The Use of Features Extracted from Noisy Samples for Image Restoration Purposes
An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense. In the following we restrict the development to the problem of feature extracting unsupervised neural networks derived on the base of the biol...
Saved in:
Published in | Informatica Economica Vol. XI; no. 1; pp. 73 - 78 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Academy of Economic Studies - Bucharest, Romania
2007
Inforec Association |
Series | Informatica Economica |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense. In the following we restrict the development to the problem of feature extracting unsupervised neural networks derived on the base of the biologically motivated Hebbian self-organizing principle which is conjectured to govern the natural neural assemblies and the classical principal component analysis (PCA) method used by statisticians for almost a century for multivariate data analysis and feature extraction. The research work reported in the paper aims to propose a new image reconstruction method based on the features extracted from the noise given by the principal components of the noise covariance matrix. |
---|---|
AbstractList | An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense. In the following we restrict the development to the problem of feature extracting unsupervised neural networks derived on the base of the biologically motivated Hebbian self-organizing principle which is conjectured to govern the natural neural assemblies and the classical principal component analysis (PCA) method used by statisticians for almost a century for multivariate data analysis and feature extraction. The research work reported in the paper aims to propose a new image reconstruction method based on the features extracted from the noise given by the principal components of the noise covariance matrix. |
Author | Catalina, COCIANU Luminita, STATE Panayiotis, VLAMOS |
Author_xml | – fullname: Panayiotis, VLAMOS – fullname: Luminita, STATE – fullname: Catalina, COCIANU |
BackLink | http://econpapers.repec.org/article/aesinfoec/v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73-78.htm$$DView record in RePEc |
BookMark | eNo9jd1uwjAMhauJSWOMd8gLVGqav-ZyQjCQ0Jg2uK6c1IFOlFRJmeDtl41pF8c-PrY-P2ajkz_hXTamFS_zqqiqUfJcsJyyQjxk0xhbU3CumFZUjrPN9oBkF5F4RxYIwzlgJPPLEMAO2BAXfEdefRuv5AO6_piWzgey6mCP5B3j4AMMrT-Rt3PofcT4lN07OEac_vVJtlvMt7Nlvt68rGbP67yhjHa5Bc4bqTSi5bKh0iKUwjkw1jJjWDKCCmUqq6XmrkzHpUVtAZAzYVCySba6cRsPn3Uf2g7CtfbQ1r-BD_sawtDaI9aqsrKRTJvGaM6U0MYVFq1gUlFtOCbW8sYK2KP9hwHG9uR8Sr5qBpc2lWtSWRQqtZ-RJvVJiqUn9WHo2DeuRnXV |
ContentType | Journal Article |
DBID | DKI X2L DOA |
DatabaseName | RePEc IDEAS RePEc Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 1842-8088 |
EndPage | 78 |
ExternalDocumentID | oai_doaj_org_article_78c6d639bdb943759bf0cec536719b4e aesinfoec_v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73_78_htm |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS DKI M~E X2L 29I 2WC 5VS 7WY 8FL AAKPC ADBBV BCNDV C1A E3Z EBU GROUPED_ABI_INFORM_COMPLETE GROUPED_DOAJ IPNFZ K60 K6~ KQ8 RIG TH9 TR2 |
ID | FETCH-LOGICAL-d131m-ca44d679eec46d16cea25ffabcc3bb3fab5157b8c9694f244d2ce9caae435be63 |
IEDL.DBID | DOA |
ISSN | 1453-1305 |
IngestDate | Tue Oct 22 15:15:09 EDT 2024 Sat Dec 16 05:50:07 EST 2023 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d131m-ca44d679eec46d16cea25ffabcc3bb3fab5157b8c9694f244d2ce9caae435be63 |
OpenAccessLink | https://doaj.org/article/78c6d639bdb943759bf0cec536719b4e |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_78c6d639bdb943759bf0cec536719b4e repec_primary_aesinfoec_v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73_78_htm |
PublicationCentury | 2000 |
PublicationDate | 2007 2007-01-01 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – year: 2007 text: 2007 |
PublicationDecade | 2000 |
PublicationSeriesTitle | Informatica Economica |
PublicationTitle | Informatica Economica |
PublicationYear | 2007 |
Publisher | Academy of Economic Studies - Bucharest, Romania Inforec Association |
Publisher_xml | – name: Academy of Economic Studies - Bucharest, Romania – name: Inforec Association |
SSID | ssib044739716 ssj0069863 |
Score | 1.6611158 |
Snippet | An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense.... |
SourceID | doaj repec |
SourceType | Open Website Index Database |
StartPage | 73 |
SubjectTerms | feature extraction Generalized Hebbian Algorithm image restoration multiresolution support set PCA wavelet transform |
Title | The Use of Features Extracted from Noisy Samples for Image Restoration Purposes |
URI | http://econpapers.repec.org/article/aesinfoec/v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73-78.htm https://doaj.org/article/78c6d639bdb943759bf0cec536719b4e |
Volume | XI |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TgMxELUQDTSIU9xyQbsijq91GVAQAXEIiJRu5WMsKHIomyBo-HbG3oDS0VCMd9eFZc3Mzjxb9htCzpxwLd72rmhZA7hAKUXhjJRFsF7wiCnIZ0vf3avrvrgZyMFSqa90JqyhB24Ud65LrwKmURecEVxL42LLg5dcaWacgBx9W2ZpMYWeJITmiRvpJyYrU-aaakxIXmDUlguGfkSkU5iAX0opV5tkY4EFaaeZwxZZgdE2Wfu5KlzvkAc0Iu3XQMeRJqw2x7Ux7X7MMsVyoOlqCL0fv9Wf9Nkmlt-aIgSlvSHGCPqUS8ZkvdNH1Oa4hnqX9K-6L5fXxaICQhEYZ8PCWyGC0gbACxWY8mDbMkbrvOfOcXxBOKJd6Y0yImKmDm0PxlsLiIIcKL5HVkfjEewTyjzGRBdBlCoKHZSNwZaMWcR_UkenDshF0kg1aUguqkQ7nTvQGNXCGNVfxjggnazP31Es1OlHwZ73ituPN2w-UdIGKT7SJ0OZoGiOo1evs-Hhf0zkiKw3m7Bpr-SYrM6mczhB9DBzp-got73T7C7Y3n11vwEFjsdT |
link.rule.ids | 315,783,787,2109,4016,4031 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Features+Extracted+from+Noisy+Samples+for+Image+Restoration+Purposes&rft.jtitle=Informatica+Economica&rft.au=Panayiotis%2C+VLAMOS&rft.au=Luminita%2C+STATE&rft.au=Catalina%2C+COCIANU&rft.series=Informatica+Economica&rft.date=2007&rft.pub=Academy+of+Economic+Studies+-+Bucharest%2C+Romania&rft.issn=1453-1305&rft.issue=1&rft.spage=73&rft.epage=78&rft.externalDocID=aesinfoec_v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73_78_htm |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1453-1305&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1453-1305&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1453-1305&client=summon |