SGAT: Shuffle and graph attention based Siamese networks for visual tracking
Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channe...
Saved in:
Published in | PloS one Vol. 17; no. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Public Library of Science (PLoS)
23.11.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance. |
---|---|
AbstractList | Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance. |
Author | Wenshuang Zhang Jun Wang Limin Zhang Yuanyun Wang Chengzhi Deng |
Author_xml | – sequence: 1 fullname: Jun Wang – sequence: 2 fullname: Limin Zhang – sequence: 3 fullname: Wenshuang Zhang – sequence: 4 fullname: Yuanyun Wang – sequence: 5 fullname: Chengzhi Deng |
BookMark | eNotzNFOwjAUgOHGaCKgb-BFX2DYntN1q3eEKJCQeAFeL6dbC4PRkm5ofHuJevUn38U_ZrchBsfYkxRTiYV8PsRLCtRNz1eeCigKodUNG0mDkGkQeM_GfX8QIsdS6xFbbxaz7Qvf7C_ed45TaPgu0XnPaRhcGNoYuKXeNXzT0sn1jgc3fMV07LmPiX-2_YU6PiSqj23YPbA7T13vHv87YR9vr9v5Mlu_L1bz2TprpACZGadMIxQ47QvIrdSqKLWXaItClyb3klBoRKotolXeidyIWgFqMCa3RuOErf6-TaRDdU7tidJ3FamtfiGmXUVpaOvOVTmARTAaGgCFVpYgJFxNobOKXIM_g4pdCA |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.1371/journal.pone.0277064 |
DatabaseName | Open Access Journals (DOAJ) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1932-6203 |
ExternalDocumentID | oai_doaj_org_article_522b32962d2243b18201222b43eb4aed |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM |
ID | FETCH-LOGICAL-d1021-9e49d042e6f725b164786f13b776895f1a30633acb33b4fe0590c42362995b963 |
IEDL.DBID | M48 |
IngestDate | Wed Aug 27 01:27:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d1021-9e49d042e6f725b164786f13b776895f1a30633acb33b4fe0590c42362995b963 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277064 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_522b32962d2243b18201222b43eb4aed |
PublicationCentury | 2000 |
PublicationDate | 2022-11-23 |
PublicationDateYYYYMMDD | 2022-11-23 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | PloS one |
PublicationYear | 2022 |
Publisher | Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science (PLoS) |
SSID | ssj0053866 |
Score | 2.4038393 |
Snippet | Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between... |
SourceID | doaj |
SourceType | Open Website |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxbEp_iWBwYY3MY5x27YCqJUCFjaSt0iO7ZFJRSqfvD7OTtGgomFJUOGWPbT-b1z7p4JuULRoFAml8z0wTJRZDXT0tfMoTZX-PAQjy5eXuVoKp5mxezHVV-hJqy1B24Xrof6wEBeytwi2YAJfuMcOc0IcEZoZ8Pui5z3nUy1ezBGsZSpUQ4U7yVcuouPxnXDX8tMil8m_ZFNhrtkJ8lAOmiH3yNbrtkneynQVvQ6uUHfHJDn8eNgckvHbxvv3x3FxJ9Gk2kajDFjqSINTGTpeB4KXh1t2sLuFUU5Sj_nqw2Os17qOpyJH5Lp8GFyP2LpCgRmeSyecKK0GFdOepUXJph_9aXnYBSmCWXhuUbJD6BrA2CEd6GVtEaFJJFlCoPBdUQ6DU76mFApCmWVzLR2IGqntRA-M6XQtg8ZMuUJuQvrUS1al4sq-E7HF4hGldCo_kLj9D8-cka289BkwDnL4Zx01suNu0DqX5vLiPIXs5-qUg priority: 102 providerName: Directory of Open Access Journals |
Title | SGAT: Shuffle and graph attention based Siamese networks for visual tracking |
URI | https://doaj.org/article/522b32962d2243b18201222b43eb4aed |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9zXryI8wM_Rw4e9NDRNmmyCiJTNoc4L9tgt5I0iQ5GN9tO9OLf7kvWCYLevOQQSEs-Hr_fS977PYTOgTRwoMmxJ9tEeTTyU08wk3oauDmHxhB3dTF4Yv0xfZhEkxpa12ytFrD41bWz9aTG-az1_vpxAwZ_7ao28GA9qLWYZ7pl3yQBZjfQJmATtzUNBvT7XQGsm7Eqge6vkT_E-x3K9HbQdkUPcWe1nw1U09kualQGWOCLSiX6cg89Du87oys8fFkaM9NYZAo78WlsBTNdCCO2CKXwcGoDYTXOVgHfBQaait-mxRL-U-YitXfl-2jc647u-l5VGsFTgQuq0DRWYG-aGR5G0oqCtZkJiOTgPsSRCQS4AoSIVBIiqdE2xTQF5sQAfSIJRneA6hlM-hBhRiOuOPOF0ISmWghKjS9jKlSb-ICgR-jWrkeyWKlfJFaP2nXM8-ekOt4JsDhJwpiFCigBkVYVPgDmISnRkgqtjv_jIydoK7TJB0HgheQU1ct8qc-AEpSy6Vzppttr2352vwDLBbdz |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SGAT%3A+Shuffle+and+graph+attention+based+Siamese+networks+for+visual+tracking&rft.jtitle=PloS+one&rft.au=Jun+Wang&rft.au=Limin+Zhang&rft.au=Wenshuang+Zhang&rft.au=Yuanyun+Wang&rft.date=2022-11-23&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0277064&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_522b32962d2243b18201222b43eb4aed |