Genotypic variation in the response of soybean to elevated CO 2
The impact of elevated CO 2 (eCO 2 ) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins. This study aimed to understand the yield responses and nutritional impact under free‐air CO 2 enrichment (FACE) conditions of soybe...
Saved in:
Published in | Plant-environment interactions (Hoboken, N.J. : 2018) Vol. 2; no. 6; pp. 263 - 276 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The impact of elevated CO
2
(eCO
2
) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins. This study aimed to understand the yield responses and nutritional impact under free‐air CO
2
enrichment (FACE) conditions of soybean genotypes. Here we report that grain yield increased by 46.9% and no reduction in harvest index was observed among soybean genotypes. Elevated CO
2
improved the photosynthetic carbon assimilation rate, leaf area, plant height, and aboveground biomass at vegetative and pod filling stages. Besides the positive effects on yield parameters, eCO
2
differentially affected the overall grain quality. The levels of calcium (Ca), phosphorous (P), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), boron (B), and zinc (Zn) grain minerals decreased by 22.9, 9.0, 4.9, 10.1, 21.3, 28.1, 18.5, and 25.9% under eCO
2
conditions, respectively. Soluble sugars and starch increased by 9.1 and 16.0%, respectively, phytic acid accumulation increased by 8.1%, but grain protein content significantly decreased by 5.6% across soybean genotypes. Furthermore, the antioxidant activity decreased by 36.9%, but the total phenolic content was not affected by eCO
2
conditions. Genotypes, such as Winsconsin Black, Primorskaja, and L‐117, were considered the most responsive to eCO
2
in terms of yield enhancement and less affected in the nutritional quality. Our results confirm the existence of genetic variability in soybean responses to eCO
2
, and differences between genotypes in yield improvement and decreased sensitivity to eCO
2
in terms of grain quality loss could be included in future soybean selection to enable adaptation to climate change. |
---|---|
AbstractList | The impact of elevated CO
(eCO
) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins. This study aimed to understand the yield responses and nutritional impact under free-air CO
enrichment (FACE) conditions of soybean genotypes. Here we report that grain yield increased by 46.9% and no reduction in harvest index was observed among soybean genotypes. Elevated CO
improved the photosynthetic carbon assimilation rate, leaf area, plant height, and aboveground biomass at vegetative and pod filling stages. Besides the positive effects on yield parameters, eCO
differentially affected the overall grain quality. The levels of calcium (Ca), phosphorous (P), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), boron (B), and zinc (Zn) grain minerals decreased by 22.9, 9.0, 4.9, 10.1, 21.3, 28.1, 18.5, and 25.9% under eCO
conditions, respectively. Soluble sugars and starch increased by 9.1 and 16.0%, respectively, phytic acid accumulation increased by 8.1%, but grain protein content significantly decreased by 5.6% across soybean genotypes. Furthermore, the antioxidant activity decreased by 36.9%, but the total phenolic content was not affected by eCO
conditions. Genotypes, such as Winsconsin Black, Primorskaja, and L-117, were considered the most responsive to eCO
in terms of yield enhancement and less affected in the nutritional quality. Our results confirm the existence of genetic variability in soybean responses to eCO
, and differences between genotypes in yield improvement and decreased sensitivity to eCO
in terms of grain quality loss could be included in future soybean selection to enable adaptation to climate change. The impact of elevated CO 2 (eCO 2 ) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins. This study aimed to understand the yield responses and nutritional impact under free‐air CO 2 enrichment (FACE) conditions of soybean genotypes. Here we report that grain yield increased by 46.9% and no reduction in harvest index was observed among soybean genotypes. Elevated CO 2 improved the photosynthetic carbon assimilation rate, leaf area, plant height, and aboveground biomass at vegetative and pod filling stages. Besides the positive effects on yield parameters, eCO 2 differentially affected the overall grain quality. The levels of calcium (Ca), phosphorous (P), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), boron (B), and zinc (Zn) grain minerals decreased by 22.9, 9.0, 4.9, 10.1, 21.3, 28.1, 18.5, and 25.9% under eCO 2 conditions, respectively. Soluble sugars and starch increased by 9.1 and 16.0%, respectively, phytic acid accumulation increased by 8.1%, but grain protein content significantly decreased by 5.6% across soybean genotypes. Furthermore, the antioxidant activity decreased by 36.9%, but the total phenolic content was not affected by eCO 2 conditions. Genotypes, such as Winsconsin Black, Primorskaja, and L‐117, were considered the most responsive to eCO 2 in terms of yield enhancement and less affected in the nutritional quality. Our results confirm the existence of genetic variability in soybean responses to eCO 2 , and differences between genotypes in yield improvement and decreased sensitivity to eCO 2 in terms of grain quality loss could be included in future soybean selection to enable adaptation to climate change. |
Author | Muller, Onno Zimmermann, Lars Zendonadi dos Santos, Nicolas Vasconcelos, Marta W. Pintado, Manuela Soares, José C. |
Author_xml | – sequence: 1 givenname: José C. orcidid: 0000-0002-7241-8719 surname: Soares fullname: Soares, José C. organization: CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado Escola Superior de Biotecnologia Universidade Católica Portuguesa Porto Portugal – sequence: 2 givenname: Lars surname: Zimmermann fullname: Zimmermann, Lars organization: Field Lab Campus Klein Altendorf University of Bonn Rheinbach Germany – sequence: 3 givenname: Nicolas orcidid: 0000-0002-3365-6060 surname: Zendonadi dos Santos fullname: Zendonadi dos Santos, Nicolas organization: Institute for Bio‐ and Geosciences IBG‐2: Plant Sciences Forschungszentrum Jülich GmbH Jülich Germany – sequence: 4 givenname: Onno orcidid: 0000-0002-0473-5632 surname: Muller fullname: Muller, Onno organization: Institute for Bio‐ and Geosciences IBG‐2: Plant Sciences Forschungszentrum Jülich GmbH Jülich Germany – sequence: 5 givenname: Manuela orcidid: 0000-0002-0760-3184 surname: Pintado fullname: Pintado, Manuela organization: CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado Escola Superior de Biotecnologia Universidade Católica Portuguesa Porto Portugal – sequence: 6 givenname: Marta W. orcidid: 0000-0002-5110-7006 surname: Vasconcelos fullname: Vasconcelos, Marta W. organization: CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado Escola Superior de Biotecnologia Universidade Católica Portuguesa Porto Portugal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37284177$$D View this record in MEDLINE/PubMed |
BookMark | eNptUE1LAzEUDFKxtfbiD5CchdUk-5HkJLJoFQq99B6y2ReMbDdLshb237vbWhDx9IZhZngz12jW-hYQuqXkgRLCHjtw6YSK_AItWM7zpGBFPvuF52gV4ycZxZRTkpErNE85ExnlfIGe1tD6fuicwQcdnO6db7Frcf8BOEDsfBsBe4ujHyrQI-8xNHDQPdS43GJ2gy6tbiKsfu4S7V5fduVbstmu38vnTWKk5IkGWhmiBWOG1NZwa7StK2ErJkxGGbFMgxUyk-O_TEhZjFyeCgApDWRg0iW6O8V2X9UeatUFt9dhUOcio4CcBCb4GANYZVx_bNMH7RpFiZrmUtNc6jjXaLn_Yzmn_iP-BolRago |
CitedBy_id | crossref_primary_10_1002_pca_3473 crossref_primary_10_1007_s11104_024_07074_y crossref_primary_10_2480_agrmet_D_23_00009 crossref_primary_10_3389_fpls_2023_1087712 crossref_primary_10_3389_fnut_2024_1444962 crossref_primary_10_1093_jxb_erad496 crossref_primary_10_3390_agriculture14071045 crossref_primary_10_1111_gcb_17170 crossref_primary_10_1007_s11104_023_06143_y crossref_primary_10_1016_j_scitotenv_2025_178415 crossref_primary_10_3389_fpls_2023_1304751 crossref_primary_10_1016_j_plaphy_2024_108802 crossref_primary_10_13005_bpj_2898 crossref_primary_10_1111_gcb_16562 |
Cites_doi | 10.1111/pce.12443 10.1016/j.ab.2004.12.001 10.1016/j.agrformet.2015.12.061 10.1177/15648265100312S206 10.1007/s11104-018-3603-z 10.1016/j.heliyon.2020.e03682 10.1016/j.plantsci.2014.01.002 10.1111/j.1365-3040.2011.02427.x 10.2135/cropsci1971.0011183X001100060051x 10.1034/j.1399-3054.2000.108001061.x 10.1007/s11120-014-0056-y 10.3389/fpls.2018.00924 10.1016/j.envexpbot.2018.10.028 10.1111/j.1469-8137.2004.01224.x 10.1016/j.agee.2004.01.018 10.1016/j.plantsci.2014.06.013 10.1016/j.eja.2017.05.003 10.1007/978-1-4614-0634-1_16 10.1016/j.agee.2014.04.002 10.1111/tpj.14166 10.1016/j.cpb.2020.100149 10.3389/fpls.2018.01413 10.2135/cropsci2007.03.0122 10.1016/S0378-4290(97)00050-6 10.2135/cropsci2001.41178x 10.1038/nature13179 10.1016/j.foodres.2017.09.026 10.1071/CP18421 10.2135/cropsci2001.412385x 10.1093/treephys/24.10.1129 10.3390/antiox8120609 10.1016/j.pld.2019.09.004 10.1016/j.plaphy.2017.12.010 10.7554/eLife.02245 10.1016/j.ecoenv.2013.12.021 10.3389/fpls.2019.01482 10.1016/j.jcs.2013.12.002 10.1007/s11104-019-04229-0 10.1016/j.plantsci.2018.12.021 10.1038/sdata.2015.36 10.1021/jf8020199 10.1016/j.plantsci.2014.11.001 10.1046/j.1365-2486.2002.00498.x 10.1016/j.fcr.2015.11.010 10.1109/IGARSS.2018.8517301 10.3389/fpls.2016.01967 10.3390/plants8110465 10.1093/jxb/erp096 10.1023/A:1004790612630 10.1016/j.jcs.2013.10.013 10.1111/j.1365-3040.2011.02378.x 10.1080/10942912.2017.1280678 10.1016/j.jcs.2008.01.006 10.1016/j.pbi.2016.03.006 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Plant‐Environment Interactions published by New Phytologist Foundation and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2021 The Authors. Plant‐Environment Interactions published by New Phytologist Foundation and John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM |
DOI | 10.1002/pei3.10065 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2575-6265 |
EndPage | 276 |
ExternalDocumentID | 37284177 10_1002_pei3_10065 |
Genre | Journal Article |
GroupedDBID | 0R~ 1OC 24P AAHHS AAYXX ACCFJ ACCMX ACXQS ADKYN ADZMN AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BHPHI CCPQU CITATION EBS EDH GROUPED_DOAJ HCIFZ IAO IEP IGS ITC M~E OK1 PATMY PHGZM PHGZT PIMPY PYCSY RPM NPM WIN |
ID | FETCH-LOGICAL-c997-ae1bc0a822c0dfc7fcafdb8fb28c4120f2aef894962628996120538ee99ce4ec3 |
ISSN | 2575-6265 |
IngestDate | Wed Feb 19 02:02:37 EST 2025 Tue Jul 01 02:51:06 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | soybean minerals genetic variation grain quality elevated CO2 photosynthesis |
Language | English |
License | 2021 The Authors. Plant‐Environment Interactions published by New Phytologist Foundation and John Wiley & Sons Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c997-ae1bc0a822c0dfc7fcafdb8fb28c4120f2aef894962628996120538ee99ce4ec3 |
ORCID | 0000-0002-0760-3184 0000-0002-7241-8719 0000-0002-3365-6060 0000-0002-0473-5632 0000-0002-5110-7006 |
PMID | 37284177 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_37284177 crossref_citationtrail_10_1002_pei3_10065 crossref_primary_10_1002_pei3_10065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-00 2021-Dec |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Plant-environment interactions (Hoboken, N.J. : 2018) |
PublicationTitleAlternate | Plant Environ Interact |
PublicationYear | 2021 |
References | e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 Kumagai E. (e_1_2_9_33_1) 2015; 169 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Weaver C. M. (e_1_2_9_55_1) 2002; 2002 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_9_1 doi: 10.1111/pce.12443 – ident: e_1_2_9_40_1 doi: 10.1016/j.ab.2004.12.001 – ident: e_1_2_9_27_1 doi: 10.1016/j.agrformet.2015.12.061 – ident: e_1_2_9_20_1 doi: 10.1177/15648265100312S206 – ident: e_1_2_9_7_1 doi: 10.1007/s11104-018-3603-z – ident: e_1_2_9_34_1 doi: 10.1016/j.heliyon.2020.e03682 – ident: e_1_2_9_12_1 doi: 10.1016/j.plantsci.2014.01.002 – ident: e_1_2_9_22_1 doi: 10.1111/j.1365-3040.2011.02427.x – ident: e_1_2_9_17_1 doi: 10.2135/cropsci1971.0011183X001100060051x – ident: e_1_2_9_47_1 doi: 10.1034/j.1399-3054.2000.108001061.x – ident: e_1_2_9_10_1 doi: 10.1007/s11120-014-0056-y – ident: e_1_2_9_16_1 doi: 10.3389/fpls.2018.00924 – ident: e_1_2_9_37_1 doi: 10.1016/j.envexpbot.2018.10.028 – ident: e_1_2_9_4_1 doi: 10.1111/j.1469-8137.2004.01224.x – ident: e_1_2_9_56_1 doi: 10.1016/j.agee.2004.01.018 – ident: e_1_2_9_49_1 doi: 10.1016/j.plantsci.2014.06.013 – ident: e_1_2_9_11_1 doi: 10.1016/j.eja.2017.05.003 – ident: e_1_2_9_25_1 doi: 10.1007/978-1-4614-0634-1_16 – ident: e_1_2_9_26_1 doi: 10.1016/j.agee.2014.04.002 – ident: e_1_2_9_32_1 doi: 10.1111/tpj.14166 – ident: e_1_2_9_44_1 doi: 10.1016/j.cpb.2020.100149 – ident: e_1_2_9_38_1 doi: 10.3389/fpls.2018.01413 – ident: e_1_2_9_19_1 doi: 10.2135/cropsci2007.03.0122 – volume: 169 start-page: 2021 year: 2015 ident: e_1_2_9_33_1 article-title: Phenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 Concentration publication-title: Plant Physiology – volume: 2002 start-page: 211 year: 2002 ident: e_1_2_9_55_1 article-title: Phytate and mineral bioavailability publication-title: Food Phytates – ident: e_1_2_9_6_1 – ident: e_1_2_9_54_1 doi: 10.1016/S0378-4290(97)00050-6 – ident: e_1_2_9_41_1 doi: 10.2135/cropsci2001.41178x – ident: e_1_2_9_43_1 doi: 10.1038/nature13179 – ident: e_1_2_9_50_1 doi: 10.1016/j.foodres.2017.09.026 – ident: e_1_2_9_45_1 doi: 10.1071/CP18421 – ident: e_1_2_9_59_1 doi: 10.2135/cropsci2001.412385x – ident: e_1_2_9_14_1 doi: 10.1093/treephys/24.10.1129 – ident: e_1_2_9_48_1 doi: 10.3390/antiox8120609 – ident: e_1_2_9_57_1 doi: 10.1016/j.pld.2019.09.004 – ident: e_1_2_9_46_1 doi: 10.1016/j.plaphy.2017.12.010 – ident: e_1_2_9_39_1 doi: 10.7554/eLife.02245 – ident: e_1_2_9_35_1 doi: 10.1016/j.ecoenv.2013.12.021 – ident: e_1_2_9_30_1 doi: 10.3389/fpls.2019.01482 – ident: e_1_2_9_18_1 doi: 10.1016/j.jcs.2013.12.002 – ident: e_1_2_9_53_1 doi: 10.1007/s11104-019-04229-0 – ident: e_1_2_9_8_1 doi: 10.1016/j.plantsci.2018.12.021 – ident: e_1_2_9_15_1 doi: 10.1038/sdata.2015.36 – ident: e_1_2_9_23_1 doi: 10.1021/jf8020199 – ident: e_1_2_9_2_1 doi: 10.1016/j.plantsci.2014.11.001 – ident: e_1_2_9_3_1 doi: 10.1046/j.1365-2486.2002.00498.x – ident: e_1_2_9_13_1 doi: 10.1016/j.fcr.2015.11.010 – ident: e_1_2_9_42_1 doi: 10.1109/IGARSS.2018.8517301 – ident: e_1_2_9_51_1 doi: 10.3389/fpls.2016.01967 – ident: e_1_2_9_52_1 doi: 10.3390/plants8110465 – ident: e_1_2_9_36_1 doi: 10.1093/jxb/erp096 – ident: e_1_2_9_21_1 doi: 10.1023/A:1004790612630 – ident: e_1_2_9_24_1 doi: 10.1016/j.jcs.2013.10.013 – ident: e_1_2_9_5_1 doi: 10.1111/j.1365-3040.2011.02378.x – ident: e_1_2_9_58_1 doi: 10.1080/10942912.2017.1280678 – ident: e_1_2_9_28_1 doi: 10.1016/j.jcs.2008.01.006 – ident: e_1_2_9_29_1 – ident: e_1_2_9_31_1 doi: 10.1016/j.pbi.2016.03.006 |
SSID | ssj0002171040 |
Score | 2.1660774 |
Snippet | The impact of elevated CO
2
(eCO
2
) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable... The impact of elevated CO (eCO ) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins.... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 263 |
Title | Genotypic variation in the response of soybean to elevated CO 2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37284177 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_rKXIv4rfnxxHQF1l67qbpXvokuqjLoe7DrXDcy5KkEyh6zbLbE9e_3knSjyyeoEIppU1bmPkx-c0kM0PICyZAmFylCXCtnYOiEsWzLJFokLmYAIDfRPPp82T2hZ-cZWeDwY9o19JlrY70zyvzSv5Hq3gP9eqyZP9Bs91H8QZeo37xjBrG81_p-ANUtt6uSj38ji6vjPctrsPeVx8R2NitcgF3pJkum1w6kjmdD1lMTF3zojqJ0t58IYl1SHvwkdmZVfYrNOlZJ0c-loDzuohiCafWZTM1CwthCb6Pwp6XLkZ-0TRl_ij7ZaRzcC1FZFEind8MT11b402HUrnpMdGmLc6rysbhCjaOtn6AN2toI7IE3agstsEsgtqOPQ3W7zc7H-rGrqBM3XX4VqTw1YXXeHqMk--4aROzW1W7fXSNXGfoYKRRnMfN4eiooZ866urZslf9v_bJzfbtHTKz45Z4erK4TW41fgV9E0ByhwyguktuvLXI_bf3yOsOKbRDCi0rikihLVKoNbRBCq0tbZFCp3PK7pPF-3eL6SxpWmck2pXXlTBWeiSR_OlRYfSx0dIUShjFhOZjNjJMghE5z1EPzuNGmovGWADkuQYOOn1A9ipbwSNC0wIMM0VuuMZDiRzFVUyE5DmyGiXSA_KyFcFSN2XlXXeTb8tQEJstneSWXnIH5Hk3dhWKqVw56mGQZDemFffjPz55QvZ7sD0le_X6Ep4hW6zVoY-yHHr1_gI_o2mS |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genotypic+variation+in+the+response+of+soybean+to+elevated+CO+2&rft.jtitle=Plant-environment+interactions+%28Hoboken%2C+N.J.+%3A+2018%29&rft.au=Soares%2C+Jos%C3%A9+C&rft.au=Zimmermann%2C+Lars&rft.au=Zendonadi+Dos+Santos%2C+Nicolas&rft.au=Muller%2C+Onno&rft.date=2021-12-01&rft.eissn=2575-6265&rft.volume=2&rft.issue=6&rft.spage=263&rft_id=info:doi/10.1002%2Fpei3.10065&rft_id=info%3Apmid%2F37284177&rft.externalDocID=37284177 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-6265&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-6265&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-6265&client=summon |