The Mostar and Wiener index of Alternate Lucas Cubes

The Wiener index and the Mostar index quantify two distance related properties of connected graphs: the Wiener index is the sum of the distances over all pairs of vertices and the Mostar index is a measure of how far the graph is from being distance-balanced. These two measures have been considered...

Full description

Saved in:
Bibliographic Details
Published inTransactions on combinatorics Vol. 12; no. 1; pp. 37 - 46
Main Authors Omer Eğecioğlu, Elif Sayg, Zülfükar Sayg
Format Journal Article
LanguageEnglish
Published University of Isfahan 01.03.2023
Subjects
Online AccessGet full text
ISSN2251-8657
2251-8665
DOI10.22108/toc.2022.130675.1912

Cover

Abstract The Wiener index and the Mostar index quantify two distance related properties of connected graphs: the Wiener index is the sum of the distances over all pairs of vertices and the Mostar index is a measure of how far the graph is from being distance-balanced. These two measures have been considered for a number of interesting families of graphs. In this paper, we determine the Wiener index and the Mostar index of alternate Lucas cubes. Alternate Lucas cubes form a family of interconnection networks whose recursive construction mimics the construction of the well-known Fibonacci cubes.
AbstractList The Wiener index and the Mostar index quantify two distance related properties of connected graphs: the Wiener index is the sum of the distances over all pairs of vertices and the Mostar index is a measure of how far the graph is from being distance-balanced. These two measures have been considered for a number of interesting families of graphs. In this paper, we determine the Wiener index and the Mostar index of alternate Lucas cubes. Alternate Lucas cubes form a family of interconnection networks whose recursive construction mimics the construction of the well-known Fibonacci cubes.
Author Omer Eğecioğlu
Zülfükar Sayg
Elif Sayg
Author_xml – sequence: 1
  fullname: Omer Eğecioğlu
  organization: Department of Computer Science, University of California Santa Barbara, CA 93106, USA
– sequence: 2
  fullname: Elif Sayg
  organization: Department of Mathematics and Science Education, Hacettepe University, 06800, Ankara, Turkey
– sequence: 3
  fullname: Zülfükar Sayg
  organization: Department of Mathematics, TOBB University of Economics and Technology, 06560, Ankara, Turkey
BookMark eNo9js1KAzEURoNUsNY-gpAXmDH3JjeTLEvxp1BxU3E53JlkdEqdSGYK-vaKFlff4SwO36WYDWmIQlyDKhFBuZsptSUqxBK0shWV4AHPxByRoHDW0uyfqboQy3HcK6UAtNeg58Ls3qJ8TOPEWfIQ5Esfh5hlP4T4KVMnV4cp5oGnKLfHlke5PjZxvBLnHR_GuDztQjzf3e7WD8X26X6zXm2L8HNtKpgUOO0JLHiLxiJ5jYrQePDo2LvGtx1yY7xunWID1sRAwE0LgaGLeiE2f92QeF9_5P6d81eduK9_RcqvNeepbw-xRu6IHKmOrDeqcj54rhRrwFDFSpP-BqC3VLs
ContentType Journal Article
DBID DOA
DOI 10.22108/toc.2022.130675.1912
DatabaseName Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2251-8665
EndPage 46
ExternalDocumentID oai_doaj_org_article_2af55850f56940789d9a70a312d7e735
GroupedDBID 5VS
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
EOJEC
GROUPED_DOAJ
KQ8
OBODZ
OK1
TUS
ID FETCH-LOGICAL-d221t-a50183951619624625932052491928a98b9cf2ab493c80a4164ed51abc1da1fe3
IEDL.DBID DOA
ISSN 2251-8657
IngestDate Wed Aug 27 01:27:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d221t-a50183951619624625932052491928a98b9cf2ab493c80a4164ed51abc1da1fe3
OpenAccessLink https://doaj.org/article/2af55850f56940789d9a70a312d7e735
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_2af55850f56940789d9a70a312d7e735
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Transactions on combinatorics
PublicationYear 2023
Publisher University of Isfahan
Publisher_xml – name: University of Isfahan
SSID ssj0001139313
ssib044763210
Score 2.2191098
Snippet The Wiener index and the Mostar index quantify two distance related properties of connected graphs: the Wiener index is the sum of the distances over all pairs...
SourceID doaj
SourceType Open Website
StartPage 37
SubjectTerms alternate lucas cube
fibonacci cube
keywords: hypercube
mostar index
wiener index
Title The Mostar and Wiener index of Alternate Lucas Cubes
URI https://doaj.org/article/2af55850f56940789d9a70a312d7e735
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQWWBAPMWz8sBqiF9JPLaFqkKUiYpukR3bEhJKUJv-f6_tCJWJhdWDZfvYuedeO-cgdK9loZ11NTGslkRQ64kpqCalVVZRT20WC27zt3y2EC9Ludyx-gpvwpI8cFq4R6a9BEqbeZmrcOcEXegi05wyW7iCR_XSTGU7yRTsJCHg2LA-sMVqCxAdHr2SYf9SUuaySL_zMBZ8cLo2qBkyFryRgUE_QBLDfon4x2gzPUZHPU3EozS8E7TnmlN0OP_RWF2fIQEI43kL7G6FdWPxx2dQkMZR_hC3Ho--Uq3P4ddgbIYnG-PW52gxfX6fzEjvgUAsDK0jOgjucaBBkOjkTIRshbNMQtIE1KzUqjSq9kwboXhdZhrolXBWUm1qajX1jl-gQdM27hJhWXsL30Ub7uKEgbNsOCwnrUvNc68sv0LjMOHqO8lcVEF4OjYAHFUPR_UXHNf_0ckNOgiu7ump1y0adKuNu4PY35kh2h-Nn8bTYYR7C8BapWQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Mostar+and+Wiener+index+of+Alternate+Lucas+Cubes&rft.jtitle=Transactions+on+combinatorics&rft.au=Omer+E%C4%9Fecio%C4%9Flu&rft.au=Elif+Sayg&rft.au=Z%C3%BClf%C3%BCkar+Sayg&rft.date=2023-03-01&rft.pub=University+of+Isfahan&rft.issn=2251-8657&rft.eissn=2251-8665&rft.volume=12&rft.issue=1&rft.spage=37&rft.epage=46&rft_id=info:doi/10.22108%2Ftoc.2022.130675.1912&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2af55850f56940789d9a70a312d7e735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2251-8657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2251-8657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2251-8657&client=summon