Neutrosophic N--structures on Sheffer stroke BCH-algebras

The aim of the study is to introduce a neutrosophic N--subalgebra and neutrosophic N--ideal of a Sheffer stroke BCH-algebras. We prove that the level-set of a neutrosophic N--subalgebra (neutrosophic N--ideal) of a Sheffer stroke BCH-algebra is its subalgebra (ideal) and vice versa. Then it is shown...

Full description

Saved in:
Bibliographic Details
Published inNeutrosophic sets and systems Vol. 50; pp. 459 - 479
Main Authors Oner, Tahsin, Katican, Tugce, Rezaei, Akbar
Format Journal Article
LanguageEnglish
Published Neutrosophic Sets and Systems 01.09.2022
University of New Mexico
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of the study is to introduce a neutrosophic N--subalgebra and neutrosophic N--ideal of a Sheffer stroke BCH-algebras. We prove that the level-set of a neutrosophic N--subalgebra (neutrosophic N--ideal) of a Sheffer stroke BCH-algebra is its subalgebra (ideal) and vice versa. Then it is shown that the family of all neutrosophic N--subalgebras of a Sheffer stroke BCH-algebra forms a complete distributive modular lattice. Also, we state that every neutrosophic N--ideal of a Sheffer stroke BCH-algebra is its neutrosophic N--subalgebra but the inverse is generally not true. We examine relationships between neutrosophic N--ideals of Sheffer stroke BCH-algebras by means of a surjective homomorphism between these algebras. Finally, certain subsets of a Sheffer stroke BCH-algebra are defined by means of N--functions on this algebraic structure and some properties are investigated. Keywords: Sheffer stroke BCH-algebra; subalgebra; neutrosophic N-- subalgebra; neutrosophic N--ideal.
AbstractList The aim of the study is to introduce a neutrosophic N −subalgebra and neutrosophic N −ideal of a Sheffer stroke BCH-algebras. We prove that the level-set of a neutrosophic N −subalgebra (neutrosophic N −ideal) of a Sheffer stroke BCH-algebra is its subalgebra (ideal) and vice versa. Then it is shown that the family of all neutrosophic N −subalgebras of a Sheffer stroke BCH-algebra forms a complete distributive modular lattice. Also, we state that every neutrosophic N −ideal of a Sheffer stroke BCH-algebra is its neutrosophic N −subalgebra but the inverse is generally not true. We examine relationships between neutrosophic N −ideals of Sheffer stroke BCH-algebras by means of a surjective homomorphism between these algebras. Finally, certain subsets of a Sheffer stroke BCH-algebra are defined by means of N −functions on this algebraic structure and some properties are investigated.
The aim of the study is to introduce a neutrosophic N--subalgebra and neutrosophic N--ideal of a Sheffer stroke BCH-algebras. We prove that the level-set of a neutrosophic N--subalgebra (neutrosophic N--ideal) of a Sheffer stroke BCH-algebra is its subalgebra (ideal) and vice versa. Then it is shown that the family of all neutrosophic N--subalgebras of a Sheffer stroke BCH-algebra forms a complete distributive modular lattice. Also, we state that every neutrosophic N--ideal of a Sheffer stroke BCH-algebra is its neutrosophic N--subalgebra but the inverse is generally not true. We examine relationships between neutrosophic N--ideals of Sheffer stroke BCH-algebras by means of a surjective homomorphism between these algebras. Finally, certain subsets of a Sheffer stroke BCH-algebra are defined by means of N--functions on this algebraic structure and some properties are investigated. Keywords: Sheffer stroke BCH-algebra; subalgebra; neutrosophic N-- subalgebra; neutrosophic N--ideal.
Audience Academic
Author Oner, Tahsin
Katican, Tugce
Rezaei, Akbar
Author_xml – sequence: 1
  fullname: Oner, Tahsin
– sequence: 2
  fullname: Katican, Tugce
– sequence: 3
  fullname: Rezaei, Akbar
BookMark eNo9kMtKA0EQRRuJYIzZup4fmNjvxzIGH4EQFyq4G_pRnUxMpkPPZKFfb2NEalHF4XIo7jUadakDhG4Jngmqyd03dCmkmVSKay0u0JgyRmqJ9cfo_xbiCk37focxJpQYwcgYmTWchpz6dNy2vlrXdT_kkx9OGfoqddXrFmKEXBWaPqG6XzzXdr8Bl21_gy6j3fcw_dsT9P748FYCq5en5WK-qgPhQtTWARWWesOFVFE6zXQ00VrFIwEgTjsmDSZYci-8BOzKY9KRIJRQDnPFJmh59oZkd80xtwebv5pk2-YXpLxpbB5av4dGBgMmQKnAcW4o1uAiDzICVsE4SotrdnZtbIm3XUxDtr5MgEPrS6OxLXyuCFNMKMrZD5QiaEQ
ContentType Journal Article
Copyright COPYRIGHT 2022 Neutrosophic Sets and Systems
Copyright_xml – notice: COPYRIGHT 2022 Neutrosophic Sets and Systems
DBID DOA
DOI 10.5281/zenodo.6774885
DatabaseName Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Philosophy
EISSN 2331-608X
EndPage 479
ExternalDocumentID oai_doaj_org_article_6d9e9de748b449208ebf4d6fe07d9b22
A713735724
GroupedDBID 5VS
ABDBF
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
ESX
FAEIB
GROUPED_DOAJ
IAO
ITC
KQ8
OK1
PV9
RIG
RZL
ID FETCH-LOGICAL-d1455-abe25a2c94567f6b838f9faa74f1ee1b8b36901064c5c6e0b1956b1d5757b0473
IEDL.DBID DOA
ISSN 2331-6055
IngestDate Tue Oct 22 15:13:54 EDT 2024
Tue Nov 12 23:12:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1455-abe25a2c94567f6b838f9faa74f1ee1b8b36901064c5c6e0b1956b1d5757b0473
OpenAccessLink https://doaj.org/article/6d9e9de748b449208ebf4d6fe07d9b22
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_6d9e9de748b449208ebf4d6fe07d9b22
gale_infotracacademiconefile_A713735724
PublicationCentury 2000
PublicationDate 20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 20220901
  day: 01
PublicationDecade 2020
PublicationTitle Neutrosophic sets and systems
PublicationYear 2022
Publisher Neutrosophic Sets and Systems
University of New Mexico
Publisher_xml – name: Neutrosophic Sets and Systems
– name: University of New Mexico
SSID ssj0001219531
Score 2.2454064
Snippet The aim of the study is to introduce a neutrosophic N--subalgebra and neutrosophic N--ideal of a Sheffer stroke BCH-algebras. We prove that the level-set of a...
The aim of the study is to introduce a neutrosophic N −subalgebra and neutrosophic N −ideal of a Sheffer stroke BCH-algebras. We prove that the level-set of a...
SourceID doaj
gale
SourceType Open Website
Aggregation Database
StartPage 459
SubjectTerms Algebra
neutrosophic n-ideal
neutrosophic n-subalgebra
sheffer stroke bch-algebra
subalgebra
Title Neutrosophic N--structures on Sheffer stroke BCH-algebras
URI https://doaj.org/article/6d9e9de748b449208ebf4d6fe07d9b22
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iaS_iJ65f5CB4qtumSZOAl1VcFsFF0IW9laSZoAhdWdeD_gLP_kR_iTNthb158dg5tGmmybxpZt5j7BQjbkZIOlGuCIl00uKaMz6RiE0xpAehLTU4306K8VTezNRsReqLasJaeuB24gZFsGADaGm8lFakBqi0rIiQ6mC9aHffVKwkU-3fFToeyhpluTxLELOrlrFRCZMNPqDGnO-8QOhjSES5Yevv9uSV6DLaZBsdLOTDdjhbbA3qbda7-9UZeN9hFxN4Wy6aq6eKT_j35xdvyV_fMGPm85rfP1JxxoKs82fgl1fjhEQ8MB1-3WXT0fUDGjrpgyQQc3jiPAjlRGUR3-hYeJObaKNzWsYMIPPG56QkhXiiUlUBqae2P58FBF_ap1Lne2y9ntewzzh4X1V4tzSSzrSJxkXMiUNQwTofA_TZJb1--dKyW5TEN90Y0Atl54XyLy_02RlNXkmrYrlwleuK-3EIxC9VDjEX1rnSQh78x-MOWU9QG0JT63XE1nG24RjBwdKfNN_BDyaNtwk
link.rule.ids 314,780,784,864,2102,27924,27925
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutrosophic+N+%E2%88%92+structures+on+Sheffer+stroke+BCH-algebras&rft.jtitle=Neutrosophic+sets+and+systems&rft.au=Tahsin+Oner&rft.au=Tugce+Katican&rft.au=Akbar+Rezaei&rft.date=2022-09-01&rft.pub=University+of+New+Mexico&rft.issn=2331-6055&rft.eissn=2331-608X&rft.volume=50&rft.spage=459&rft.epage=479&rft_id=info:doi/10.5281%2Fzenodo.6774885&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6d9e9de748b449208ebf4d6fe07d9b22
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-6055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-6055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-6055&client=summon