The Flow of Jeffrey Nanofluid through Cone-Disk Gap for Thermal Applications using Artificial Neural Networks

This study investigates the flow of Jeffrey nanofluid through the gap between a disk and a cone, incorporating the influences of thermophoresis and Brownian motion within the flow system. Suitable variables have used to convert the modeled equations to dimension-free notations. This set of dimension...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied and computational mechanics Vol. 10; no. 3; pp. 610 - 628
Main Authors Abeer S. Alnahdi, Zeeshan Khan, Taza Gul, Hijaz Ahmad
Format Journal Article
LanguageEnglish
Published Shahid Chamran University of Ahvaz 01.07.2024
Subjects
Online AccessGet full text
ISSN2383-4536
DOI10.22055/jacm.2024.45278.4345

Cover

Loading…
Abstract This study investigates the flow of Jeffrey nanofluid through the gap between a disk and a cone, incorporating the influences of thermophoresis and Brownian motion within the flow system. Suitable variables have used to convert the modeled equations to dimension-free notations. This set of dimensionless equations has then solved by using Levenberg Marquardt Scheme through Neural Network Algorithm (LMS-NNA). In this study, it has been observed that the absolute error (AE) between the reference and target data consistently falls in the range 10-4 to 10-5 demonstrating the exceptional accuracy performance of LMS-NNA. In all four scenarios it has noticed that transverse velocity distribution has declined with augmentation in magnetic and Jeffery fluid factors by keeping all the other parameters as fixed. It is evident that the optimal validation performance 2.8227×10-9 has been achieved at epoch 1000 for the transverse velocity when cone and disk gyrating in opposite directions.
AbstractList This study investigates the flow of Jeffrey nanofluid through the gap between a disk and a cone, incorporating the influences of thermophoresis and Brownian motion within the flow system. Suitable variables have used to convert the modeled equations to dimension-free notations. This set of dimensionless equations has then solved by using Levenberg Marquardt Scheme through Neural Network Algorithm (LMS-NNA). In this study, it has been observed that the absolute error (AE) between the reference and target data consistently falls in the range 10-4 to 10-5 demonstrating the exceptional accuracy performance of LMS-NNA. In all four scenarios it has noticed that transverse velocity distribution has declined with augmentation in magnetic and Jeffery fluid factors by keeping all the other parameters as fixed. It is evident that the optimal validation performance 2.8227×10-9 has been achieved at epoch 1000 for the transverse velocity when cone and disk gyrating in opposite directions.
Author Abeer S. Alnahdi
Hijaz Ahmad
Zeeshan Khan
Taza Gul
Author_xml – sequence: 1
  fullname: Abeer S. Alnahdi
  organization: Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyad, 11432, Saudi Arabia
– sequence: 2
  fullname: Zeeshan Khan
  organization: Department of Mathematics, Abdul Wali Khan University Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
– sequence: 3
  fullname: Taza Gul
  organization: Department of Mathematics, City University of Science and Information Technology, Peshawar, 25000, Pakistan
– sequence: 4
  fullname: Hijaz Ahmad
  organization: Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
BookMark eNotT8tqwkAUHUoLtdZPKMwPJJ1nJlmKrdYiduM-3MxDR5NMmCSIf99guzpwDuf1gh7b0FqE3ihJGSNSvp9BNykjTKRCMpWnggv5gGaM5zwRkmfPaNH3Z0IIo4LQrJih5nCyeF2HKw4Of1vnor3hPbTB1aM3eDjFMB5PeDUVJR--v-ANdNiFiCdfbKDGy66rvYbBh7bHY-_bI17GwTuv_aTu7RjvMFxDvPSv6MlB3dvFP87RYf15WH0lu5_NdrXcJYYxOiS2kLriWcUUVRl1jKtCioJRbitZSMqZA0poZWQO0xVLnDW6Ai5UkefEVHyOtn-xJsC57KJvIN7KAL68EyEeS5g26tqWWikujVFEKSukzkBWVCghwCiTC235L0cuaZk
ContentType Journal Article
DBID DOA
DOI 10.22055/jacm.2024.45278.4345
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2383-4536
EndPage 628
ExternalDocumentID oai_doaj_org_article_c7735dd7077e45c6a5b14744ad7d84ce
GroupedDBID 5VS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-d221t-e95cb36b271761f2379549213eb595132fa101bd58a002e0fedcba3479880db3
IEDL.DBID DOA
IngestDate Wed Aug 27 01:30:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d221t-e95cb36b271761f2379549213eb595132fa101bd58a002e0fedcba3479880db3
OpenAccessLink https://doaj.org/article/c7735dd7077e45c6a5b14744ad7d84ce
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_c7735dd7077e45c6a5b14744ad7d84ce
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of applied and computational mechanics
PublicationYear 2024
Publisher Shahid Chamran University of Ahvaz
Publisher_xml – name: Shahid Chamran University of Ahvaz
SSID ssj0002140169
Score 2.288629
Snippet This study investigates the flow of Jeffrey nanofluid through the gap between a disk and a cone, incorporating the influences of thermophoresis and Brownian...
SourceID doaj
SourceType Open Website
StartPage 610
SubjectTerms artificial neural network
boungiorno model
cone and disk devices
heat transfer analysis
jeffrey fluid flow
Title The Flow of Jeffrey Nanofluid through Cone-Disk Gap for Thermal Applications using Artificial Neural Networks
URI https://doaj.org/article/c7735dd7077e45c6a5b14744ad7d84ce
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAsRbHljTJn4mIxRKhQRTkbpFfqJCaSrair_PXZwhGwtTpERxrPvku-_i-86E3HJTRh5VyDyE_0w4VWVGOax_UhHordWlwV8DL69q-iae53LeO-oLa8JSe-BkuJHTmkvvda51ENIpI20htBDGa18KF9D7QszrJVPogxnmDapKkh3UksrRh3GoPGdiKCTT5VBwlDD1GvW3EWVySA46Kkjv0hSOyF5YHZMvwI1Ols0PbSLtZFYUXGATl7uFp92xOnTcrEL2sNh80iezpkA8KbwHPhaG6-1IU6xqf2-_kBpFUOzF0V7a4u_NCZlNHmfjadYdiZB5xoptFirpLFeWQRamisi4xm06VvBgJXAlzqKBNWa9LA0YIeQxeGcNqkVhnXrLT8lgBRM8I9RZC88VpF9SCG8FZIo8RJdHDqTK5fyc3KNp6nVqelFjG-r2BoBTd-DUf4Fz8R-DXJJ9hC3VyF6RwfZ7F66BCWztTQv6L0pjsWU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Flow+of+Jeffrey+Nanofluid+through+Cone-Disk+Gap+for+Thermal+Applications+using+Artificial+Neural+Networks&rft.jtitle=Journal+of+applied+and+computational+mechanics&rft.au=Abeer+S.+Alnahdi&rft.au=Zeeshan+Khan&rft.au=Taza+Gul&rft.au=Hijaz+Ahmad&rft.date=2024-07-01&rft.pub=Shahid+Chamran+University+of+Ahvaz&rft.eissn=2383-4536&rft.volume=10&rft.issue=3&rft.spage=610&rft.epage=628&rft_id=info:doi/10.22055%2Fjacm.2024.45278.4345&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7735dd7077e45c6a5b14744ad7d84ce