Improved runoff forecasting based on time-varying model averaging method and deep learning
In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA). Using this method, an integrated prediction model framework for runoff prediction was constructed. The framework determines the main variables...
Saved in:
Published in | PloS one Vol. 17; no. 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Public Library of Science (PLoS)
15.09.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA). Using this method, an integrated prediction model framework for runoff prediction was constructed. The framework determines the main variables suitable for runoff prediction through correlation analysis, and uses TV-DMA and deep learning algorithm to construct an integrated prediction model for runoff. The results demonstrate that the current monthly runoff, the runoff of the previous month, the current monthly temperature, the temperature of the previous month and the current monthly rainfall were the variables suitable for runoff prediction. The results of runoff prediction show that the TV-DMA model has the highest prediction accuracy (with 0.97 Nash-efficiency coefficient (NSE)) and low uncertainty. The interval band of uncertainty was 33.3%-65.5% lower than single model. And the prediction performance of the single model and TV-DMA model in flood season is obviously lower than that in non-flood season. In addition, this study indicate that the current monthly runoff, rainfall and temperature are the important factor affecting the runoff prediction, which should be paid special attention in the runoff prediction. |
---|---|
AbstractList | In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA). Using this method, an integrated prediction model framework for runoff prediction was constructed. The framework determines the main variables suitable for runoff prediction through correlation analysis, and uses TV-DMA and deep learning algorithm to construct an integrated prediction model for runoff. The results demonstrate that the current monthly runoff, the runoff of the previous month, the current monthly temperature, the temperature of the previous month and the current monthly rainfall were the variables suitable for runoff prediction. The results of runoff prediction show that the TV-DMA model has the highest prediction accuracy (with 0.97 Nash-efficiency coefficient (NSE)) and low uncertainty. The interval band of uncertainty was 33.3%-65.5% lower than single model. And the prediction performance of the single model and TV-DMA model in flood season is obviously lower than that in non-flood season. In addition, this study indicate that the current monthly runoff, rainfall and temperature are the important factor affecting the runoff prediction, which should be paid special attention in the runoff prediction. |
Author | Jinlou Ran Yuchen Song Yang Cui Kai Xiang |
Author_xml | – sequence: 1 fullname: Jinlou Ran – sequence: 2 fullname: Yang Cui – sequence: 3 fullname: Kai Xiang – sequence: 4 fullname: Yuchen Song |
BookMark | eNotjktLAzEcxIMo2Fa_gYd8ga3JZvM6SvFRKHjRi5clj3_qlt1kyW4Lfntj62WG-Q0Ms0TXMUVA6IGSNWWSPh7SMUfTr8eC16SWDSHNFVpQzepK1ITdouU0HQjhTAmxQF_bYczpBB7nY0wh4JAyODPNXdxja6ZSpIjnboDqZPLPHx2Shx6bE2SzP2eYv5PHJnrsAUbcg8mxFHfoJph-gvt_X6HPl-ePzVu1e3_dbp52laekphUo67kSTitLPQ9ccmUZpcwooYi0mtTEch24ZgBFOA8Nl8RCQ0CFEtgKbS-7PplDO-ZuKEfbZLr2DFLetybPneuhdVKpxgnruOKNEGVWKKet1ExZSxVjv9B9Y9s |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.1371/journal.pone.0274004 |
DatabaseName | DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1932-6203 |
ExternalDocumentID | oai_doaj_org_article_c7884c6bc58546659f68c9b7938bb183 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM |
ID | FETCH-LOGICAL-d1021-e8bd586c98b1d5f5758b3113a86807b9020b59f593ee59355f4570be40e8f5f43 |
IEDL.DBID | M48 |
IngestDate | Wed Aug 27 01:23:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d1021-e8bd586c98b1d5f5758b3113a86807b9020b59f593ee59355f4570be40e8f5f43 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0274004 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c7884c6bc58546659f68c9b7938bb183 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-15 |
PublicationDateYYYYMMDD | 2022-09-15 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | PloS one |
PublicationYear | 2022 |
Publisher | Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science (PLoS) |
SSID | ssj0053866 |
Score | 2.3983564 |
Snippet | In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA).... |
SourceID | doaj |
SourceType | Open Website |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxZEeYi3PDDA4DaJH7FHQFQVEkxUqlgiP85sadUHv7_nxEgwsbAlkZJI951930m-7yPk1hsPCoFlWF0NE5VQzESPV4BvVB48N2nA-fVNTWfiZS7nP6y-0pmwXh64D9zYY48mvHIeea1QSpqotDcO00o7h_mYdl-sed_NVL8H4ypWKg_K8bocZ1xGy0ULo9SIFYX4JdLfVZPJITnINJA-9L8fkj1oj8gwL7Q1vctq0PfH5KNv-yHQ1bZdxEiRZYK363RcmaYaFOiipckinn3ZVRpaop27DbWYpJ0FEe1doqltAw0AS5qdIj5PyGzy_P40ZdkQgYXkwM1AuyC18ka7MsiITEs7XpbcaqWL2hmkfg4DJA0HkEk4PQpZFw5EATriDT8lgxZDcEaoDFXA3kKWXEjBfW2jLbUXQjhZ2sqqc_KYotMse82LJqlQdw8QmyZj0_yFzcV_fOSS7Fdp5CDZNsgrMtistnCNRGDjbjrMd3sLsY0 priority: 102 providerName: Directory of Open Access Journals |
Title | Improved runoff forecasting based on time-varying model averaging method and deep learning |
URI | https://doaj.org/article/c7884c6bc58546659f68c9b7938bb183 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9jXryI8wM_Rw4e9NCxtkmaHERUNoYwTw6Gl5LPXaSb3SZ68W_3Jc0EQW9eSlt4LeTl5b1f2vf7IXShhbYMHJtAdhUJyQhLhNNwZsEi01bnwjc4jx_ZaEIepnTaQhvN1jiAy1-hndeTmtQvvffXjxsI-Oug2lCkG6PeYl7ZnodZgSB0C3JT4TUNxuT7uwJEN2Oxge4vyx_k_SHLDHfRTiwP8W3jzw5q2WoPdWIALvFlZIm-2kfPzXaANbheV3PnMFSfVsul_40Z-9xk8LzCXjo-eZO1b2bCQfUGS5i8QZoIN-rRWFYGG2sXOCpIzA7QZDh4uh8lUSghMV6ZO7FcGcqZFlylhjqowLjK0zSXnPF-oQSUhIoKR0VuLfWE6o7Qoq8s6Vvu4CI_RO0KhuAIYWoyA5iDpjmhJNeFdDLlmhCiaCozyY7RnR-dctFwYZSenTrcmNezMk72UgOuJpopDViEMAavZlwLBUsBVwrWkJP_eMgp2s58K4KXc6BnqL2q1_YcCoSV6gZg3Q2e98fPwRfj975e |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+runoff+forecasting+based+on+time-varying+model+averaging+method+and+deep+learning&rft.jtitle=PloS+one&rft.au=Jinlou+Ran&rft.au=Yang+Cui&rft.au=Kai+Xiang&rft.au=Yuchen+Song&rft.date=2022-09-15&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=17&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pone.0274004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7884c6bc58546659f68c9b7938bb183 |