MOF-Derived ZnS Nanodots/Ti3C2T x MXene Hybrids Boosting Superior Lithium Storage Performance

Abstract ZnS has great potentials as an anode for lithium storage because of its high theoretical capacity and resource abundance; however, the large volume expansion accompanied with structural collapse and low conductivity of ZnS cause severe capacity fading and inferior rate capability during lit...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 13; no. 1; pp. 1 - 17
Main Authors Bin Cao, Huan Liu, Xin Zhang, Peng Zhang, Qizhen Zhu, Huiling Du, Lianli Wang, Rupeng Zhang, Bin Xu
Format Journal Article
LanguageEnglish
Published SpringerOpen 01.12.2021
Subjects
Online AccessGet full text
ISSN2311-6706
2150-5551
DOI10.1007/s40820-021-00728-x

Cover

Loading…
Abstract Abstract ZnS has great potentials as an anode for lithium storage because of its high theoretical capacity and resource abundance; however, the large volume expansion accompanied with structural collapse and low conductivity of ZnS cause severe capacity fading and inferior rate capability during lithium storage. Herein, 0D-2D ZnS nanodots/Ti3C2T x MXene hybrids are prepared by anchoring ZnS nanodots on Ti3C2T x MXene nanosheets through coordination modulation between MXene and MOF precursor (ZIF-8) followed with sulfidation. The MXene substrate coupled with the ZnS nanodots can synergistically accommodate volume variation of ZnS over charge–discharge to realize stable cyclability. As revealed by XPS characterizations and DFT calculations, the strong interfacial interaction between ZnS nanodots and MXene nanosheets can boost fast electron/lithium-ion transfer to achieve excellent electrochemical activity and kinetics for lithium storage. Thereby, the as-prepared ZnS nanodots/MXene hybrid exhibits a high capacity of 726.8 mAh g−1 at 30 mA g−1, superior cyclic stability (462.8 mAh g−1 after 1000 cycles at 0.5 A g−1), and excellent rate performance. The present results provide new insights into the understanding of the lithium storage mechanism of ZnS and the revealing of the effects of interfacial interaction on lithium storage performance enhancement.
AbstractList Abstract ZnS has great potentials as an anode for lithium storage because of its high theoretical capacity and resource abundance; however, the large volume expansion accompanied with structural collapse and low conductivity of ZnS cause severe capacity fading and inferior rate capability during lithium storage. Herein, 0D-2D ZnS nanodots/Ti3C2T x MXene hybrids are prepared by anchoring ZnS nanodots on Ti3C2T x MXene nanosheets through coordination modulation between MXene and MOF precursor (ZIF-8) followed with sulfidation. The MXene substrate coupled with the ZnS nanodots can synergistically accommodate volume variation of ZnS over charge–discharge to realize stable cyclability. As revealed by XPS characterizations and DFT calculations, the strong interfacial interaction between ZnS nanodots and MXene nanosheets can boost fast electron/lithium-ion transfer to achieve excellent electrochemical activity and kinetics for lithium storage. Thereby, the as-prepared ZnS nanodots/MXene hybrid exhibits a high capacity of 726.8 mAh g−1 at 30 mA g−1, superior cyclic stability (462.8 mAh g−1 after 1000 cycles at 0.5 A g−1), and excellent rate performance. The present results provide new insights into the understanding of the lithium storage mechanism of ZnS and the revealing of the effects of interfacial interaction on lithium storage performance enhancement.
Author Lianli Wang
Huan Liu
Xin Zhang
Huiling Du
Qizhen Zhu
Peng Zhang
Rupeng Zhang
Bin Xu
Bin Cao
Author_xml – sequence: 1
  fullname: Bin Cao
  organization: State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology
– sequence: 2
  fullname: Huan Liu
  organization: State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology
– sequence: 3
  fullname: Xin Zhang
  organization: State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology
– sequence: 4
  fullname: Peng Zhang
  organization: State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology
– sequence: 5
  fullname: Qizhen Zhu
  organization: State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology
– sequence: 6
  fullname: Huiling Du
  organization: College of Materials Science and Engineering, Xi’an University of Science and Technology
– sequence: 7
  fullname: Lianli Wang
  organization: College of Materials Science and Engineering, Xi’an University of Science and Technology
– sequence: 8
  fullname: Rupeng Zhang
  organization: State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology
– sequence: 9
  fullname: Bin Xu
  organization: State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology
BookMark eNotjdtOAjEYhBuDiYi8gFd9gUrPu3upKEICYgImxsRsuu2_WANb0i4G3t71cDUzXzIzl6jXhAYQumb0hlGajZKkOaeEcka6yHNyPEN9zhQlSinW67xgjOiM6gs0TMlXVHGZ8UzJPnpfLCfkHqL_AoffmhV-Mk1woU2jtRdjvsZHvHiFBvD0VEXvEr4LIbW-2eDVYd_VQsRz3374ww6v2hDNBvAzxDrEnWksXKHz2mwTDP91gF4mD-vxlMyXj7Px7Zw4JnRLlAVutc4KEEoIXjslHS10rnNjKyqElFWuaqZ05qyWtlDWMqo15B3lXRIDNPvbdcF8lvvodyaeymB8-QtC3JQmtt5uodSUVlAwV4NVUtbdiRNacF4VEtTP_zcPHGPx
ContentType Journal Article
DBID DOA
DOI 10.1007/s40820-021-00728-x
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 17
ExternalDocumentID oai_doaj_org_article_600be91dfec544f686d36322b94e5e35
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CAJEB
CCEZO
CDRFL
D1I
EBLON
EBS
ESX
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PHGZM
PIMPY
PROAC
PUEGO
Q--
RNS
RPM
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
ID FETCH-LOGICAL-d136t-5ce2c6679e35332fd54d096868acb03344b85f1567dc64c95cc1066e885f295c3
IEDL.DBID DOA
ISSN 2311-6706
IngestDate Wed Aug 27 01:24:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d136t-5ce2c6679e35332fd54d096868acb03344b85f1567dc64c95cc1066e885f295c3
OpenAccessLink https://doaj.org/article/600be91dfec544f686d36322b94e5e35
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_600be91dfec544f686d36322b94e5e35
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nano-micro letters
PublicationYear 2021
Publisher SpringerOpen
Publisher_xml – name: SpringerOpen
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5478306
Snippet Abstract ZnS has great potentials as an anode for lithium storage because of its high theoretical capacity and resource abundance; however, the large volume...
SourceID doaj
SourceType Open Website
StartPage 1
SubjectTerms Heterointerface
Interfacial interaction
Lithium-ion batteries
MOF
Ti3C2T x MXene
ZnS
Title MOF-Derived ZnS Nanodots/Ti3C2T x MXene Hybrids Boosting Superior Lithium Storage Performance
URI https://doaj.org/article/600be91dfec544f686d36322b94e5e35
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1JS8NAFMcH0YsexBXXMgevQ9PMksmxaQ1FrAptoQgSmswEezCRNpX67X0vCSSevHicIQRm4S3Me78_IXeO4KlxYsO48TkTMvWxCCBl8LFnOMYkJa5p_KRGM_Ewl_OW1BfWhFV44GrjuuCQY-v3TGoTKUSqtDJcwS2MfWGl5SW9FHxeK5mCm-R6qMjUvA-irLJoUWoEMl14AzKTCC7zGj6mdAX49drRVoG0h09YpVJdr8eU56i6A6fsw0PVZodhtQOSuDXb_lIAKF1VeEQO6xiT9qu1HZMdm52QgxZ58JS8jZ9DNoTBlzX0NZtQsLKYoK670yUfuFO6peM5mEE6-saWrjUN8nyNFdJ0skE2cr6ij8vifbn5oBPI2sEo0ZemBeGMzML76WDEaqUFZmDlBZOJdROlPB82lHM3NVIYyG200oskdjgXItYyhVTPM4kSiS-TBFJJZTXMujDi52Q3yzN7Qajv6IVvOILtLdgHjc-aVi5QClRzs9CXJMCdiT4rmEaEeOtyAg49qg89-uvQr_7jJ9dk38UjK2tTbshusdrYW4gwirhD9vrBMAg75aX6AYv6wlU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-Derived+ZnS+Nanodots%2FTi3C2T+x+MXene+Hybrids+Boosting+Superior+Lithium+Storage+Performance&rft.jtitle=Nano-micro+letters&rft.au=Bin+Cao&rft.au=Huan+Liu&rft.au=Xin+Zhang&rft.au=Peng+Zhang&rft.date=2021-12-01&rft.pub=SpringerOpen&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1007%2Fs40820-021-00728-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_600be91dfec544f686d36322b94e5e35
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon