Analysis of Sit–to–Walk Movement with an Admittance Controlled Robotic Walker

In this study, we identify the effects of dynamic characteristics of the robotic walker on the muscle activities and operating forces of the young healthy subjects in sit-to-walk (STW) movement. The experiment was performed under a total of eight conditions where the dynamic characteristics, inertia...

Full description

Saved in:
Bibliographic Details
Published inKikai Gakkai ronbunshū = Transactions of the Japan Society of Mechanical Engineers Vol. 88; no. 912; p. 22-00075
Main Authors TSUMUGIWA, Toru, KAMITANI, Noriyoshi, YOKOGAWA, Ryuichi
Format Journal Article
LanguageJapanese
Published The Japan Society of Mechanical Engineers 01.08.2022
Subjects
Online AccessGet full text
ISSN2187-9761
DOI10.1299/transjsme.22-00075

Cover

Abstract In this study, we identify the effects of dynamic characteristics of the robotic walker on the muscle activities and operating forces of the young healthy subjects in sit-to-walk (STW) movement. The experiment was performed under a total of eight conditions where the dynamic characteristics, inertia, damping, and frictional force were changed in the STW movement. We analyzed the effect of the dynamic characteristics of the robotic walker on the muscle activity and operating force of the upper and lower limb muscle groups in the STW movement by multiple regression analysis. From the experimental results, it is revealed that the inertia of the robotic walker can change the load on the user's vastus lateralis and tibialis anterior muscle in the standing movement under the condition that friction is applied as a load, and the effect of the friction force of the robotic walker on the operation force is clarified from the viewpoint of walking stability of the user. Furthermore, we clarify that the damping and friction of the robotic walker can change the load on the user's rectus femoris, tibialis anterior, and gastrocnemius muscle in the transition phase from the standing movement to the walking movement.
AbstractList In this study, we identify the effects of dynamic characteristics of the robotic walker on the muscle activities and operating forces of the young healthy subjects in sit-to-walk (STW) movement. The experiment was performed under a total of eight conditions where the dynamic characteristics, inertia, damping, and frictional force were changed in the STW movement. We analyzed the effect of the dynamic characteristics of the robotic walker on the muscle activity and operating force of the upper and lower limb muscle groups in the STW movement by multiple regression analysis. From the experimental results, it is revealed that the inertia of the robotic walker can change the load on the user's vastus lateralis and tibialis anterior muscle in the standing movement under the condition that friction is applied as a load, and the effect of the friction force of the robotic walker on the operation force is clarified from the viewpoint of walking stability of the user. Furthermore, we clarify that the damping and friction of the robotic walker can change the load on the user's rectus femoris, tibialis anterior, and gastrocnemius muscle in the transition phase from the standing movement to the walking movement.
Author YOKOGAWA, Ryuichi
KAMITANI, Noriyoshi
TSUMUGIWA, Toru
Author_xml – sequence: 1
  fullname: TSUMUGIWA, Toru
  organization: Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University
– sequence: 1
  fullname: KAMITANI, Noriyoshi
  organization: Graduate School of Life and Medical Sciences, Doshisha University
– sequence: 1
  fullname: YOKOGAWA, Ryuichi
  organization: Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University
BookMark eNo9kEtOwzAQhi0EEqX0Aqx8gRQ_4theVhWPoiLESyytie20KYmNEgvUHXfghpyEtkA380mjfz6N_hN0GGLwCJ1RMqZM6_PUQehXfevHjGWEECkO0IBRJTMtC3qMRn1fl4QXTCguxQDdTwI0677ucazwY52-P79S3IwXaF7xbXz3rQ8Jf9RpiSHgiWvrlCBYj6cxpC42jXf4IZYx1RZvb3x3io4qaHo_-uMQPV9ePE2vs_nd1Ww6mWeOch4yB1DKArh1pa080yrnBCgTudxQEVlSXlaCUc25JbQCwaQF4jgQL6xQBR-i2a_XRViZt65uoVubCLXZLWK3MNBt3mq8YVZQKoQuNSW5Y0wV3uZOFFJQqRnJN66bX9eqT7Dwe9u_YN-qUcpoyrZgzOz63YfsEjrjA_8BAb18pw
ContentType Journal Article
Copyright 2022 The Japan Society of Mechanical Engineers
Copyright_xml – notice: 2022 The Japan Society of Mechanical Engineers
DBID DOA
DOI 10.1299/transjsme.22-00075
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2187-9761
EndPage 22-00075
ExternalDocumentID oai_doaj_org_article_2c511559b9104d2286ec4d5675179204
article_transjsme_88_912_88_22_00075_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JSF
KQ8
RJT
ID FETCH-LOGICAL-d133n-daab76a3cdbcfe298430a1254730a807b13bf521933c01fa527ca0d3a0e5c5863
IEDL.DBID DOA
IngestDate Wed Aug 27 01:17:58 EDT 2025
Wed Sep 03 06:31:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 912
Language Japanese
License https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d133n-daab76a3cdbcfe298430a1254730a807b13bf521933c01fa527ca0d3a0e5c5863
OpenAccessLink https://doaj.org/article/2c511559b9104d2286ec4d5675179204
ParticipantIDs doaj_primary_oai_doaj_org_article_2c511559b9104d2286ec4d5675179204
jstage_primary_article_transjsme_88_912_88_22_00075_article_char_en
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Kikai Gakkai ronbunshū = Transactions of the Japan Society of Mechanical Engineers
PublicationYear 2022
Publisher The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers
References Imamura, Y., Endo, Y. and Yoshida, E., Simulation–based design of transfer support robot and experimental verification, 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (2019), pp.754–761, DOI:10.1109/ROBOSOFT.2019.8722807.
Jeon, W., Jensen, L. J. and Griffin, L., Muscle activity and balance control during sit–to–stand across symmetric and asymmetric initial foot positions in healthy adults, Gait & Posture, Vol.71 (2019), pp.138–144.
Perry, J. and Burnfield, J., Gait analysis: normal and pathological function (second edition), Ishiyaku Publishers Inc (2012), pp.93–109 (in Japanese).
Yasunaga, Y., Miura, K., Koda, M., Funayama, T., Takahashi, H., Noguchi, H., Mataki, K., Asada, T., Wada, K., Sankai, Y. and Yamazaki, M., Exercise therapy using the lumbar–type hybrid assistive limb ameliorates locomotive function after lumbar fusion surgery in an elderly patient, Case Reports in Orthopedics, Vol.2021, Article ID:1996509 (2021), DOI:https://doi.org/10.1155/2021/1996509.
Ishii, S., Dosabunseki rinshokatsuyokoza baiomekanikusunimotozukurinshosuironnojissen, MEDICAL VIEW CO (2013), pp.122–239 (in Japanese)
Borrelli, J., Komisar, V., Novak, A. C., Maki, B. E. and King, E. C., Extending the center of pressure to incorporate handhold forces: Derivation and sample application, Journal of Biomechanics, No.104 (2020), DOI:10.1016/j.jbiomech.2020.109727.
Jiménez, M. F., Monllor, M., Frizera, A., Bastos, T., Roberti, F. and Carelli, R., Admittance controller with spatial modulation for assisted locomotion using a smart walker, Journal of Intelligent & Robotic Systems, Vol.94 (2019), pp.621–637, DOI: 10.1007/s10846-018-0854-0.
Buckley, T., Pitsikoulis, C., Barthelemy, E. and Hass, C. J., Age impairs sit-to-walk motor performance, Journal of Biomechanics, Vol.42, No.14 (2009), pp.2318–2322, DOI: 10.1016/j.jbiomech.2009.06.023.
Miyatani, M., Kanehisa, H., Azuma, K., Kuno, S. and Fukunaga T., Site–related differences in muscle loss with aging. A cross–sectional survey on the muscle thickness in Japanese men aged 20 to 79 years, International Journal of Sport and Health Science, Vol.1, No.1 (2003), pp.34–40, DOI: https://doi.org/10.5432/ijshs.1.34.
Hermens, H. J., Freriks, B., Disselhorst–Klug, C. and Rau, G., Development of recommendations for SEMG sensors and sensor placement procedures, Journal of Electromyography and Kinesiology, Vol.10, No.5 (2000), pp.361–374, DOI: 10.1016/s1050-6411(00)00027-4.
Matsuo, Y., Hokouwomiru–kansatsukaramirurigakuryouhouzissen, BUNKODO SHOTEN CO. (2011), pp.1–464 (in Japanese)
Walter, M. B., The disuse syndrome, The Western Journal of Medicine, Vol.141, No.5 (1984), pp.691–694.
Ii, M., Yamanaka, T., Suzuki, K., Jinno,Y. and Yamada, K., Comparison of young and elderly adults in a standing–walking task, Rigakuryoho Kagaku, Vol.32, No.2 (2017), pp.221–225, DOI:https://doi.org/10.1589/rika.32.221 (in Japanese).
Kouta, M., Shinkoda, K. and Kanemura, N., Sit–to–walk versus sit–to–stand or gait initiation: biomechanical analysis of young men, Journal of Physical Therapy Science, Vol.18, No.2 (2006), pp.201–206, DOI: 10.1589/jpts.18.201.
Mariani, B., Rouhani, H., Crevoisier, X. and Aminian, K., Quantitative estimation of foot–flat and stance phase of gait using foot–worn inertial sensors, Gait and Posture, Vol.37 (2013), pp.229–234.
Burns, G. T., Deneweth–Zendler, J. D. and Zernicke, R. F., Validation of a wireless shoe insole for ground reaction force measurement, Journal of Sports Sciences, Vol.37, No.10 (2019), pp.1129–1138.
Thomas, A. B., Chris, P. and Chris, J. H., Dynamic Postural During Sit–to–Walk Transitions in Parkinson Disease Patients, Movement Disorders, Vol.23, No.9(2008), pp.1274–1280, DOI: 10.1002/mds.22079.
Koyama, M., Yokota, M., Kawazoe, S., Chugo, D., Muramatsu, S., Yokota, S., Hashimoto, H., Katayama, T., Mizuta, Y. and Yasuhide, K., Sitting assistance considering with posture tolerance of its user, IEEE 28th International Symposium on Industrial Electronics (ISIE) (2019), pp.2321–2326, DOI:10.1109/ISIE.2019.8781264.
Bezold, J., Krell–Roesch, J., Eckert, T., Jekauc, D. and Woll, A., Sensor–based fall risk assessment in older adults with or without cognitive impairment: a systematic review, European Review of Aging and Physical Activity, Vol.18, No.1 (2021), DOI: 10.1186/s11556-021-00266-w.
Kizuka, T., Masuda, T., Kiryu, T. and Sadoyama, T., Biomechanism library–practical usage of surface electromyogram, Tokyo Denki University Press (2006), pp.28–43, 145–158 (in Japanese).
Ozaki, F., The current status of elderly care robots, THE JAPAN GERIATRICS SOCIETY, Vol.57, No.3 (2020), pp.224–235, DOI:https://doi.org/10.3143/geriatrics.57.224 (in Japanese).
Kawashima, T., Zenbuwakaru dousa・undobetsu kinniku・kansetsunosikumiziten, SEIBIDO SHUPPAN CO (2014), pp.73–141 (in Japanese).
Watanabe, S., Tsumugiwa, T. and Yokogawa, R., Gait analysis of walking locomotion enhanced by an impedance–controlled gait–aid walker–type robot, IEEE/SICE International Symposium on System Integration (SII) (2020), pp.1187–1192, DOI:10.1109/SII46433.2020.9025977.
Suica, Z., Romkes, J., Tal, A. and Maguire, C., Walking with a four wheeled walker (rollator) significantly reduces EMG lower limb muscle activity in healthy subjects, Journal of Bodywork & Movement Therapies, Vol.20, No.1 (2016), pp.65–73, DOI:10.1016/j.jbmt.2015.06.002.
Fortin, A. P., Dessery, Y., Leteneur, S., Barbier, F. and Corbeil, P., Effect of natural trunk inclination on variability in soleus inhibition and tibialis anterior activation during gait initiation in young adults, Gait & Posture, Vol.41, No.2 (2015), pp.378–383, DOI:10.1016/j.gaitpost.2014.09.019.
Kerr, A., Durward, B. and Kerr, K. M., Defining phases for the sit–to–walk movement, Clinical Biomechanics, Vol.19, No.4 (2004), pp.385–390, DOI:https://doi.org/10.1016/j.clinbiomech.2003.12.012.
Anna, C., Gunilla, E. F. and Kjartan, H., Medio–lateral stability of sit–to–walk performance in older individuals with and without fear of falling, Gait & Posture, Vol.31, No.4 (2010), pp.438–443, DOI: 10.1016/j.gaitpost.2010.01.018.
Crenna, P. and Frigo, C., A motor programme for the initiation of forward–oriented movements in humans, Journal of Physiology (1991), pp.635–653, DOI:10.1113/jphysiol.1991.sp018616.
Itadera, S., Nakanishi, J., Hasegawa, Y., Fukuda, T., Tanimoto, M. and Kondo, I., Admittance control based robotic clinical gait training with physiological cost evaluation, Robotics and Autonomous Systems, Vol.123 (2020), DOI:10.1016/j.robot.2019.103326.
Hara, Y., Yoshida, M., Matsumura, M. and Ichihashi, N., The quantitative evaluation of the muscle activity by integrated electromyogram, The Transactions of the Institute of Electrical Engineers of Japan. C, Vol.124, No.2 (2004), pp.431–435, DOI:https://doi.org/10.1541/ieejeiss.124.431 (in Japanese).
Winter, D. A., Biomechanics and motor control of human movement fourth edition, John Wiley & Sons Inc (2009), pp.82–106.
Stramel, D. M. and Agrawal, S. K., Validation of a forward kinematics based controller for a mobile tethered pelvic assist device to augment pelvic forces during walking, IEEE International Conference on Robotics and Automation (2020), pp.10133– 10139, DOI:10.1109/ICRA40945.2020.9196585.
Tsusaka, Y., Dallalibera, F., Okazaki, Y., Yamamoto, N. and Yokokohji, Y., Development of a standing-up motion assist robot considering physiotherapist skills that bring out abilities from the patient, Transactions of the JSME (in Japanese), Vol.83, No.852 (2017), DOI:https://doi.org/10.1299/transjsme.17-00058.
Kojima, S. and Takeda, H., Sit–to–stand movement in elderly adults, Rigakuryoho Kagaku, Vol.13, No.2 (1998), pp.85–88 (in Japanese).
Mun, K. R., Yeo, B. B. S., Guo, Z., Chung, S. C. and Yu, H., Resistance training using a novel robotic walker for over–ground gait rehabilitation: a preliminary study on healthy subjects, Medical and Biological Engineering and Computing, Vol.55, No.10 (2017), pp.1873–1881, DOI: 10.1007/s11517-017-1634-x.
Nakagawa, S., Hasegawa, Y., Fukuda, T., Kondo, I., Tanimoto, M., Di, P., Huang, J. and Huang, Q., Tandem stance avoidance using adaptive and asymmetric admittance control for fall prevention, IEEE Transactions on Neural Systems and Rehabilitation Engineering (2015), DOI:10.1109/TNSRE.2015.2429315.
References_xml – reference: Kouta, M., Shinkoda, K. and Kanemura, N., Sit–to–walk versus sit–to–stand or gait initiation: biomechanical analysis of young men, Journal of Physical Therapy Science, Vol.18, No.2 (2006), pp.201–206, DOI: 10.1589/jpts.18.201.
– reference: Mun, K. R., Yeo, B. B. S., Guo, Z., Chung, S. C. and Yu, H., Resistance training using a novel robotic walker for over–ground gait rehabilitation: a preliminary study on healthy subjects, Medical and Biological Engineering and Computing, Vol.55, No.10 (2017), pp.1873–1881, DOI: 10.1007/s11517-017-1634-x.
– reference: Watanabe, S., Tsumugiwa, T. and Yokogawa, R., Gait analysis of walking locomotion enhanced by an impedance–controlled gait–aid walker–type robot, IEEE/SICE International Symposium on System Integration (SII) (2020), pp.1187–1192, DOI:10.1109/SII46433.2020.9025977.
– reference: Itadera, S., Nakanishi, J., Hasegawa, Y., Fukuda, T., Tanimoto, M. and Kondo, I., Admittance control based robotic clinical gait training with physiological cost evaluation, Robotics and Autonomous Systems, Vol.123 (2020), DOI:10.1016/j.robot.2019.103326.
– reference: Ishii, S., Dosabunseki rinshokatsuyokoza baiomekanikusunimotozukurinshosuironnojissen, MEDICAL VIEW CO (2013), pp.122–239 (in Japanese).
– reference: Kerr, A., Durward, B. and Kerr, K. M., Defining phases for the sit–to–walk movement, Clinical Biomechanics, Vol.19, No.4 (2004), pp.385–390, DOI:https://doi.org/10.1016/j.clinbiomech.2003.12.012.
– reference: Jiménez, M. F., Monllor, M., Frizera, A., Bastos, T., Roberti, F. and Carelli, R., Admittance controller with spatial modulation for assisted locomotion using a smart walker, Journal of Intelligent & Robotic Systems, Vol.94 (2019), pp.621–637, DOI: 10.1007/s10846-018-0854-0.
– reference: Suica, Z., Romkes, J., Tal, A. and Maguire, C., Walking with a four wheeled walker (rollator) significantly reduces EMG lower limb muscle activity in healthy subjects, Journal of Bodywork & Movement Therapies, Vol.20, No.1 (2016), pp.65–73, DOI:10.1016/j.jbmt.2015.06.002.
– reference: Winter, D. A., Biomechanics and motor control of human movement fourth edition, John Wiley & Sons Inc (2009), pp.82–106.
– reference: Ii, M., Yamanaka, T., Suzuki, K., Jinno,Y. and Yamada, K., Comparison of young and elderly adults in a standing–walking task, Rigakuryoho Kagaku, Vol.32, No.2 (2017), pp.221–225, DOI:https://doi.org/10.1589/rika.32.221 (in Japanese).
– reference: Kizuka, T., Masuda, T., Kiryu, T. and Sadoyama, T., Biomechanism library–practical usage of surface electromyogram, Tokyo Denki University Press (2006), pp.28–43, 145–158 (in Japanese).
– reference: Koyama, M., Yokota, M., Kawazoe, S., Chugo, D., Muramatsu, S., Yokota, S., Hashimoto, H., Katayama, T., Mizuta, Y. and Yasuhide, K., Sitting assistance considering with posture tolerance of its user, IEEE 28th International Symposium on Industrial Electronics (ISIE) (2019), pp.2321–2326, DOI:10.1109/ISIE.2019.8781264.
– reference: Yasunaga, Y., Miura, K., Koda, M., Funayama, T., Takahashi, H., Noguchi, H., Mataki, K., Asada, T., Wada, K., Sankai, Y. and Yamazaki, M., Exercise therapy using the lumbar–type hybrid assistive limb ameliorates locomotive function after lumbar fusion surgery in an elderly patient, Case Reports in Orthopedics, Vol.2021, Article ID:1996509 (2021), DOI:https://doi.org/10.1155/2021/1996509.
– reference: Miyatani, M., Kanehisa, H., Azuma, K., Kuno, S. and Fukunaga T., Site–related differences in muscle loss with aging. A cross–sectional survey on the muscle thickness in Japanese men aged 20 to 79 years, International Journal of Sport and Health Science, Vol.1, No.1 (2003), pp.34–40, DOI: https://doi.org/10.5432/ijshs.1.34.
– reference: Hermens, H. J., Freriks, B., Disselhorst–Klug, C. and Rau, G., Development of recommendations for SEMG sensors and sensor placement procedures, Journal of Electromyography and Kinesiology, Vol.10, No.5 (2000), pp.361–374, DOI: 10.1016/s1050-6411(00)00027-4.
– reference: Kawashima, T., Zenbuwakaru dousa・undobetsu kinniku・kansetsunosikumiziten, SEIBIDO SHUPPAN CO (2014), pp.73–141 (in Japanese).
– reference: Nakagawa, S., Hasegawa, Y., Fukuda, T., Kondo, I., Tanimoto, M., Di, P., Huang, J. and Huang, Q., Tandem stance avoidance using adaptive and asymmetric admittance control for fall prevention, IEEE Transactions on Neural Systems and Rehabilitation Engineering (2015), DOI:10.1109/TNSRE.2015.2429315.
– reference: Thomas, A. B., Chris, P. and Chris, J. H., Dynamic Postural During Sit–to–Walk Transitions in Parkinson Disease Patients, Movement Disorders, Vol.23, No.9(2008), pp.1274–1280, DOI: 10.1002/mds.22079.
– reference: Ozaki, F., The current status of elderly care robots, THE JAPAN GERIATRICS SOCIETY, Vol.57, No.3 (2020), pp.224–235, DOI:https://doi.org/10.3143/geriatrics.57.224 (in Japanese).
– reference: Tsusaka, Y., Dallalibera, F., Okazaki, Y., Yamamoto, N. and Yokokohji, Y., Development of a standing-up motion assist robot considering physiotherapist skills that bring out abilities from the patient, Transactions of the JSME (in Japanese), Vol.83, No.852 (2017), DOI:https://doi.org/10.1299/transjsme.17-00058.
– reference: Buckley, T., Pitsikoulis, C., Barthelemy, E. and Hass, C. J., Age impairs sit-to-walk motor performance, Journal of Biomechanics, Vol.42, No.14 (2009), pp.2318–2322, DOI: 10.1016/j.jbiomech.2009.06.023.
– reference: Fortin, A. P., Dessery, Y., Leteneur, S., Barbier, F. and Corbeil, P., Effect of natural trunk inclination on variability in soleus inhibition and tibialis anterior activation during gait initiation in young adults, Gait & Posture, Vol.41, No.2 (2015), pp.378–383, DOI:10.1016/j.gaitpost.2014.09.019.
– reference: Stramel, D. M. and Agrawal, S. K., Validation of a forward kinematics based controller for a mobile tethered pelvic assist device to augment pelvic forces during walking, IEEE International Conference on Robotics and Automation (2020), pp.10133– 10139, DOI:10.1109/ICRA40945.2020.9196585.
– reference: Walter, M. B., The disuse syndrome, The Western Journal of Medicine, Vol.141, No.5 (1984), pp.691–694.
– reference: Matsuo, Y., Hokouwomiru–kansatsukaramirurigakuryouhouzissen, BUNKODO SHOTEN CO. (2011), pp.1–464 (in Japanese).
– reference: Imamura, Y., Endo, Y. and Yoshida, E., Simulation–based design of transfer support robot and experimental verification, 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (2019), pp.754–761, DOI:10.1109/ROBOSOFT.2019.8722807.
– reference: Kojima, S. and Takeda, H., Sit–to–stand movement in elderly adults, Rigakuryoho Kagaku, Vol.13, No.2 (1998), pp.85–88 (in Japanese).
– reference: Bezold, J., Krell–Roesch, J., Eckert, T., Jekauc, D. and Woll, A., Sensor–based fall risk assessment in older adults with or without cognitive impairment: a systematic review, European Review of Aging and Physical Activity, Vol.18, No.1 (2021), DOI: 10.1186/s11556-021-00266-w.
– reference: Anna, C., Gunilla, E. F. and Kjartan, H., Medio–lateral stability of sit–to–walk performance in older individuals with and without fear of falling, Gait & Posture, Vol.31, No.4 (2010), pp.438–443, DOI: 10.1016/j.gaitpost.2010.01.018.
– reference: Hara, Y., Yoshida, M., Matsumura, M. and Ichihashi, N., The quantitative evaluation of the muscle activity by integrated electromyogram, The Transactions of the Institute of Electrical Engineers of Japan. C, Vol.124, No.2 (2004), pp.431–435, DOI:https://doi.org/10.1541/ieejeiss.124.431 (in Japanese).
– reference: Burns, G. T., Deneweth–Zendler, J. D. and Zernicke, R. F., Validation of a wireless shoe insole for ground reaction force measurement, Journal of Sports Sciences, Vol.37, No.10 (2019), pp.1129–1138.
– reference: Borrelli, J., Komisar, V., Novak, A. C., Maki, B. E. and King, E. C., Extending the center of pressure to incorporate handhold forces: Derivation and sample application, Journal of Biomechanics, No.104 (2020), DOI:10.1016/j.jbiomech.2020.109727.
– reference: Crenna, P. and Frigo, C., A motor programme for the initiation of forward–oriented movements in humans, Journal of Physiology (1991), pp.635–653, DOI:10.1113/jphysiol.1991.sp018616.
– reference: Mariani, B., Rouhani, H., Crevoisier, X. and Aminian, K., Quantitative estimation of foot–flat and stance phase of gait using foot–worn inertial sensors, Gait and Posture, Vol.37 (2013), pp.229–234.
– reference: Jeon, W., Jensen, L. J. and Griffin, L., Muscle activity and balance control during sit–to–stand across symmetric and asymmetric initial foot positions in healthy adults, Gait & Posture, Vol.71 (2019), pp.138–144.
– reference: Perry, J. and Burnfield, J., Gait analysis: normal and pathological function (second edition), Ishiyaku Publishers Inc (2012), pp.93–109 (in Japanese).
SSID ssib036258375
ssib016970096
ssib051641555
ssj0002911760
Score 2.2850878
Snippet In this study, we identify the effects of dynamic characteristics of the robotic walker on the muscle activities and operating forces of the young healthy...
SourceID doaj
jstage
SourceType Open Website
Publisher
StartPage 22-00075
SubjectTerms Admittance control
Dynamic characteristics
Muscle activity
Operating force
Robotic walker
STW analysis
Title Analysis of Sit–to–Walk Movement with an Admittance Controlled Robotic Walker
URI https://www.jstage.jst.go.jp/article/transjsme/88/912/88_22-00075/_article/-char/en
https://doaj.org/article/2c511559b9104d2286ec4d5675179204
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the JSME (in Japanese), 2022, Vol.88(912), pp.22-00075-22-00075
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQT3BArKJs8oFrqOPYjnOEqlWFVCSWit4ib5EoJUElXBH_wB_yJYyzqTcuXBwlih1rZux543ieEbrIFHWZCGWgOdEBU0oHnjctcACRMiYiZauksOmtmMzYzZzP14768nvCanrgWnADagASAOzV4NeYpVQKZ5jlgHPBlGjNBEoSshZMgSWFIok9OG_vYZbmEIl1lsshSIBGebcaQ2HMx4I0WTUwRQ9K7yoW76_uEqK1yrM2rP7gqhYA3NpNX5UfGu-g7QZA4qu647toY6H20NYareA-umuZRnCR4Yfn8ufruyygeFLLFzwtKobwEvsVWKxy7Olzy9IrHw_rfetLZ_F9oQv4AvZ13OoAzcajx-EkaI5OCCwEnXlgQeixUJGx2mSOJpJFRAGWYTCglSSxDiOdgedOosiQMFOcxkYRGyniuOFSRIeolxe5O0LYZv7npmHcOQ6xitCaCWliYmJhNKCPPrr2YknfanaM1PNVVw9Ai2mjxfQvLfbRsBZq10xbs9NDKmWahNRfKE0rjXQv-Qw1GObH_9GVE7RJfYpDtcnvFPXK1Yc7A-BR6vPKxqCcfo5-AaF_06o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Sit%E2%80%93to%E2%80%93Walk+Movement+with+an+Admittance+Controlled+Robotic+Walker&rft.jtitle=Transactions+of+the+JSME+%28in+Japanese%29&rft.au=TSUMUGIWA%2C+Toru&rft.au=KAMITANI%2C+Noriyoshi&rft.au=YOKOGAWA%2C+Ryuichi&rft.date=2022-08-01&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.eissn=2187-9761&rft.volume=88&rft.issue=912&rft.spage=22-00075&rft.epage=22-00075&rft_id=info:doi/10.1299%2Ftransjsme.22-00075&rft.externalDocID=article_transjsme_88_912_88_22_00075_article_char_en