Optimizing Implementations of Linear Layers

In this paper, we propose a new heuristic algorithm to search efficient implementations (in terms of Xor count) of linear layers used in symmetric-key cryptography. It is observed that the implementation cost of an invertible matrix is related to its matrix decomposition if sequential-Xor (s-Xor) me...

Full description

Saved in:
Bibliographic Details
Published inIACR Transactions on Symmetric Cryptology Vol. 2020; no. 2
Main Authors Zejun Xiang, Xiangyoung Zeng, Da Lin, Zhenzhen Bao, Shasha Zhang
Format Journal Article
LanguageEnglish
Published Ruhr-Universität Bochum 01.01.2020
Subjects
Online AccessGet full text
ISSN2519-173X
DOI10.13154/tosc.v2020.i2.120-145

Cover

Loading…
Abstract In this paper, we propose a new heuristic algorithm to search efficient implementations (in terms of Xor count) of linear layers used in symmetric-key cryptography. It is observed that the implementation cost of an invertible matrix is related to its matrix decomposition if sequential-Xor (s-Xor) metric is considered, thus reducing the implementation cost is equivalent to constructing an optimized matrix decomposition. The basic idea of this work is to find various matrix decompositions for a given matrix and optimize those decompositions to pick the best implementation. In order to optimize matrix decompositions, we present several matrix multiplication rules over F2, which are proved to be very powerful in reducing the implementation cost. We illustrate this heuristic by searching implementations of several matrices proposed recently and matrices already used in block ciphers and Hash functions, and the results show that our heuristic performs equally good or outperforms Paar’s and Boyar-Peralta’s heuristics in most cases.
AbstractList In this paper, we propose a new heuristic algorithm to search efficient implementations (in terms of Xor count) of linear layers used in symmetric-key cryptography. It is observed that the implementation cost of an invertible matrix is related to its matrix decomposition if sequential-Xor (s-Xor) metric is considered, thus reducing the implementation cost is equivalent to constructing an optimized matrix decomposition. The basic idea of this work is to find various matrix decompositions for a given matrix and optimize those decompositions to pick the best implementation. In order to optimize matrix decompositions, we present several matrix multiplication rules over F2, which are proved to be very powerful in reducing the implementation cost. We illustrate this heuristic by searching implementations of several matrices proposed recently and matrices already used in block ciphers and Hash functions, and the results show that our heuristic performs equally good or outperforms Paar’s and Boyar-Peralta’s heuristics in most cases.
Author Zejun Xiang
Xiangyoung Zeng
Zhenzhen Bao
Shasha Zhang
Da Lin
Author_xml – sequence: 1
  fullname: Zejun Xiang
  organization: Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, China
– sequence: 2
  fullname: Xiangyoung Zeng
  organization: Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, China
– sequence: 3
  fullname: Da Lin
  organization: Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, China
– sequence: 4
  fullname: Zhenzhen Bao
  organization: Divison of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
– sequence: 5
  fullname: Shasha Zhang
  organization: Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, China
BookMark eNotzM1KxDAUQOEgCo7jvIJ0L625N0mTLGXwp1CYjYK7cpukQ4a2KW0RxqdX1NWBb3Fu2OWYxsDYHfACBCj5sKbFFZ_IkRcRC0Ceg1QXbIMKbA5afFyz3bKcOOdorCil3bD7w7TGIX7F8ZhVw9SHIYwrrTGNS5a6rI5joDmr6Rzm5ZZdddQvYfffLXt_fnrbv-b14aXaP9a5R4Q110GhdxZdQKWJ69BaLqCU0AavrVFCIZUcdKkFSeVABULfmh9GE7yVYsuqv69PdGqmOQ40n5tEsfmFNB8bmtfo-tC0mgtdOs2tMJIcUInSeN0Z0QFKMuIbRqhSSw
ContentType Journal Article
DBID DOA
DOI 10.13154/tosc.v2020.i2.120-145
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2519-173X
ExternalDocumentID oai_doaj_org_article_b70376c709384ac1a6248d7f83f124a8
GroupedDBID ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
ID FETCH-LOGICAL-d221t-7e52dc92ce257a07eb9031641bed7985352a6017673a45c15ea2db835228ed943
IEDL.DBID DOA
IngestDate Wed Aug 27 01:22:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d221t-7e52dc92ce257a07eb9031641bed7985352a6017673a45c15ea2db835228ed943
OpenAccessLink https://doaj.org/article/b70376c709384ac1a6248d7f83f124a8
ParticipantIDs doaj_primary_oai_doaj_org_article_b70376c709384ac1a6248d7f83f124a8
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IACR Transactions on Symmetric Cryptology
PublicationYear 2020
Publisher Ruhr-Universität Bochum
Publisher_xml – name: Ruhr-Universität Bochum
SSID ssj0002893649
Score 2.326967
Snippet In this paper, we propose a new heuristic algorithm to search efficient implementations (in terms of Xor count) of linear layers used in symmetric-key...
SourceID doaj
SourceType Open Website
SubjectTerms AES
Implementation
Linear Layer
Xor Count
Title Optimizing Implementations of Linear Layers
URI https://doaj.org/article/b70376c709384ac1a6248d7f83f124a8
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwFLRQJxYEAsS3PLAhp7Hj-GMERFUhPhYqdYts51kqUhNEAwO_nuckQzcW1gxRfHlPdxfnnQm5jigKULYHFlEsM-m0YA5pjfEAxplUET7t6D6_qPlCPi7L5dZRX-mfsCEeeABu6rEktQoanbeRLnCnhDS1jqaISE2uH_NFztsyU-_D9lmhpB1HggvUCdOu3YTsG71-nq1ExtE18TTDtJXU31PKbJ_sjVqQ3g7PcEB2oDkkN6_YxOvVD1IK7aN71-N0ULOhbaToHbE26ZNLUvmILGYPb_dzNp5owGoheMc0lKIOVgTATnG5Bm-xqZTkHmptTYpaceiQtNKFk2XgJThR-14kGaitLI7JpGkbOCHUCURF2cgBcpQ8iLLMIQW8Ca9yL-MpuUsrqz6G0IoqxUj3FxDcagS3-gvcs_-4yTnZTagP3y0uyKT7_IJLZPLOX_Uv7ReLhpgj
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Implementations+of+Linear+Layers&rft.jtitle=IACR+Transactions+on+Symmetric+Cryptology&rft.au=Zejun+Xiang&rft.au=Xiangyoung+Zeng&rft.au=Da+Lin&rft.au=Zhenzhen+Bao&rft.date=2020-01-01&rft.pub=Ruhr-Universit%C3%A4t+Bochum&rft.eissn=2519-173X&rft.volume=2020&rft.issue=2&rft_id=info:doi/10.13154%2Ftosc.v2020.i2.120-145&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b70376c709384ac1a6248d7f83f124a8