Using aerial imagery for assessing pasture vegetation coverage

ABSTRACT We aimed to assess pasture vegetation cover over two growing seasons using vegetation indices derived from RDB aerial images acquired by drones and multispectral satellite imagery. The study area was already divided into six grazing paddocks grown with forage grasses, three withMegathyrsus...

Full description

Saved in:
Bibliographic Details
Published inCiência agronômica Vol. 56
Main Authors Durante, Lucas Gustavo Yock, Cortez, Jorge Wilson, Souza, Jessica Evangelista de, Motomiya, Anamari Viegas de Araújo, Prado, Eber Augusto Ferreira do
Format Journal Article
LanguageEnglish
Portuguese
Published Universidade Federal do Ceará 01.04.2025
Subjects
Online AccessGet full text
ISSN1806-6690
1806-6690
DOI10.5935/1806-6690.20250053

Cover

Loading…
Abstract ABSTRACT We aimed to assess pasture vegetation cover over two growing seasons using vegetation indices derived from RDB aerial images acquired by drones and multispectral satellite imagery. The study area was already divided into six grazing paddocks grown with forage grasses, three withMegathyrsus maximus cv. Mombaça and three with Urochloa brizantha cv. MG-4. Sampling was conducted during the January and July 2022/2023 growing season. The study adopted precision agriculture principles, generating customized sampling grids for each pasture, with an approximate density of four points per hectare. Field data were collected on pasture height, soil-exposed percentage, chlorophyll content, and pasture green biomass. RGB aerial imagery was acquired using a drone, while multispectral data was obtained from the Sentinel 2A satellite four times. Pasture vegetation cover (PVC) was estimated after calculating the vegetation indices Normalized Difference Vegetation Index (NDVI), Green-Red Vegetation Index (GRVI), and Green Leaf Index (GLI). PVC results indicate a slight degree of pasture degradation during the 2022/2023 growing season. Images captured by UAVs (unmanned aerial vehicles) enabled accurate identification of sparse areas prone to degradation, offering valuable insights to enhance pasture and forage management.
AbstractList ABSTRACT We aimed to assess pasture vegetation cover over two growing seasons using vegetation indices derived from RDB aerial images acquired by drones and multispectral satellite imagery. The study area was already divided into six grazing paddocks grown with forage grasses, three withMegathyrsus maximus cv. Mombaça and three with Urochloa brizantha cv. MG-4. Sampling was conducted during the January and July 2022/2023 growing season. The study adopted precision agriculture principles, generating customized sampling grids for each pasture, with an approximate density of four points per hectare. Field data were collected on pasture height, soil-exposed percentage, chlorophyll content, and pasture green biomass. RGB aerial imagery was acquired using a drone, while multispectral data was obtained from the Sentinel 2A satellite four times. Pasture vegetation cover (PVC) was estimated after calculating the vegetation indices Normalized Difference Vegetation Index (NDVI), Green-Red Vegetation Index (GRVI), and Green Leaf Index (GLI). PVC results indicate a slight degree of pasture degradation during the 2022/2023 growing season. Images captured by UAVs (unmanned aerial vehicles) enabled accurate identification of sparse areas prone to degradation, offering valuable insights to enhance pasture and forage management.
Author Souza, Jessica Evangelista de
Cortez, Jorge Wilson
Durante, Lucas Gustavo Yock
Motomiya, Anamari Viegas de Araújo
Prado, Eber Augusto Ferreira do
AuthorAffiliation Federal University of Great Dourados
Federal University of Mato Grosso do Sul
Federal Institute of Education, Science, and Technology of Mato Grosso do Sul
AuthorAffiliation_xml – name: Federal University of Mato Grosso do Sul
– name: Federal University of Great Dourados
– name: Federal Institute of Education, Science, and Technology of Mato Grosso do Sul
Author_xml – sequence: 1
  givenname: Lucas Gustavo Yock
  surname: Durante
  fullname: Durante, Lucas Gustavo Yock
  organization: Federal University of Great Dourados
– sequence: 2
  givenname: Jorge Wilson
  surname: Cortez
  fullname: Cortez, Jorge Wilson
  organization: Federal University of Great Dourados
– sequence: 3
  givenname: Jessica Evangelista de
  surname: Souza
  fullname: Souza, Jessica Evangelista de
  organization: Federal University of Mato Grosso do Sul
– sequence: 4
  givenname: Anamari Viegas de Araújo
  surname: Motomiya
  fullname: Motomiya, Anamari Viegas de Araújo
  organization: Federal University of Great Dourados
– sequence: 5
  givenname: Eber Augusto Ferreira do
  surname: Prado
  fullname: Prado, Eber Augusto Ferreira do
  organization: Federal Institute of Education, Science, and Technology of Mato Grosso do Sul
BookMark eNpNkM9qwzAMh83oYF3XF9gpL5BOsWMnvgxG2Z9CYYetZ6PYSkjJ4mJ3hb793HaM6SIhiY8f3y2bjH4kxu4LWEgt5ENRg8qV0rDgwCWAFFds-rec_Jtv2DzGLaQSWoHiU_a4if3YZUihxyHrv7CjcMxaHzKMkeL5uMO4_w6UHaijPe57P2bWHyik3zt23eIQaf7bZ2zz8vy5fMvX76-r5dM6d0WpRS4t8pLX3IEoS3KENkUCripnmxZ1BaVqHAoNVU3SOQXaCktYoKw46ESYsdWF6zxuzS6koOFoPPbmvPChMxj2vR3IiBpKAidLrtoSOGkJtrJCO43KNY1MrMWFFW1Pgzdb_x3GFN58nDyZk6eLRygAVDL8A7BKZ8A
ContentType Journal Article
Copyright This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright_xml – notice: This work is licensed under a Creative Commons Attribution 4.0 International License.
DBID GPN
DOA
DOI 10.5935/1806-6690.20250053
DatabaseName SciELO
DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1806-6690
ExternalDocumentID oai_doaj_org_article_3804e0d5426f402e950c7c39d9a6dbb5
S1806_66902025000100659
GroupedDBID 123
5VS
635
7X2
8FE
8FH
91A
A8Z
AAFWJ
ABDHV
ABUWG
ABXHO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
APEBS
APOWU
ATCPS
AZFZN
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CLZPN
DYU
ECGQY
GPN
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
M0K
OK1
OZF
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RDY
RIG
RNS
RSC
SCD
ID FETCH-LOGICAL-d1493-5ca24282d0344edeac1800267dcbfa97046bda39078e5dd609c3cea1a57209493
IEDL.DBID DOA
ISSN 1806-6690
IngestDate Wed Aug 27 01:28:37 EDT 2025
Tue Aug 19 14:02:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Forage
Pasture management
Drone
Vegetation index
Language English
Portuguese
License This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1493-5ca24282d0344edeac1800267dcbfa97046bda39078e5dd609c3cea1a57209493
ORCID 0009-0003-0273-063X
0000-0003-1120-719X
0000-0001-5867-7485
0000-0003-2170-8676
OpenAccessLink https://doaj.org/article/3804e0d5426f402e950c7c39d9a6dbb5
ParticipantIDs doaj_primary_oai_doaj_org_article_3804e0d5426f402e950c7c39d9a6dbb5
scielo_journals_S1806_66902025000100659
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Ciência agronômica
PublicationTitleAlternate Rev. Ciênc. Agron
PublicationYear 2025
Publisher Universidade Federal do Ceará
Publisher_xml – name: Universidade Federal do Ceará
References FREITAS, R. G. 2022; 198
ZHU, J.; TREMBLAY, T.; LIANG, Y. 2012; 92
ROSSI, M. 2017
GOMES, F. P. 2009
CHEDID, V.; CORTEZ, J. W.; ARCOVERDE, S. N. S. 2024; 44
SILVA, M. H. da; ELIAS, A. R.; ROSÁRIO, L. L. do 2022; 10
HOTT, M. C. 2016; 51
MELLO, M. dos. S. de 2021; 15
2024
HERNÁNDEZ-LÓPEZ, D. 2021; 13
LAFLEN, J. M.; AMEMIYA, M.; HINTZ, E. A. 1981; 36
ZHUMANOVA, M. 2018; 95
ANDRADE, R. G. 2017; 7
WEISS, M.; JACOB, F.; DUVEILLER, G. 2020; 236
FERREIRA, G. C. V.; FERREIRA NETO, J. A. N. 2018; 26
SILVA, L. C. A. 2020
LIMA, R. P. 2017; 162
COHEN, J. 1960; 20
BATISTA, P. H. D. 2020; 24
2020
PEREIRA, G. W. 2022; 12
2018
THEMISTOCLEOUS, K. 2014; 9229
SANTOS, P. S.; FERREIRA, L. G.; LENZI, Í. L. C. 2018; 36
MORAIS, L. F. de 2018; 11
GAO, Q. 2006; 16
RAMADHANI, F. 2021; 13
References_xml – volume: 236
  start-page: e111402
  year: 2020
  end-page: e111402
  article-title: Remote sensing for agricultural applications: a meta-review
  publication-title: Remote Sensing of Environment
– year: 2024
  publication-title: QGIS Geographic Information System
– volume: 36
  start-page: 53
  issue: 3
  year: 2018
  end-page: 73
  article-title: Caracterização biofísica das pastagens na bacia hidrográfica do Rio Vermelho-GO, bioma cerrado, Brasil
  publication-title: Boletim de Geografia
– year: 2020
  publication-title: A command line toolkit to generate maps, point clouds, 3D models and DEMs from drone, balloon or kite images
– year: 2018
  publication-title: Censo agropecuário 2017: resultados preliminares
– start-page: 451
  year: 2009
  end-page: 451
  publication-title: Curso de estatística experimental
– volume: 24
  start-page: 854
  issue: 12
  year: 2020
  end-page: 860
  article-title: Hydro-physical properties of soil and pasture vegetation coverage under animal trampling
  publication-title: Revista Brasileira de Engenharia Agrícola e Ambiental
– volume: 11
  start-page: 125
  issue: 2
  year: 2018
  end-page: 136
  article-title: Avanços na avaliação de pastagens cultivadas com forrageiras tropicais no Brasil: uma revisão
  publication-title: Pesquisa Aplicada & Agrotecnologia
– volume: 51
  start-page: 858
  issue: 7
  year: 2016
  end-page: 868
  article-title: Vegetative growth of grasslands based on hyper-temporal NDVI data from the Modis sensor
  publication-title: Pesquisa Agropecuária Brasileira
– start-page: 117
  year: 2020
  end-page: 117
  publication-title: Delineamento de zonas de manejo por imagens suborbitais, orbitais e variáveis de solo
– volume: 95
  start-page: 527
  year: 2018
  end-page: 543
  article-title: Assessment of vegetation degradation in mountainous pastures of the Western Tien-Shan, Kyrgyzstan, using eMODIS NDVI
  publication-title: Ecological Indicators
– volume: 92
  start-page: 645
  year: 2012
  end-page: 648
  article-title: Comparing SPAD and atLEAF values for chlorophyll assessment in crop species
  publication-title: Canadian Journal of Soil Science
– volume: 36
  start-page: 341
  year: 1981
  end-page: 343
  article-title: Measuring crop residue cover
  publication-title: Journal of Soil and Water Conservation
– volume: 13
  start-page: e1498
  issue: 8
  year: 2021
  end-page: e1498
  article-title: Mapping a cloud-free rice growth stages using the integration of PROBA-V and Sentinel-1 and its temporal correlation with sub-district statistics
  publication-title: Remote Sensing
– volume: 13
  start-page: 1546
  issue: 8
  year: 2021
  end-page: 1546
  article-title: Design of a local nested grid for the optimal combined use of Landsat 8 and Sentinel 2 data
  publication-title: Remote Sensing
– volume: 198
  start-page: 107122
  year: 2022
  end-page: 107122
  article-title: et aí. Estimating pasture aboveground biomass under an integrated crop-livestock system based on spectral and texture measures derived from UAV images
  publication-title: Computers and Electronics in Agriculture
– volume: 16
  start-page: 165
  issue: 2
  year: 2006
  end-page: 173
  article-title: Grassland degradation in Northern Tibet based on remote sensing data
  publication-title: Journal of Geographical Sciences
– volume: 15
  start-page: 1
  issue: 3
  year: 2021
  end-page: 10
  article-title: Comportamento de vacas mestiças em pastejo de capim Mombaça e características de forragem no semiárido
  publication-title: Pubvet
– volume: 10
  start-page: 140
  issue: 2
  year: 2022
  end-page: 154
  article-title: Análise da cultura da soja a partir de índices de vegetação (ExG - GLI - TGI - VEG) advindos de imagens RGB obtidas com ARP
  publication-title: Revista Brasileira de Geomática
– volume: 12
  start-page: e1350
  year: 2022
  end-page: e1350
  article-title: Smart-Map: an open-source QGIS plugin for digital mapping using machine learning techniques and ordinary kriging
  publication-title: Agronomy
– volume: 7
  start-page: 34
  issue: 1
  year: 2017
  end-page: 41
  article-title: Avaliação das condições de pastagens no cerrado brasileiro por meio de geotecnologias
  publication-title: Revista Brasileira de Agropecuária Sustentável
– start-page: 118
  year: 2017
  end-page: 118
  publication-title: Mapa pedológico do Estado de São Paulo: revisado e ampliado
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
– volume: 9229
  year: 2014
  article-title: Use of remote sensing and UAV for the management of degraded ecosystems: the case study of overgrazing in Randi Forest, Cyprus
  publication-title: International Society for Optics and Photonics
– volume: 44
  year: 2024
  article-title: Monitoring the vegetative state of coffee using vegetation indices
  publication-title: Engenharia Agrícola
– volume: 26
  start-page: 140
  year: 2018
  end-page: 148
  article-title: Uso de geoprocessamento na avaliação de degradação de pastagem no assentamento da ilha do coco, Nova Xavantina-Mato Grosso, Brasil
  publication-title: Revista Engenharia Na Agricultura
– volume: 162
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Changes in soil compaction indicators in response to agricultural field traffic
  publication-title: Biosystems Engineering
SSID ssj0000396062
Score 2.3234377
Snippet ABSTRACT We aimed to assess pasture vegetation cover over two growing seasons using vegetation indices derived from RDB aerial images acquired by drones and...
SourceID doaj
scielo
SourceType Open Website
Open Access Repository
SubjectTerms AGRONOMY
Drone
Forage
Pasture management
Vegetation index
Title Using aerial imagery for assessing pasture vegetation coverage
URI http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902025000100659&lng=en&tlng=en
https://doaj.org/article/3804e0d5426f402e950c7c39d9a6dbb5
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOQieyrZN0yQXYRWXRVEQXdhbmTy6CLouu6vgv3cm6WFvXqTQQxvS8s00Mx8z_cLYpbQWVz3lMquMySrtQgaidJl3rpSA8RyizvbjUz0aV_cTOVnb6ot6wpI8cAKuL3RehdxLjCQtcp1gZO6UE8YbqL21Ub0UY94amYprsKDMvEx_yUgjZL_QSJ1r5ILICTHs57QbclTpJ41Q_Ize1-PKcJftdAkhH6QX2WMbYbbPtgfTRSeKEQ7Ydazrc4jOwt8-SHbih2O2ySGWbOnmHJY0mH-HaddAyB11Z-LYQzYe3r3ejrJu34PMI18RmXSAgVOXnuT4gselsaC0rlbe2RaMQkprPQiktTpI7-vcOOECFCAVQoEzHLHN2ecsHDPeakzXdO0solbhoQ0YX7YKfKmULKDHbgiDZp6kLRoSm44X0ARNZ4LmLxP02FVCsOn8f9m8ENwNwZ3QRtZHBdyT_3jcKduiSVP7zBnbXC2-wjlmBit7EZ0Azw_P-heOUbRB
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+aerial+imagery+for+assessing+pasture+vegetation+coverage&rft.jtitle=Ci%C3%AAncia+agron%C3%B4mica&rft.au=Durante%2C+Lucas+Gustavo+Yock&rft.au=Cortez%2C+Jorge+Wilson&rft.au=Souza%2C+Jessica+Evangelista+de&rft.au=Motomiya%2C+Anamari+Viegas+de+Ara%C3%BAjo&rft.date=2025-04-01&rft.pub=Universidade+Federal+do+Cear%C3%A1&rft.issn=1806-6690&rft.volume=56&rft_id=info:doi/10.5935%2F1806-6690.20250053&rft.externalDocID=S1806_66902025000100659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1806-6690&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1806-6690&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1806-6690&client=summon