SGAT: Shuffle and graph attention based Siamese networks for visual tracking

Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channe...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 11
Main Authors Jun Wang, Limin Zhang, Wenshuang Zhang, Yuanyun Wang, Chengzhi Deng
Format Journal Article
LanguageEnglish
Published Public Library of Science (PLoS) 23.11.2022
Online AccessGet full text

Cover

Loading…
Abstract Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance.
AbstractList Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance.
Author Wenshuang Zhang
Jun Wang
Limin Zhang
Yuanyun Wang
Chengzhi Deng
Author_xml – sequence: 1
  fullname: Jun Wang
– sequence: 2
  fullname: Limin Zhang
– sequence: 3
  fullname: Wenshuang Zhang
– sequence: 4
  fullname: Yuanyun Wang
– sequence: 5
  fullname: Chengzhi Deng
BookMark eNotzNFOwjAUgOHGaCKgb-BFX2DYntN1q3eEKJCQeAFeL6dbC4PRkm5ofHuJevUn38U_ZrchBsfYkxRTiYV8PsRLCtRNz1eeCigKodUNG0mDkGkQeM_GfX8QIsdS6xFbbxaz7Qvf7C_ed45TaPgu0XnPaRhcGNoYuKXeNXzT0sn1jgc3fMV07LmPiX-2_YU6PiSqj23YPbA7T13vHv87YR9vr9v5Mlu_L1bz2TprpACZGadMIxQ47QvIrdSqKLWXaItClyb3klBoRKotolXeidyIWgFqMCa3RuOErf6-TaRDdU7tidJ3FamtfiGmXUVpaOvOVTmARTAaGgCFVpYgJFxNobOKXIM_g4pdCA
ContentType Journal Article
DBID DOA
DOI 10.1371/journal.pone.0277064
DatabaseName Open Access Journals (DOAJ)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID oai_doaj_org_article_522b32962d2243b18201222b43eb4aed
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ID FETCH-LOGICAL-d1021-9e49d042e6f725b164786f13b776895f1a30633acb33b4fe0590c42362995b963
IEDL.DBID M48
IngestDate Wed Aug 27 01:27:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1021-9e49d042e6f725b164786f13b776895f1a30633acb33b4fe0590c42362995b963
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277064
ParticipantIDs doaj_primary_oai_doaj_org_article_522b32962d2243b18201222b43eb4aed
PublicationCentury 2000
PublicationDate 2022-11-23
PublicationDateYYYYMMDD 2022-11-23
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-23
  day: 23
PublicationDecade 2020
PublicationTitle PloS one
PublicationYear 2022
Publisher Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science (PLoS)
SSID ssj0053866
Score 2.4038393
Snippet Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between...
SourceID doaj
SourceType Open Website
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxbEp_iWBwYY3MY5x27YCqJUCFjaSt0iO7ZFJRSqfvD7OTtGgomFJUOGWPbT-b1z7p4JuULRoFAml8z0wTJRZDXT0tfMoTZX-PAQjy5eXuVoKp5mxezHVV-hJqy1B24Xrof6wEBeytwi2YAJfuMcOc0IcEZoZ8Pui5z3nUy1ezBGsZSpUQ4U7yVcuouPxnXDX8tMil8m_ZFNhrtkJ8lAOmiH3yNbrtkneynQVvQ6uUHfHJDn8eNgckvHbxvv3x3FxJ9Gk2kajDFjqSINTGTpeB4KXh1t2sLuFUU5Sj_nqw2Os17qOpyJH5Lp8GFyP2LpCgRmeSyecKK0GFdOepUXJph_9aXnYBSmCWXhuUbJD6BrA2CEd6GVtEaFJJFlCoPBdUQ6DU76mFApCmWVzLR2IGqntRA-M6XQtg8ZMuUJuQvrUS1al4sq-E7HF4hGldCo_kLj9D8-cka289BkwDnL4Zx01suNu0DqX5vLiPIXs5-qUg
  priority: 102
  providerName: Directory of Open Access Journals
Title SGAT: Shuffle and graph attention based Siamese networks for visual tracking
URI https://doaj.org/article/522b32962d2243b18201222b43eb4aed
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9zXryI8wM_Rw4e9NDRNmmyCiJTNoc4L9tgt5I0iQ5GN9tO9OLf7kvWCYLevOQQSEs-Hr_fS977PYTOgTRwoMmxJ9tEeTTyU08wk3oauDmHxhB3dTF4Yv0xfZhEkxpa12ytFrD41bWz9aTG-az1_vpxAwZ_7ao28GA9qLWYZ7pl3yQBZjfQJmATtzUNBvT7XQGsm7Eqge6vkT_E-x3K9HbQdkUPcWe1nw1U09kualQGWOCLSiX6cg89Du87oys8fFkaM9NYZAo78WlsBTNdCCO2CKXwcGoDYTXOVgHfBQaait-mxRL-U-YitXfl-2jc647u-l5VGsFTgQuq0DRWYG-aGR5G0oqCtZkJiOTgPsSRCQS4AoSIVBIiqdE2xTQF5sQAfSIJRneA6hlM-hBhRiOuOPOF0ISmWghKjS9jKlSb-ICgR-jWrkeyWKlfJFaP2nXM8-ekOt4JsDhJwpiFCigBkVYVPgDmISnRkgqtjv_jIydoK7TJB0HgheQU1ct8qc-AEpSy6Vzppttr2352vwDLBbdz
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SGAT%3A+Shuffle+and+graph+attention+based+Siamese+networks+for+visual+tracking&rft.jtitle=PloS+one&rft.au=Jun+Wang&rft.au=Limin+Zhang&rft.au=Wenshuang+Zhang&rft.au=Yuanyun+Wang&rft.date=2022-11-23&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0277064&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_522b32962d2243b18201222b43eb4aed