkjvR6Dk8p6kN4I8BR3OOGptgWXWyOP2fbibYEnLBO5k8JpwsYh1NbYBom0tVG-RoEAQzaJ863eO_WKKupJpwJCuepRrv5CecgGEa2fRmxMj1L56X-0fcZ24tp07xrnbLtdrvCCmL6tR2lRR-lT3hdU06S2 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsBUoEV8kwGJhZTWPif2WkRVoK34aKVukWNfFqQWlWSgvx7bSYtADGzRKbKtc6LnO797R8ilytDiNjehMNJlq7oYpllXhhbJMqYpR_BkzNE4GkzhYcZnNXK9qYVBRE8-w7Z79Hf5ZqELlyq7kY6U4wL0LYv7wMtqrUouiFtkdZE87VPXMM4L8P_omOIBo98go_VUJU_krV3kaVuvfqkw_nctu6T1XZoXPG1AZ4_UcL5PGuveDEH1qzbJVb9YrT6D50J5NhAuw57FKxOU5hfXmyd4xfyjRab9u8ntIKyaIoSGMshDI1RsYZcazJidSsbSMOwIA8oorpRgOu6CYlxqYFpQ0DZiUVTbtyWojhTsgNTnizkekoB2FKMqhkgrhFQKmaGF-1hwnSJFgCPSc15M3kvdi8QpUXuDdURSfdgJYBpFMgNtgd-OxIVdmRZxLJzgLaA4Ik3nvM0gld-O_zZfkO3BZDRMhvfjxxOy4_azzHecknq-LPDMngDy9Nxv_BeZJ7Bc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+17th+Conference+on+Computer+Science+and+Intelligence+Systems+%28FedCSIS%29&rft.atitle=Fuzzy+Quantifier-Based+Fuzzy+Rough+Sets&rft.au=Theerens%2C+Adnan&rft.au=Cornelis%2C+Chris&rft.date=2022-01-01&rft.pub=Polish+Information+Processing+Society&rft.spage=269&rft.epage=278&rft_id=info:doi/10.15439%2F2022F231&rft.externalDocID=9908850 |