Improved runoff forecasting based on time-varying model averaging method and deep learning

In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA). Using this method, an integrated prediction model framework for runoff prediction was constructed. The framework determines the main variables...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 9
Main Authors Jinlou Ran, Yang Cui, Kai Xiang, Yuchen Song
Format Journal Article
LanguageEnglish
Published Public Library of Science (PLoS) 15.09.2022
Online AccessGet full text

Cover

Loading…
Abstract In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA). Using this method, an integrated prediction model framework for runoff prediction was constructed. The framework determines the main variables suitable for runoff prediction through correlation analysis, and uses TV-DMA and deep learning algorithm to construct an integrated prediction model for runoff. The results demonstrate that the current monthly runoff, the runoff of the previous month, the current monthly temperature, the temperature of the previous month and the current monthly rainfall were the variables suitable for runoff prediction. The results of runoff prediction show that the TV-DMA model has the highest prediction accuracy (with 0.97 Nash-efficiency coefficient (NSE)) and low uncertainty. The interval band of uncertainty was 33.3%-65.5% lower than single model. And the prediction performance of the single model and TV-DMA model in flood season is obviously lower than that in non-flood season. In addition, this study indicate that the current monthly runoff, rainfall and temperature are the important factor affecting the runoff prediction, which should be paid special attention in the runoff prediction.
AbstractList In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA). Using this method, an integrated prediction model framework for runoff prediction was constructed. The framework determines the main variables suitable for runoff prediction through correlation analysis, and uses TV-DMA and deep learning algorithm to construct an integrated prediction model for runoff. The results demonstrate that the current monthly runoff, the runoff of the previous month, the current monthly temperature, the temperature of the previous month and the current monthly rainfall were the variables suitable for runoff prediction. The results of runoff prediction show that the TV-DMA model has the highest prediction accuracy (with 0.97 Nash-efficiency coefficient (NSE)) and low uncertainty. The interval band of uncertainty was 33.3%-65.5% lower than single model. And the prediction performance of the single model and TV-DMA model in flood season is obviously lower than that in non-flood season. In addition, this study indicate that the current monthly runoff, rainfall and temperature are the important factor affecting the runoff prediction, which should be paid special attention in the runoff prediction.
Author Jinlou Ran
Yuchen Song
Yang Cui
Kai Xiang
Author_xml – sequence: 1
  fullname: Jinlou Ran
– sequence: 2
  fullname: Yang Cui
– sequence: 3
  fullname: Kai Xiang
– sequence: 4
  fullname: Yuchen Song
BookMark eNotjktLAzEcxIMo2Fa_gYd8ga3JZvM6SvFRKHjRi5clj3_qlt1kyW4Lfntj62WG-Q0Ms0TXMUVA6IGSNWWSPh7SMUfTr8eC16SWDSHNFVpQzepK1ITdouU0HQjhTAmxQF_bYczpBB7nY0wh4JAyODPNXdxja6ZSpIjnboDqZPLPHx2Shx6bE2SzP2eYv5PHJnrsAUbcg8mxFHfoJph-gvt_X6HPl-ePzVu1e3_dbp52laekphUo67kSTitLPQ9ccmUZpcwooYi0mtTEch24ZgBFOA8Nl8RCQ0CFEtgKbS-7PplDO-ZuKEfbZLr2DFLetybPneuhdVKpxgnruOKNEGVWKKet1ExZSxVjv9B9Y9s
ContentType Journal Article
DBID DOA
DOI 10.1371/journal.pone.0274004
DatabaseName DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID oai_doaj_org_article_c7884c6bc58546659f68c9b7938bb183
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ID FETCH-LOGICAL-d1021-e8bd586c98b1d5f5758b3113a86807b9020b59f593ee59355f4570be40e8f5f43
IEDL.DBID M48
IngestDate Wed Aug 27 01:23:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1021-e8bd586c98b1d5f5758b3113a86807b9020b59f593ee59355f4570be40e8f5f43
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0274004
ParticipantIDs doaj_primary_oai_doaj_org_article_c7884c6bc58546659f68c9b7938bb183
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationTitle PloS one
PublicationYear 2022
Publisher Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science (PLoS)
SSID ssj0053866
Score 2.3983564
Snippet In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA)....
SourceID doaj
SourceType Open Website
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxZEeYi3PDDA4DaJH7FHQFQVEkxUqlgiP85sadUHv7_nxEgwsbAlkZJI951930m-7yPk1hsPCoFlWF0NE5VQzESPV4BvVB48N2nA-fVNTWfiZS7nP6y-0pmwXh64D9zYY48mvHIeea1QSpqotDcO00o7h_mYdl-sed_NVL8H4ypWKg_K8bocZ1xGy0ULo9SIFYX4JdLfVZPJITnINJA-9L8fkj1oj8gwL7Q1vctq0PfH5KNv-yHQ1bZdxEiRZYK363RcmaYaFOiipckinn3ZVRpaop27DbWYpJ0FEe1doqltAw0AS5qdIj5PyGzy_P40ZdkQgYXkwM1AuyC18ka7MsiITEs7XpbcaqWL2hmkfg4DJA0HkEk4PQpZFw5EATriDT8lgxZDcEaoDFXA3kKWXEjBfW2jLbUXQjhZ2sqqc_KYotMse82LJqlQdw8QmyZj0_yFzcV_fOSS7Fdp5CDZNsgrMtistnCNRGDjbjrMd3sLsY0
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved runoff forecasting based on time-varying model averaging method and deep learning
URI https://doaj.org/article/c7884c6bc58546659f68c9b7938bb183
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9jXryI8wM_Rw4e9NCxtkmaHERUNoYwTw6Gl5LPXaSb3SZ68W_3Jc0EQW9eSlt4LeTl5b1f2vf7IXShhbYMHJtAdhUJyQhLhNNwZsEi01bnwjc4jx_ZaEIepnTaQhvN1jiAy1-hndeTmtQvvffXjxsI-Oug2lCkG6PeYl7ZnodZgSB0C3JT4TUNxuT7uwJEN2Oxge4vyx_k_SHLDHfRTiwP8W3jzw5q2WoPdWIALvFlZIm-2kfPzXaANbheV3PnMFSfVsul_40Z-9xk8LzCXjo-eZO1b2bCQfUGS5i8QZoIN-rRWFYGG2sXOCpIzA7QZDh4uh8lUSghMV6ZO7FcGcqZFlylhjqowLjK0zSXnPF-oQSUhIoKR0VuLfWE6o7Qoq8s6Vvu4CI_RO0KhuAIYWoyA5iDpjmhJNeFdDLlmhCiaCozyY7RnR-dctFwYZSenTrcmNezMk72UgOuJpopDViEMAavZlwLBUsBVwrWkJP_eMgp2s58K4KXc6BnqL2q1_YcCoSV6gZg3Q2e98fPwRfj975e
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+runoff+forecasting+based+on+time-varying+model+averaging+method+and+deep+learning&rft.jtitle=PloS+one&rft.au=Jinlou+Ran&rft.au=Yang+Cui&rft.au=Kai+Xiang&rft.au=Yuchen+Song&rft.date=2022-09-15&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=17&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pone.0274004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7884c6bc58546659f68c9b7938bb183