The Use of Features Extracted from Noisy Samples for Image Restoration Purposes

An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense. In the following we restrict the development to the problem of feature extracting unsupervised neural networks derived on the base of the biol...

Full description

Saved in:
Bibliographic Details
Published inInformatica Economica Vol. XI; no. 1; pp. 73 - 78
Main Authors Panayiotis, VLAMOS, Luminita, STATE, Catalina, COCIANU
Format Journal Article
LanguageEnglish
Published Academy of Economic Studies - Bucharest, Romania 2007
Inforec Association
SeriesInformatica Economica
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense. In the following we restrict the development to the problem of feature extracting unsupervised neural networks derived on the base of the biologically motivated Hebbian self-organizing principle which is conjectured to govern the natural neural assemblies and the classical principal component analysis (PCA) method used by statisticians for almost a century for multivariate data analysis and feature extraction. The research work reported in the paper aims to propose a new image reconstruction method based on the features extracted from the noise given by the principal components of the noise covariance matrix.
AbstractList An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense. In the following we restrict the development to the problem of feature extracting unsupervised neural networks derived on the base of the biologically motivated Hebbian self-organizing principle which is conjectured to govern the natural neural assemblies and the classical principal component analysis (PCA) method used by statisticians for almost a century for multivariate data analysis and feature extraction. The research work reported in the paper aims to propose a new image reconstruction method based on the features extracted from the noise given by the principal components of the noise covariance matrix.
Author Catalina, COCIANU
Luminita, STATE
Panayiotis, VLAMOS
Author_xml – fullname: Panayiotis, VLAMOS
– fullname: Luminita, STATE
– fullname: Catalina, COCIANU
BackLink http://econpapers.repec.org/article/aesinfoec/v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73-78.htm$$DView record in RePEc
BookMark eNo9jd1uwjAMhauJSWOMd8gLVGqav-ZyQjCQ0Jg2uK6c1IFOlFRJmeDtl41pF8c-PrY-P2ajkz_hXTamFS_zqqiqUfJcsJyyQjxk0xhbU3CumFZUjrPN9oBkF5F4RxYIwzlgJPPLEMAO2BAXfEdefRuv5AO6_piWzgey6mCP5B3j4AMMrT-Rt3PofcT4lN07OEac_vVJtlvMt7Nlvt68rGbP67yhjHa5Bc4bqTSi5bKh0iKUwjkw1jJjWDKCCmUqq6XmrkzHpUVtAZAzYVCySba6cRsPn3Uf2g7CtfbQ1r-BD_sawtDaI9aqsrKRTJvGaM6U0MYVFq1gUlFtOCbW8sYK2KP9hwHG9uR8Sr5qBpc2lWtSWRQqtZ-RJvVJiqUn9WHo2DeuRnXV
ContentType Journal Article
DBID DKI
X2L
DOA
DatabaseName RePEc IDEAS
RePEc
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1842-8088
EndPage 78
ExternalDocumentID oai_doaj_org_article_78c6d639bdb943759bf0cec536719b4e
aesinfoec_v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73_78_htm
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
DKI
M~E
X2L
29I
2WC
5VS
7WY
8FL
AAKPC
ADBBV
BCNDV
C1A
E3Z
EBU
GROUPED_ABI_INFORM_COMPLETE
GROUPED_DOAJ
IPNFZ
K60
K6~
KQ8
RIG
TH9
TR2
ID FETCH-LOGICAL-d131m-ca44d679eec46d16cea25ffabcc3bb3fab5157b8c9694f244d2ce9caae435be63
IEDL.DBID DOA
ISSN 1453-1305
IngestDate Tue Oct 22 15:15:09 EDT 2024
Sat Dec 16 05:50:07 EST 2023
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d131m-ca44d679eec46d16cea25ffabcc3bb3fab5157b8c9694f244d2ce9caae435be63
OpenAccessLink https://doaj.org/article/78c6d639bdb943759bf0cec536719b4e
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_78c6d639bdb943759bf0cec536719b4e
repec_primary_aesinfoec_v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73_78_htm
PublicationCentury 2000
PublicationDate 2007
2007-01-01
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007
PublicationDecade 2000
PublicationSeriesTitle Informatica Economica
PublicationTitle Informatica Economica
PublicationYear 2007
Publisher Academy of Economic Studies - Bucharest, Romania
Inforec Association
Publisher_xml – name: Academy of Economic Studies - Bucharest, Romania
– name: Inforec Association
SSID ssib044739716
ssj0069863
Score 1.6611158
Snippet An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense....
SourceID doaj
repec
SourceType Open Website
Index Database
StartPage 73
SubjectTerms feature extraction
Generalized Hebbian Algorithm
image restoration
multiresolution support set
PCA
wavelet transform
Title The Use of Features Extracted from Noisy Samples for Image Restoration Purposes
URI http://econpapers.repec.org/article/aesinfoec/v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73-78.htm
https://doaj.org/article/78c6d639bdb943759bf0cec536719b4e
Volume XI
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TgMxELUQDTSIU9xyQbsijq91GVAQAXEIiJRu5WMsKHIomyBo-HbG3oDS0VCMd9eFZc3Mzjxb9htCzpxwLd72rmhZA7hAKUXhjJRFsF7wiCnIZ0vf3avrvrgZyMFSqa90JqyhB24Ud65LrwKmURecEVxL42LLg5dcaWacgBx9W2ZpMYWeJITmiRvpJyYrU-aaakxIXmDUlguGfkSkU5iAX0opV5tkY4EFaaeZwxZZgdE2Wfu5KlzvkAc0Iu3XQMeRJqw2x7Ux7X7MMsVyoOlqCL0fv9Wf9Nkmlt-aIgSlvSHGCPqUS8ZkvdNH1Oa4hnqX9K-6L5fXxaICQhEYZ8PCWyGC0gbACxWY8mDbMkbrvOfOcXxBOKJd6Y0yImKmDm0PxlsLiIIcKL5HVkfjEewTyjzGRBdBlCoKHZSNwZaMWcR_UkenDshF0kg1aUguqkQ7nTvQGNXCGNVfxjggnazP31Es1OlHwZ73ituPN2w-UdIGKT7SJ0OZoGiOo1evs-Hhf0zkiKw3m7Bpr-SYrM6mczhB9DBzp-got73T7C7Y3n11vwEFjsdT
link.rule.ids 315,783,787,2109,4016,4031
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Features+Extracted+from+Noisy+Samples+for+Image+Restoration+Purposes&rft.jtitle=Informatica+Economica&rft.au=Panayiotis%2C+VLAMOS&rft.au=Luminita%2C+STATE&rft.au=Catalina%2C+COCIANU&rft.series=Informatica+Economica&rft.date=2007&rft.pub=Academy+of+Economic+Studies+-+Bucharest%2C+Romania&rft.issn=1453-1305&rft.issue=1&rft.spage=73&rft.epage=78&rft.externalDocID=aesinfoec_v_3axi_3ay_3a2007_3ai_3a1_3ap_3a73_78_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1453-1305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1453-1305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1453-1305&client=summon