Existences and upper semi-continuity of pullback attractors in H^1(R^N) for non-autonomous reaction-diffusion equations perturbed by multiplicative noise
In this article, we establish sufficient conditions on the existence and upper semi-continuity of pullback attractors in some non-initial spaces for non-autonomous random dynamical systems. As an application, we prove the existence and upper semi-continuity of pullback attractors in $H^1(\mathbb{R}^...
Saved in:
Published in | Electronic journal of differential equations Vol. 2016; no. 294; pp. 1 - 28 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Texas State University
16.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we establish sufficient conditions on the existence and upper semi-continuity of pullback attractors in some non-initial spaces for non-autonomous random dynamical systems. As an application, we prove the existence and upper semi-continuity of pullback attractors in $H^1(\mathbb{R}^N)$ are proved for stochastic non-autonomous reaction-diffusion equation driven by a Wiener type multiplicative noise as well as a non-autonomous forcing. The asymptotic compactness of solutions in $H^1(\mathbb{R}^N)$ is proved by the well-known tail estimate technique and the estimate of the integral of $L^{2p-2}$-norm of truncation of solutions over a compact interval. |
---|---|
AbstractList | In this article, we establish sufficient conditions on the existence and upper semi-continuity of pullback attractors in some non-initial spaces for non-autonomous random dynamical systems. As an application, we prove the existence and upper semi-continuity of pullback attractors in $H^1(\mathbb{R}^N)$ are proved for stochastic non-autonomous reaction-diffusion equation driven by a Wiener type multiplicative noise as well as a non-autonomous forcing. The asymptotic compactness of solutions in $H^1(\mathbb{R}^N)$ is proved by the well-known tail estimate technique and the estimate of the integral of $L^{2p-2}$-norm of truncation of solutions over a compact interval. |
Author | Wenqiang Zhao |
Author_xml | – sequence: 1 fullname: Wenqiang Zhao organization: Chongqing Technology and Business Univ., Chongqing, China |
BookMark | eNotjclOwzAYhHMoEi3wDj7CIZKdOIuPqCq0UgUSgmuj3xtySezgBdFH4W0xy2lG34xmVsXCOqsWxZLgrirblpHzYhXCEWPCaEWXxdfm04SorFABgZUozbPyKKjJlMLZaGwy8YScRnMaRw7iDUGMHkR0PiBj0fZArp8ODzdIO4_yVwkpOusmlwLyKvdMZtJonUJ2SL0n-EEB5ZuYPFcS8ROa0hjNPBqRww-Vd0xQl8WZhjGoq3-9KF7uNs_rbbl_vN-tb_elJA2JpcSS6gYL0XakrrhsFVUCVy2HjvWyYUQSgWWjGQHaMFURSXuKa97mJjQ1ry-K3d-udHAcZm8m8KfBgRl-gfOvA_hoxKgGXlOQooKGQE87RhkFVRMq-qohtca0_gZhtHUi |
ContentType | Journal Article |
DBID | DOA |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EndPage | 28 |
ExternalDocumentID | oai_doaj_org_article_b34adc2a51a8479494ae314c82513f04 |
GroupedDBID | -~9 29G 2WC 5GY 5VS ABDBF ACUHS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM B0M BCNDV E3Z EAP EMK EPL ESX FRJ FRP GROUPED_DOAJ KQ8 M~E OK1 OVT P2P QF4 QN7 REM RNS TR2 TUS XSB ~8M |
ID | FETCH-LOGICAL-d151t-d0d4f50cc67132bd6e4ec026ba798d591d1c0d5f91a459e21d48403b6d6ea53b3 |
IEDL.DBID | DOA |
ISSN | 1072-6691 |
IngestDate | Wed Aug 27 01:10:53 EDT 2025 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 294 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d151t-d0d4f50cc67132bd6e4ec026ba798d591d1c0d5f91a459e21d48403b6d6ea53b3 |
OpenAccessLink | https://doaj.org/article/b34adc2a51a8479494ae314c82513f04 |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b34adc2a51a8479494ae314c82513f04 |
PublicationCentury | 2000 |
PublicationDate | 2016-11-16 |
PublicationDateYYYYMMDD | 2016-11-16 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-16 day: 16 |
PublicationDecade | 2010 |
PublicationTitle | Electronic journal of differential equations |
PublicationYear | 2016 |
Publisher | Texas State University |
Publisher_xml | – name: Texas State University |
SSID | ssj0019424 |
Score | 2.0546703 |
Snippet | In this article, we establish sufficient conditions on the existence and upper semi-continuity of pullback attractors in some non-initial spaces for... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 1 |
SubjectTerms | non-autonomous reaction-diffusion equation pullback attractor Random dynamical systems upper semi-continuity |
Title | Existences and upper semi-continuity of pullback attractors in H^1(R^N) for non-autonomous reaction-diffusion equations perturbed by multiplicative noise |
URI | https://doaj.org/article/b34adc2a51a8479494ae314c82513f04 |
Volume | 2016 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn-JbNzDAYBHXjuuMgFpVSO2AqNSplT8uUoUopU0QLPwP_i3nJCA2FpYMVmRbvkjvPefuHWPn0vgsx06bJ4iGE14LnhEq8NyHjpWIzodYnDwY6v5I3Y3T8a9WXzEnrLYHrg_uykllg2_bVFgT3dAzZVEK5WPJpcxrJ1DCvG8x1fw_yFTdzjahXWgdDTh_OfJX0NHbYpsN54Preq1ttobzHbYx-DFMXe2yz-5bPO-Y0wyk7aFcLHAJK3ya8ZhMPpuXxJbhOYcFSUZn_SPYoljWvXJgNof-RFzcT4aXQBwUSNFzWxaxXIF0PRAtrIoXeGyGUsbbMcCX2uF7BbQMgY7DAO4dmuzC6hrvFWme2Qr32KjXfbjt86ZrAg-E3gUPSVB5mnivSX-2XdCo0JPScraTmZBmIgifhDTPhFVphm0RFIk86TS9aVPp5D5r0T7xgIHxhobQmWgJY0mbGfTKJtI7Q0RCdw7ZTTzV6aI2xphGq-pqgAI4bQI4_SuAR_8xyTFbJyajY5Gg0CesVSxLPCW2ULiz6sOg5-Cj-wUIPcR_ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existences+and+upper+semi-continuity+of+pullback+attractors+in+H%5E1%28R%5EN%29+for+non-autonomous+reaction-diffusion+equations+perturbed+by+multiplicative+noise&rft.jtitle=Electronic+journal+of+differential+equations&rft.au=Wenqiang+Zhao&rft.date=2016-11-16&rft.pub=Texas+State+University&rft.issn=1072-6691&rft.volume=2016&rft.issue=294&rft.spage=1&rft.epage=28&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b34adc2a51a8479494ae314c82513f04 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-6691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-6691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-6691&client=summon |