Analysis of Sit–to–Walk Movement with an Admittance Controlled Robotic Walker
In this study, we identify the effects of dynamic characteristics of the robotic walker on the muscle activities and operating forces of the young healthy subjects in sit-to-walk (STW) movement. The experiment was performed under a total of eight conditions where the dynamic characteristics, inertia...
Saved in:
Published in | Kikai Gakkai ronbunshū = Transactions of the Japan Society of Mechanical Engineers Vol. 88; no. 912; p. 22-00075 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
The Japan Society of Mechanical Engineers
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2187-9761 |
DOI | 10.1299/transjsme.22-00075 |
Cover
Abstract | In this study, we identify the effects of dynamic characteristics of the robotic walker on the muscle activities and operating forces of the young healthy subjects in sit-to-walk (STW) movement. The experiment was performed under a total of eight conditions where the dynamic characteristics, inertia, damping, and frictional force were changed in the STW movement. We analyzed the effect of the dynamic characteristics of the robotic walker on the muscle activity and operating force of the upper and lower limb muscle groups in the STW movement by multiple regression analysis. From the experimental results, it is revealed that the inertia of the robotic walker can change the load on the user's vastus lateralis and tibialis anterior muscle in the standing movement under the condition that friction is applied as a load, and the effect of the friction force of the robotic walker on the operation force is clarified from the viewpoint of walking stability of the user. Furthermore, we clarify that the damping and friction of the robotic walker can change the load on the user's rectus femoris, tibialis anterior, and gastrocnemius muscle in the transition phase from the standing movement to the walking movement. |
---|---|
AbstractList | In this study, we identify the effects of dynamic characteristics of the robotic walker on the muscle activities and operating forces of the young healthy subjects in sit-to-walk (STW) movement. The experiment was performed under a total of eight conditions where the dynamic characteristics, inertia, damping, and frictional force were changed in the STW movement. We analyzed the effect of the dynamic characteristics of the robotic walker on the muscle activity and operating force of the upper and lower limb muscle groups in the STW movement by multiple regression analysis. From the experimental results, it is revealed that the inertia of the robotic walker can change the load on the user's vastus lateralis and tibialis anterior muscle in the standing movement under the condition that friction is applied as a load, and the effect of the friction force of the robotic walker on the operation force is clarified from the viewpoint of walking stability of the user. Furthermore, we clarify that the damping and friction of the robotic walker can change the load on the user's rectus femoris, tibialis anterior, and gastrocnemius muscle in the transition phase from the standing movement to the walking movement. |
Author | YOKOGAWA, Ryuichi KAMITANI, Noriyoshi TSUMUGIWA, Toru |
Author_xml | – sequence: 1 fullname: TSUMUGIWA, Toru organization: Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University – sequence: 1 fullname: KAMITANI, Noriyoshi organization: Graduate School of Life and Medical Sciences, Doshisha University – sequence: 1 fullname: YOKOGAWA, Ryuichi organization: Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University |
BookMark | eNo9kEtOwzAQhi0EEqX0Aqx8gRQ_4theVhWPoiLESyytie20KYmNEgvUHXfghpyEtkA380mjfz6N_hN0GGLwCJ1RMqZM6_PUQehXfevHjGWEECkO0IBRJTMtC3qMRn1fl4QXTCguxQDdTwI0677ucazwY52-P79S3IwXaF7xbXz3rQ8Jf9RpiSHgiWvrlCBYj6cxpC42jXf4IZYx1RZvb3x3io4qaHo_-uMQPV9ePE2vs_nd1Ww6mWeOch4yB1DKArh1pa080yrnBCgTudxQEVlSXlaCUc25JbQCwaQF4jgQL6xQBR-i2a_XRViZt65uoVubCLXZLWK3MNBt3mq8YVZQKoQuNSW5Y0wV3uZOFFJQqRnJN66bX9eqT7Dwe9u_YN-qUcpoyrZgzOz63YfsEjrjA_8BAb18pw |
ContentType | Journal Article |
Copyright | 2022 The Japan Society of Mechanical Engineers |
Copyright_xml | – notice: 2022 The Japan Society of Mechanical Engineers |
DBID | DOA |
DOI | 10.1299/transjsme.22-00075 |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2187-9761 |
EndPage | 22-00075 |
ExternalDocumentID | oai_doaj_org_article_2c511559b9104d2286ec4d5675179204 article_transjsme_88_912_88_22_00075_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ JSF KQ8 RJT |
ID | FETCH-LOGICAL-d133n-daab76a3cdbcfe298430a1254730a807b13bf521933c01fa527ca0d3a0e5c5863 |
IEDL.DBID | DOA |
IngestDate | Wed Aug 27 01:17:58 EDT 2025 Wed Sep 03 06:31:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 912 |
Language | Japanese |
License | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d133n-daab76a3cdbcfe298430a1254730a807b13bf521933c01fa527ca0d3a0e5c5863 |
OpenAccessLink | https://doaj.org/article/2c511559b9104d2286ec4d5675179204 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c511559b9104d2286ec4d5675179204 jstage_primary_article_transjsme_88_912_88_22_00075_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Kikai Gakkai ronbunshū = Transactions of the Japan Society of Mechanical Engineers |
PublicationYear | 2022 |
Publisher | The Japan Society of Mechanical Engineers |
Publisher_xml | – name: The Japan Society of Mechanical Engineers |
References | Imamura, Y., Endo, Y. and Yoshida, E., Simulation–based design of transfer support robot and experimental verification, 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (2019), pp.754–761, DOI:10.1109/ROBOSOFT.2019.8722807. Jeon, W., Jensen, L. J. and Griffin, L., Muscle activity and balance control during sit–to–stand across symmetric and asymmetric initial foot positions in healthy adults, Gait & Posture, Vol.71 (2019), pp.138–144. Perry, J. and Burnfield, J., Gait analysis: normal and pathological function (second edition), Ishiyaku Publishers Inc (2012), pp.93–109 (in Japanese). Yasunaga, Y., Miura, K., Koda, M., Funayama, T., Takahashi, H., Noguchi, H., Mataki, K., Asada, T., Wada, K., Sankai, Y. and Yamazaki, M., Exercise therapy using the lumbar–type hybrid assistive limb ameliorates locomotive function after lumbar fusion surgery in an elderly patient, Case Reports in Orthopedics, Vol.2021, Article ID:1996509 (2021), DOI:https://doi.org/10.1155/2021/1996509. Ishii, S., Dosabunseki rinshokatsuyokoza baiomekanikusunimotozukurinshosuironnojissen, MEDICAL VIEW CO (2013), pp.122–239 (in Japanese) Borrelli, J., Komisar, V., Novak, A. C., Maki, B. E. and King, E. C., Extending the center of pressure to incorporate handhold forces: Derivation and sample application, Journal of Biomechanics, No.104 (2020), DOI:10.1016/j.jbiomech.2020.109727. Jiménez, M. F., Monllor, M., Frizera, A., Bastos, T., Roberti, F. and Carelli, R., Admittance controller with spatial modulation for assisted locomotion using a smart walker, Journal of Intelligent & Robotic Systems, Vol.94 (2019), pp.621–637, DOI: 10.1007/s10846-018-0854-0. Buckley, T., Pitsikoulis, C., Barthelemy, E. and Hass, C. J., Age impairs sit-to-walk motor performance, Journal of Biomechanics, Vol.42, No.14 (2009), pp.2318–2322, DOI: 10.1016/j.jbiomech.2009.06.023. Miyatani, M., Kanehisa, H., Azuma, K., Kuno, S. and Fukunaga T., Site–related differences in muscle loss with aging. A cross–sectional survey on the muscle thickness in Japanese men aged 20 to 79 years, International Journal of Sport and Health Science, Vol.1, No.1 (2003), pp.34–40, DOI: https://doi.org/10.5432/ijshs.1.34. Hermens, H. J., Freriks, B., Disselhorst–Klug, C. and Rau, G., Development of recommendations for SEMG sensors and sensor placement procedures, Journal of Electromyography and Kinesiology, Vol.10, No.5 (2000), pp.361–374, DOI: 10.1016/s1050-6411(00)00027-4. Matsuo, Y., Hokouwomiru–kansatsukaramirurigakuryouhouzissen, BUNKODO SHOTEN CO. (2011), pp.1–464 (in Japanese) Walter, M. B., The disuse syndrome, The Western Journal of Medicine, Vol.141, No.5 (1984), pp.691–694. Ii, M., Yamanaka, T., Suzuki, K., Jinno,Y. and Yamada, K., Comparison of young and elderly adults in a standing–walking task, Rigakuryoho Kagaku, Vol.32, No.2 (2017), pp.221–225, DOI:https://doi.org/10.1589/rika.32.221 (in Japanese). Kouta, M., Shinkoda, K. and Kanemura, N., Sit–to–walk versus sit–to–stand or gait initiation: biomechanical analysis of young men, Journal of Physical Therapy Science, Vol.18, No.2 (2006), pp.201–206, DOI: 10.1589/jpts.18.201. Mariani, B., Rouhani, H., Crevoisier, X. and Aminian, K., Quantitative estimation of foot–flat and stance phase of gait using foot–worn inertial sensors, Gait and Posture, Vol.37 (2013), pp.229–234. Burns, G. T., Deneweth–Zendler, J. D. and Zernicke, R. F., Validation of a wireless shoe insole for ground reaction force measurement, Journal of Sports Sciences, Vol.37, No.10 (2019), pp.1129–1138. Thomas, A. B., Chris, P. and Chris, J. H., Dynamic Postural During Sit–to–Walk Transitions in Parkinson Disease Patients, Movement Disorders, Vol.23, No.9(2008), pp.1274–1280, DOI: 10.1002/mds.22079. Koyama, M., Yokota, M., Kawazoe, S., Chugo, D., Muramatsu, S., Yokota, S., Hashimoto, H., Katayama, T., Mizuta, Y. and Yasuhide, K., Sitting assistance considering with posture tolerance of its user, IEEE 28th International Symposium on Industrial Electronics (ISIE) (2019), pp.2321–2326, DOI:10.1109/ISIE.2019.8781264. Bezold, J., Krell–Roesch, J., Eckert, T., Jekauc, D. and Woll, A., Sensor–based fall risk assessment in older adults with or without cognitive impairment: a systematic review, European Review of Aging and Physical Activity, Vol.18, No.1 (2021), DOI: 10.1186/s11556-021-00266-w. Kizuka, T., Masuda, T., Kiryu, T. and Sadoyama, T., Biomechanism library–practical usage of surface electromyogram, Tokyo Denki University Press (2006), pp.28–43, 145–158 (in Japanese). Ozaki, F., The current status of elderly care robots, THE JAPAN GERIATRICS SOCIETY, Vol.57, No.3 (2020), pp.224–235, DOI:https://doi.org/10.3143/geriatrics.57.224 (in Japanese). Kawashima, T., Zenbuwakaru dousa・undobetsu kinniku・kansetsunosikumiziten, SEIBIDO SHUPPAN CO (2014), pp.73–141 (in Japanese). Watanabe, S., Tsumugiwa, T. and Yokogawa, R., Gait analysis of walking locomotion enhanced by an impedance–controlled gait–aid walker–type robot, IEEE/SICE International Symposium on System Integration (SII) (2020), pp.1187–1192, DOI:10.1109/SII46433.2020.9025977. Suica, Z., Romkes, J., Tal, A. and Maguire, C., Walking with a four wheeled walker (rollator) significantly reduces EMG lower limb muscle activity in healthy subjects, Journal of Bodywork & Movement Therapies, Vol.20, No.1 (2016), pp.65–73, DOI:10.1016/j.jbmt.2015.06.002. Fortin, A. P., Dessery, Y., Leteneur, S., Barbier, F. and Corbeil, P., Effect of natural trunk inclination on variability in soleus inhibition and tibialis anterior activation during gait initiation in young adults, Gait & Posture, Vol.41, No.2 (2015), pp.378–383, DOI:10.1016/j.gaitpost.2014.09.019. Kerr, A., Durward, B. and Kerr, K. M., Defining phases for the sit–to–walk movement, Clinical Biomechanics, Vol.19, No.4 (2004), pp.385–390, DOI:https://doi.org/10.1016/j.clinbiomech.2003.12.012. Anna, C., Gunilla, E. F. and Kjartan, H., Medio–lateral stability of sit–to–walk performance in older individuals with and without fear of falling, Gait & Posture, Vol.31, No.4 (2010), pp.438–443, DOI: 10.1016/j.gaitpost.2010.01.018. Crenna, P. and Frigo, C., A motor programme for the initiation of forward–oriented movements in humans, Journal of Physiology (1991), pp.635–653, DOI:10.1113/jphysiol.1991.sp018616. Itadera, S., Nakanishi, J., Hasegawa, Y., Fukuda, T., Tanimoto, M. and Kondo, I., Admittance control based robotic clinical gait training with physiological cost evaluation, Robotics and Autonomous Systems, Vol.123 (2020), DOI:10.1016/j.robot.2019.103326. Hara, Y., Yoshida, M., Matsumura, M. and Ichihashi, N., The quantitative evaluation of the muscle activity by integrated electromyogram, The Transactions of the Institute of Electrical Engineers of Japan. C, Vol.124, No.2 (2004), pp.431–435, DOI:https://doi.org/10.1541/ieejeiss.124.431 (in Japanese). Winter, D. A., Biomechanics and motor control of human movement fourth edition, John Wiley & Sons Inc (2009), pp.82–106. Stramel, D. M. and Agrawal, S. K., Validation of a forward kinematics based controller for a mobile tethered pelvic assist device to augment pelvic forces during walking, IEEE International Conference on Robotics and Automation (2020), pp.10133– 10139, DOI:10.1109/ICRA40945.2020.9196585. Tsusaka, Y., Dallalibera, F., Okazaki, Y., Yamamoto, N. and Yokokohji, Y., Development of a standing-up motion assist robot considering physiotherapist skills that bring out abilities from the patient, Transactions of the JSME (in Japanese), Vol.83, No.852 (2017), DOI:https://doi.org/10.1299/transjsme.17-00058. Kojima, S. and Takeda, H., Sit–to–stand movement in elderly adults, Rigakuryoho Kagaku, Vol.13, No.2 (1998), pp.85–88 (in Japanese). Mun, K. R., Yeo, B. B. S., Guo, Z., Chung, S. C. and Yu, H., Resistance training using a novel robotic walker for over–ground gait rehabilitation: a preliminary study on healthy subjects, Medical and Biological Engineering and Computing, Vol.55, No.10 (2017), pp.1873–1881, DOI: 10.1007/s11517-017-1634-x. Nakagawa, S., Hasegawa, Y., Fukuda, T., Kondo, I., Tanimoto, M., Di, P., Huang, J. and Huang, Q., Tandem stance avoidance using adaptive and asymmetric admittance control for fall prevention, IEEE Transactions on Neural Systems and Rehabilitation Engineering (2015), DOI:10.1109/TNSRE.2015.2429315. |
References_xml | – reference: Kouta, M., Shinkoda, K. and Kanemura, N., Sit–to–walk versus sit–to–stand or gait initiation: biomechanical analysis of young men, Journal of Physical Therapy Science, Vol.18, No.2 (2006), pp.201–206, DOI: 10.1589/jpts.18.201. – reference: Mun, K. R., Yeo, B. B. S., Guo, Z., Chung, S. C. and Yu, H., Resistance training using a novel robotic walker for over–ground gait rehabilitation: a preliminary study on healthy subjects, Medical and Biological Engineering and Computing, Vol.55, No.10 (2017), pp.1873–1881, DOI: 10.1007/s11517-017-1634-x. – reference: Watanabe, S., Tsumugiwa, T. and Yokogawa, R., Gait analysis of walking locomotion enhanced by an impedance–controlled gait–aid walker–type robot, IEEE/SICE International Symposium on System Integration (SII) (2020), pp.1187–1192, DOI:10.1109/SII46433.2020.9025977. – reference: Itadera, S., Nakanishi, J., Hasegawa, Y., Fukuda, T., Tanimoto, M. and Kondo, I., Admittance control based robotic clinical gait training with physiological cost evaluation, Robotics and Autonomous Systems, Vol.123 (2020), DOI:10.1016/j.robot.2019.103326. – reference: Ishii, S., Dosabunseki rinshokatsuyokoza baiomekanikusunimotozukurinshosuironnojissen, MEDICAL VIEW CO (2013), pp.122–239 (in Japanese). – reference: Kerr, A., Durward, B. and Kerr, K. M., Defining phases for the sit–to–walk movement, Clinical Biomechanics, Vol.19, No.4 (2004), pp.385–390, DOI:https://doi.org/10.1016/j.clinbiomech.2003.12.012. – reference: Jiménez, M. F., Monllor, M., Frizera, A., Bastos, T., Roberti, F. and Carelli, R., Admittance controller with spatial modulation for assisted locomotion using a smart walker, Journal of Intelligent & Robotic Systems, Vol.94 (2019), pp.621–637, DOI: 10.1007/s10846-018-0854-0. – reference: Suica, Z., Romkes, J., Tal, A. and Maguire, C., Walking with a four wheeled walker (rollator) significantly reduces EMG lower limb muscle activity in healthy subjects, Journal of Bodywork & Movement Therapies, Vol.20, No.1 (2016), pp.65–73, DOI:10.1016/j.jbmt.2015.06.002. – reference: Winter, D. A., Biomechanics and motor control of human movement fourth edition, John Wiley & Sons Inc (2009), pp.82–106. – reference: Ii, M., Yamanaka, T., Suzuki, K., Jinno,Y. and Yamada, K., Comparison of young and elderly adults in a standing–walking task, Rigakuryoho Kagaku, Vol.32, No.2 (2017), pp.221–225, DOI:https://doi.org/10.1589/rika.32.221 (in Japanese). – reference: Kizuka, T., Masuda, T., Kiryu, T. and Sadoyama, T., Biomechanism library–practical usage of surface electromyogram, Tokyo Denki University Press (2006), pp.28–43, 145–158 (in Japanese). – reference: Koyama, M., Yokota, M., Kawazoe, S., Chugo, D., Muramatsu, S., Yokota, S., Hashimoto, H., Katayama, T., Mizuta, Y. and Yasuhide, K., Sitting assistance considering with posture tolerance of its user, IEEE 28th International Symposium on Industrial Electronics (ISIE) (2019), pp.2321–2326, DOI:10.1109/ISIE.2019.8781264. – reference: Yasunaga, Y., Miura, K., Koda, M., Funayama, T., Takahashi, H., Noguchi, H., Mataki, K., Asada, T., Wada, K., Sankai, Y. and Yamazaki, M., Exercise therapy using the lumbar–type hybrid assistive limb ameliorates locomotive function after lumbar fusion surgery in an elderly patient, Case Reports in Orthopedics, Vol.2021, Article ID:1996509 (2021), DOI:https://doi.org/10.1155/2021/1996509. – reference: Miyatani, M., Kanehisa, H., Azuma, K., Kuno, S. and Fukunaga T., Site–related differences in muscle loss with aging. A cross–sectional survey on the muscle thickness in Japanese men aged 20 to 79 years, International Journal of Sport and Health Science, Vol.1, No.1 (2003), pp.34–40, DOI: https://doi.org/10.5432/ijshs.1.34. – reference: Hermens, H. J., Freriks, B., Disselhorst–Klug, C. and Rau, G., Development of recommendations for SEMG sensors and sensor placement procedures, Journal of Electromyography and Kinesiology, Vol.10, No.5 (2000), pp.361–374, DOI: 10.1016/s1050-6411(00)00027-4. – reference: Kawashima, T., Zenbuwakaru dousa・undobetsu kinniku・kansetsunosikumiziten, SEIBIDO SHUPPAN CO (2014), pp.73–141 (in Japanese). – reference: Nakagawa, S., Hasegawa, Y., Fukuda, T., Kondo, I., Tanimoto, M., Di, P., Huang, J. and Huang, Q., Tandem stance avoidance using adaptive and asymmetric admittance control for fall prevention, IEEE Transactions on Neural Systems and Rehabilitation Engineering (2015), DOI:10.1109/TNSRE.2015.2429315. – reference: Thomas, A. B., Chris, P. and Chris, J. H., Dynamic Postural During Sit–to–Walk Transitions in Parkinson Disease Patients, Movement Disorders, Vol.23, No.9(2008), pp.1274–1280, DOI: 10.1002/mds.22079. – reference: Ozaki, F., The current status of elderly care robots, THE JAPAN GERIATRICS SOCIETY, Vol.57, No.3 (2020), pp.224–235, DOI:https://doi.org/10.3143/geriatrics.57.224 (in Japanese). – reference: Tsusaka, Y., Dallalibera, F., Okazaki, Y., Yamamoto, N. and Yokokohji, Y., Development of a standing-up motion assist robot considering physiotherapist skills that bring out abilities from the patient, Transactions of the JSME (in Japanese), Vol.83, No.852 (2017), DOI:https://doi.org/10.1299/transjsme.17-00058. – reference: Buckley, T., Pitsikoulis, C., Barthelemy, E. and Hass, C. J., Age impairs sit-to-walk motor performance, Journal of Biomechanics, Vol.42, No.14 (2009), pp.2318–2322, DOI: 10.1016/j.jbiomech.2009.06.023. – reference: Fortin, A. P., Dessery, Y., Leteneur, S., Barbier, F. and Corbeil, P., Effect of natural trunk inclination on variability in soleus inhibition and tibialis anterior activation during gait initiation in young adults, Gait & Posture, Vol.41, No.2 (2015), pp.378–383, DOI:10.1016/j.gaitpost.2014.09.019. – reference: Stramel, D. M. and Agrawal, S. K., Validation of a forward kinematics based controller for a mobile tethered pelvic assist device to augment pelvic forces during walking, IEEE International Conference on Robotics and Automation (2020), pp.10133– 10139, DOI:10.1109/ICRA40945.2020.9196585. – reference: Walter, M. B., The disuse syndrome, The Western Journal of Medicine, Vol.141, No.5 (1984), pp.691–694. – reference: Matsuo, Y., Hokouwomiru–kansatsukaramirurigakuryouhouzissen, BUNKODO SHOTEN CO. (2011), pp.1–464 (in Japanese). – reference: Imamura, Y., Endo, Y. and Yoshida, E., Simulation–based design of transfer support robot and experimental verification, 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (2019), pp.754–761, DOI:10.1109/ROBOSOFT.2019.8722807. – reference: Kojima, S. and Takeda, H., Sit–to–stand movement in elderly adults, Rigakuryoho Kagaku, Vol.13, No.2 (1998), pp.85–88 (in Japanese). – reference: Bezold, J., Krell–Roesch, J., Eckert, T., Jekauc, D. and Woll, A., Sensor–based fall risk assessment in older adults with or without cognitive impairment: a systematic review, European Review of Aging and Physical Activity, Vol.18, No.1 (2021), DOI: 10.1186/s11556-021-00266-w. – reference: Anna, C., Gunilla, E. F. and Kjartan, H., Medio–lateral stability of sit–to–walk performance in older individuals with and without fear of falling, Gait & Posture, Vol.31, No.4 (2010), pp.438–443, DOI: 10.1016/j.gaitpost.2010.01.018. – reference: Hara, Y., Yoshida, M., Matsumura, M. and Ichihashi, N., The quantitative evaluation of the muscle activity by integrated electromyogram, The Transactions of the Institute of Electrical Engineers of Japan. C, Vol.124, No.2 (2004), pp.431–435, DOI:https://doi.org/10.1541/ieejeiss.124.431 (in Japanese). – reference: Burns, G. T., Deneweth–Zendler, J. D. and Zernicke, R. F., Validation of a wireless shoe insole for ground reaction force measurement, Journal of Sports Sciences, Vol.37, No.10 (2019), pp.1129–1138. – reference: Borrelli, J., Komisar, V., Novak, A. C., Maki, B. E. and King, E. C., Extending the center of pressure to incorporate handhold forces: Derivation and sample application, Journal of Biomechanics, No.104 (2020), DOI:10.1016/j.jbiomech.2020.109727. – reference: Crenna, P. and Frigo, C., A motor programme for the initiation of forward–oriented movements in humans, Journal of Physiology (1991), pp.635–653, DOI:10.1113/jphysiol.1991.sp018616. – reference: Mariani, B., Rouhani, H., Crevoisier, X. and Aminian, K., Quantitative estimation of foot–flat and stance phase of gait using foot–worn inertial sensors, Gait and Posture, Vol.37 (2013), pp.229–234. – reference: Jeon, W., Jensen, L. J. and Griffin, L., Muscle activity and balance control during sit–to–stand across symmetric and asymmetric initial foot positions in healthy adults, Gait & Posture, Vol.71 (2019), pp.138–144. – reference: Perry, J. and Burnfield, J., Gait analysis: normal and pathological function (second edition), Ishiyaku Publishers Inc (2012), pp.93–109 (in Japanese). |
SSID | ssib036258375 ssib016970096 ssib051641555 ssj0002911760 |
Score | 2.2850878 |
Snippet | In this study, we identify the effects of dynamic characteristics of the robotic walker on the muscle activities and operating forces of the young healthy... |
SourceID | doaj jstage |
SourceType | Open Website Publisher |
StartPage | 22-00075 |
SubjectTerms | Admittance control Dynamic characteristics Muscle activity Operating force Robotic walker STW analysis |
Title | Analysis of Sit–to–Walk Movement with an Admittance Controlled Robotic Walker |
URI | https://www.jstage.jst.go.jp/article/transjsme/88/912/88_22-00075/_article/-char/en https://doaj.org/article/2c511559b9104d2286ec4d5675179204 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Transactions of the JSME (in Japanese), 2022, Vol.88(912), pp.22-00075-22-00075 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQT3BArKJs8oFrqOPYjnOEqlWFVCSWit4ib5EoJUElXBH_wB_yJYyzqTcuXBwlih1rZux543ieEbrIFHWZCGWgOdEBU0oHnjctcACRMiYiZauksOmtmMzYzZzP14768nvCanrgWnADagASAOzV4NeYpVQKZ5jlgHPBlGjNBEoSshZMgSWFIok9OG_vYZbmEIl1lsshSIBGebcaQ2HMx4I0WTUwRQ9K7yoW76_uEqK1yrM2rP7gqhYA3NpNX5UfGu-g7QZA4qu647toY6H20NYareA-umuZRnCR4Yfn8ufruyygeFLLFzwtKobwEvsVWKxy7Olzy9IrHw_rfetLZ_F9oQv4AvZ13OoAzcajx-EkaI5OCCwEnXlgQeixUJGx2mSOJpJFRAGWYTCglSSxDiOdgedOosiQMFOcxkYRGyniuOFSRIeolxe5O0LYZv7npmHcOQ6xitCaCWliYmJhNKCPPrr2YknfanaM1PNVVw9Ai2mjxfQvLfbRsBZq10xbs9NDKmWahNRfKE0rjXQv-Qw1GObH_9GVE7RJfYpDtcnvFPXK1Yc7A-BR6vPKxqCcfo5-AaF_06o |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Sit%E2%80%93to%E2%80%93Walk+Movement+with+an+Admittance+Controlled+Robotic+Walker&rft.jtitle=Transactions+of+the+JSME+%28in+Japanese%29&rft.au=TSUMUGIWA%2C+Toru&rft.au=KAMITANI%2C+Noriyoshi&rft.au=YOKOGAWA%2C+Ryuichi&rft.date=2022-08-01&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.eissn=2187-9761&rft.volume=88&rft.issue=912&rft.spage=22-00075&rft.epage=22-00075&rft_id=info:doi/10.1299%2Ftransjsme.22-00075&rft.externalDocID=article_transjsme_88_912_88_22_00075_article_char_en |