Fuzzy Quantifier-Based Fuzzy Rough Sets

In this paper we apply vague quantification to fuzzy rough sets to introduce fuzzy quantifier-based fuzzy rough sets (FQFRS), an intuitive generalization of fuzzy rough sets. We show how several existing models fit in this generalization as well as how it inspires novel models that may improve these...

Full description

Saved in:
Bibliographic Details
Published in2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS) Vol. 30; pp. 269 - 278
Main Authors Theerens, Adnan, Cornelis, Chris
Format Conference Proceeding Journal Article
LanguageEnglish
Published Polish Information Processing Society 01.01.2022
Subjects
Online AccessGet full text
ISSN2300-5963
DOI10.15439/2022F231

Cover

Abstract In this paper we apply vague quantification to fuzzy rough sets to introduce fuzzy quantifier-based fuzzy rough sets (FQFRS), an intuitive generalization of fuzzy rough sets. We show how several existing models fit in this generalization as well as how it inspires novel models that may improve these existing models. In addition, we introduce several new binary quantification models. Finally, we introduce an adaptation of FQFRS that allows seamless integration of outlier detection algorithms to enhance the robustness of the applications based on FQFRS.
AbstractList In this paper we apply vague quantification to fuzzy rough sets to introduce fuzzy quantifier-based fuzzy rough sets (FQFRS), an intuitive generalization of fuzzy rough sets. We show how several existing models fit in this generalization as well as how it inspires novel models that may improve these existing models. In addition, we introduce several new binary quantification models. Finally, we introduce an adaptation of FQFRS that allows seamless integration of outlier detection algorithms to enhance the robustness of the applications based on FQFRS.
Author Cornelis, Chris
Theerens, Adnan
Author_xml – sequence: 1
  givenname: Adnan
  surname: Theerens
  fullname: Theerens, Adnan
  email: adnan.theerens@ugent.be
  organization: Ghent University,Ghent,Belgium
– sequence: 2
  givenname: Chris
  surname: Cornelis
  fullname: Cornelis, Chris
  email: chris.cornelis@ugent.be
  organization: Ghent University,Ghent,Belgium
BookMark eNo9jjtPw0AQhA8EEiGkoKZJR2U47-2db0uICESKhHjV1nK3Do5CjPwokl-PwYhmRhqNvplTdbSttqLUeaqvUouGrkEDzMGkB2pCmfeGHCD0eqhGYLROLDlzoiZNs9ZaQ4oa0I3U5bzb73fTp463bVmUUie33EicDvFz1a0-pi_SNmfquOBNI5M_H6u3-d3r7CFZPt4vZjfLJILBNomeM-h3oxRGJFJG0Yj2ETmyZfYmZCmysRTQBA8YHDiG0LcJWZM3Y7UYuLHidf5Vl59c7_KKy_w3qOpVznVbho3kKO_OUYEh9RZdsL5fDT7LPFF_QX5YFwOrFJF_FpH23mrzDaArWR4
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
DOA
DOI 10.15439/2022F231
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9788396242396
8396242399
EISSN 2300-5963
EndPage 278
ExternalDocumentID oai_doaj_org_article_4eb669f4c18546c582dec877899224e8
9908850
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
6IF
6IN
AAJGR
AAWTH
ABLEC
ADBBV
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
GROUPED_DOAJ
IEGSK
M~E
OCL
OK1
Y2W
ID FETCH-LOGICAL-d234t-d8a72242def3eed979d3e08d4ada5aa83c714a359c43c824c626a2cef394a0983
IEDL.DBID DOA
IngestDate Wed Aug 27 01:14:24 EDT 2025
Thu Jan 18 11:14:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d234t-d8a72242def3eed979d3e08d4ada5aa83c714a359c43c824c626a2cef394a0983
OpenAccessLink https://doaj.org/article/4eb669f4c18546c582dec877899224e8
PageCount 10
ParticipantIDs ieee_primary_9908850
doaj_primary_oai_doaj_org_article_4eb669f4c18546c582dec877899224e8
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS)
PublicationTitleAbbrev FedCSIS
PublicationYear 2022
Publisher Polish Information Processing Society
Publisher_xml – name: Polish Information Processing Society
SSID ssj0002140246
Score 2.1901436
Snippet In this paper we apply vague quantification to fuzzy rough sets to introduce fuzzy quantifier-based fuzzy rough sets (FQFRS), an intuitive generalization of...
SourceID doaj
ieee
SourceType Open Website
Publisher
StartPage 269
SubjectTerms Adaptation models
Anomaly detection
Computational efficiency
Computational modeling
Computer science
Robustness
Rough sets
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1qT56qtmL9Yg-CF7e2yWQ3uVYsRaj4VehtySazF6EV3T3YX2-S3VYUD97CEJIwyfKY2Zn3AC50QQ63hY2lVT5bNaI4L0YqdkhWcMMEYSjGnN0n0zneLcSiBVfbXhgiCsVnNPDD8C_frkzlU2XXyhfl-AB9xz2zulerIQsSDld9HM8mzMvFBfr9H3opAS4mHZhtNqqrRF4HVZkPzPoXB-N_T7IHve_GvOhhCzn70KLlAXQ2ygxR86F24XJSrdef0WOlQy0Qvcdjh1Y2qs1PXpkneqbyowfzye3LzTRuJBFiyziWsZU6daDLLBXcbaVSZTkNpUVttdBacpOOUHOhDHIjGRoXr2hm3GyFeqgkP4T2crWkI4jYUHOmU0yMJsyVVAU5sE-lMDkxQuzD2Hsxe6tZLzLPQx0MzhFZ86wzpDxJVIHGwb5bSUh3MiPTVHq6WyTZh6533naRxm_Hf5tPYNffYZ3hOIV2-V7RmcP8Mj8Pl_0FW3ytDw
  priority: 102
  providerName: IEEE
Title Fuzzy Quantifier-Based Fuzzy Rough Sets
URI https://ieeexplore.ieee.org/document/9908850
https://doaj.org/article/4eb669f4c18546c582dec877899224e8
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3iyo2vKtZHmYXgKjhNbibJ0opDERR8FLobMsmdZZU6Xdiv9yYzSl25cRtCHickJzfcnMPYpWuQeFsFboKNr1Vj5HUztpyYrJFeKISUjPnwWExncD9X8w2rr5gT1skDd8BdA9ZFYRvwRCxQeGVEQG-0NlFQFTB9881tvhFMxTNYUNwgoOilhBSxbozyRSmimVwS5__lppLIpNxnu_0tMLvpej9gW7g4ZHvfDgtZv-EG7Kpcrdef2dPKpZweXPIJsU7IuuLn6LCTvWD7ccRm5d3r7ZT31gY8CAktD8ZpGj7NpZHEUlbbIDE3AVxwyjkjvR6Dk8p6kN4I8BR3OOGptgWXWyOP2fbibYEnLBO5k8JpwsYh1NbYBom0tVG-RoEAQzaJ863eO_WKKupJpwJCuepRrv5CecgGEa2fRmxMj1L56X-0fcZ24tp07xrnbLtdrvCCmL6tR2lRR-lT3hdU06S2
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsBUoEV8kwGJhZTWPif2WkRVoK34aKVukWNfFqQWlWSgvx7bSYtADGzRKbKtc6LnO797R8ilytDiNjehMNJlq7oYpllXhhbJMqYpR_BkzNE4GkzhYcZnNXK9qYVBRE8-w7Z79Hf5ZqELlyq7kY6U4wL0LYv7wMtqrUouiFtkdZE87VPXMM4L8P_omOIBo98go_VUJU_krV3kaVuvfqkw_nctu6T1XZoXPG1AZ4_UcL5PGuveDEH1qzbJVb9YrT6D50J5NhAuw57FKxOU5hfXmyd4xfyjRab9u8ntIKyaIoSGMshDI1RsYZcazJidSsbSMOwIA8oorpRgOu6CYlxqYFpQ0DZiUVTbtyWojhTsgNTnizkekoB2FKMqhkgrhFQKmaGF-1hwnSJFgCPSc15M3kvdi8QpUXuDdURSfdgJYBpFMgNtgd-OxIVdmRZxLJzgLaA4Ik3nvM0gld-O_zZfkO3BZDRMhvfjxxOy4_azzHecknq-LPDMngDy9Nxv_BeZJ7Bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+17th+Conference+on+Computer+Science+and+Intelligence+Systems+%28FedCSIS%29&rft.atitle=Fuzzy+Quantifier-Based+Fuzzy+Rough+Sets&rft.au=Theerens%2C+Adnan&rft.au=Cornelis%2C+Chris&rft.date=2022-01-01&rft.pub=Polish+Information+Processing+Society&rft.spage=269&rft.epage=278&rft_id=info:doi/10.15439%2F2022F231&rft.externalDocID=9908850