Existences and upper semi-continuity of pullback attractors in H^1(R^N) for non-autonomous reaction-diffusion equations perturbed by multiplicative noise

In this article, we establish sufficient conditions on the existence and upper semi-continuity of pullback attractors in some non-initial spaces for non-autonomous random dynamical systems. As an application, we prove the existence and upper semi-continuity of pullback attractors in $H^1(\mathbb{R}^...

Full description

Saved in:
Bibliographic Details
Published inElectronic journal of differential equations Vol. 2016; no. 294; pp. 1 - 28
Main Author Wenqiang Zhao
Format Journal Article
LanguageEnglish
Published Texas State University 16.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we establish sufficient conditions on the existence and upper semi-continuity of pullback attractors in some non-initial spaces for non-autonomous random dynamical systems. As an application, we prove the existence and upper semi-continuity of pullback attractors in $H^1(\mathbb{R}^N)$ are proved for stochastic non-autonomous reaction-diffusion equation driven by a Wiener type multiplicative noise as well as a non-autonomous forcing. The asymptotic compactness of solutions in $H^1(\mathbb{R}^N)$ is proved by the well-known tail estimate technique and the estimate of the integral of $L^{2p-2}$-norm of truncation of solutions over a compact interval.
AbstractList In this article, we establish sufficient conditions on the existence and upper semi-continuity of pullback attractors in some non-initial spaces for non-autonomous random dynamical systems. As an application, we prove the existence and upper semi-continuity of pullback attractors in $H^1(\mathbb{R}^N)$ are proved for stochastic non-autonomous reaction-diffusion equation driven by a Wiener type multiplicative noise as well as a non-autonomous forcing. The asymptotic compactness of solutions in $H^1(\mathbb{R}^N)$ is proved by the well-known tail estimate technique and the estimate of the integral of $L^{2p-2}$-norm of truncation of solutions over a compact interval.
Author Wenqiang Zhao
Author_xml – sequence: 1
  fullname: Wenqiang Zhao
  organization: Chongqing Technology and Business Univ., Chongqing, China
BookMark eNotjclOwzAYhHMoEi3wDj7CIZKdOIuPqCq0UgUSgmuj3xtySezgBdFH4W0xy2lG34xmVsXCOqsWxZLgrirblpHzYhXCEWPCaEWXxdfm04SorFABgZUozbPyKKjJlMLZaGwy8YScRnMaRw7iDUGMHkR0PiBj0fZArp8ODzdIO4_yVwkpOusmlwLyKvdMZtJonUJ2SL0n-EEB5ZuYPFcS8ROa0hjNPBqRww-Vd0xQl8WZhjGoq3-9KF7uNs_rbbl_vN-tb_elJA2JpcSS6gYL0XakrrhsFVUCVy2HjvWyYUQSgWWjGQHaMFURSXuKa97mJjQ1ry-K3d-udHAcZm8m8KfBgRl-gfOvA_hoxKgGXlOQooKGQE87RhkFVRMq-qohtca0_gZhtHUi
ContentType Journal Article
DBID DOA
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 28
ExternalDocumentID oai_doaj_org_article_b34adc2a51a8479494ae314c82513f04
GroupedDBID -~9
29G
2WC
5GY
5VS
ABDBF
ACUHS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
B0M
BCNDV
E3Z
EAP
EMK
EPL
ESX
FRJ
FRP
GROUPED_DOAJ
KQ8
M~E
OK1
OVT
P2P
QF4
QN7
REM
RNS
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-d151t-d0d4f50cc67132bd6e4ec026ba798d591d1c0d5f91a459e21d48403b6d6ea53b3
IEDL.DBID DOA
ISSN 1072-6691
IngestDate Wed Aug 27 01:10:53 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 294
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d151t-d0d4f50cc67132bd6e4ec026ba798d591d1c0d5f91a459e21d48403b6d6ea53b3
OpenAccessLink https://doaj.org/article/b34adc2a51a8479494ae314c82513f04
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_b34adc2a51a8479494ae314c82513f04
PublicationCentury 2000
PublicationDate 2016-11-16
PublicationDateYYYYMMDD 2016-11-16
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-16
  day: 16
PublicationDecade 2010
PublicationTitle Electronic journal of differential equations
PublicationYear 2016
Publisher Texas State University
Publisher_xml – name: Texas State University
SSID ssj0019424
Score 2.0546703
Snippet In this article, we establish sufficient conditions on the existence and upper semi-continuity of pullback attractors in some non-initial spaces for...
SourceID doaj
SourceType Open Website
StartPage 1
SubjectTerms non-autonomous reaction-diffusion equation
pullback attractor
Random dynamical systems
upper semi-continuity
Title Existences and upper semi-continuity of pullback attractors in H^1(R^N) for non-autonomous reaction-diffusion equations perturbed by multiplicative noise
URI https://doaj.org/article/b34adc2a51a8479494ae314c82513f04
Volume 2016
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn-JbNzDAYBHXjuuMgFpVSO2AqNSplT8uUoUopU0QLPwP_i3nJCA2FpYMVmRbvkjvPefuHWPn0vgsx06bJ4iGE14LnhEq8NyHjpWIzodYnDwY6v5I3Y3T8a9WXzEnrLYHrg_uykllg2_bVFgT3dAzZVEK5WPJpcxrJ1DCvG8x1fw_yFTdzjahXWgdDTh_OfJX0NHbYpsN54Preq1ttobzHbYx-DFMXe2yz-5bPO-Y0wyk7aFcLHAJK3ya8ZhMPpuXxJbhOYcFSUZn_SPYoljWvXJgNof-RFzcT4aXQBwUSNFzWxaxXIF0PRAtrIoXeGyGUsbbMcCX2uF7BbQMgY7DAO4dmuzC6hrvFWme2Qr32KjXfbjt86ZrAg-E3gUPSVB5mnivSX-2XdCo0JPScraTmZBmIgifhDTPhFVphm0RFIk86TS9aVPp5D5r0T7xgIHxhobQmWgJY0mbGfTKJtI7Q0RCdw7ZTTzV6aI2xphGq-pqgAI4bQI4_SuAR_8xyTFbJyajY5Gg0CesVSxLPCW2ULiz6sOg5-Cj-wUIPcR_
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existences+and+upper+semi-continuity+of+pullback+attractors+in+H%5E1%28R%5EN%29+for+non-autonomous+reaction-diffusion+equations+perturbed+by+multiplicative+noise&rft.jtitle=Electronic+journal+of+differential+equations&rft.au=Wenqiang+Zhao&rft.date=2016-11-16&rft.pub=Texas+State+University&rft.issn=1072-6691&rft.volume=2016&rft.issue=294&rft.spage=1&rft.epage=28&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b34adc2a51a8479494ae314c82513f04
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-6691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-6691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-6691&client=summon