Genotypic variation in the response of soybean to elevated CO 2

The impact of elevated CO 2 (eCO 2 ) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins. This study aimed to understand the yield responses and nutritional impact under free‐air CO 2 enrichment (FACE) conditions of soybe...

Full description

Saved in:
Bibliographic Details
Published inPlant-environment interactions (Hoboken, N.J. : 2018) Vol. 2; no. 6; pp. 263 - 276
Main Authors Soares, José C., Zimmermann, Lars, Zendonadi dos Santos, Nicolas, Muller, Onno, Pintado, Manuela, Vasconcelos, Marta W.
Format Journal Article
LanguageEnglish
Published United States 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The impact of elevated CO 2 (eCO 2 ) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins. This study aimed to understand the yield responses and nutritional impact under free‐air CO 2 enrichment (FACE) conditions of soybean genotypes. Here we report that grain yield increased by 46.9% and no reduction in harvest index was observed among soybean genotypes. Elevated CO 2 improved the photosynthetic carbon assimilation rate, leaf area, plant height, and aboveground biomass at vegetative and pod filling stages. Besides the positive effects on yield parameters, eCO 2 differentially affected the overall grain quality. The levels of calcium (Ca), phosphorous (P), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), boron (B), and zinc (Zn) grain minerals decreased by 22.9, 9.0, 4.9, 10.1, 21.3, 28.1, 18.5, and 25.9% under eCO 2 conditions, respectively. Soluble sugars and starch increased by 9.1 and 16.0%, respectively, phytic acid accumulation increased by 8.1%, but grain protein content significantly decreased by 5.6% across soybean genotypes. Furthermore, the antioxidant activity decreased by 36.9%, but the total phenolic content was not affected by eCO 2 conditions. Genotypes, such as Winsconsin Black, Primorskaja, and L‐117, were considered the most responsive to eCO 2 in terms of yield enhancement and less affected in the nutritional quality. Our results confirm the existence of genetic variability in soybean responses to eCO 2 , and differences between genotypes in yield improvement and decreased sensitivity to eCO 2 in terms of grain quality loss could be included in future soybean selection to enable adaptation to climate change.
AbstractList The impact of elevated CO (eCO ) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins. This study aimed to understand the yield responses and nutritional impact under free-air CO enrichment (FACE) conditions of soybean genotypes. Here we report that grain yield increased by 46.9% and no reduction in harvest index was observed among soybean genotypes. Elevated CO improved the photosynthetic carbon assimilation rate, leaf area, plant height, and aboveground biomass at vegetative and pod filling stages. Besides the positive effects on yield parameters, eCO differentially affected the overall grain quality. The levels of calcium (Ca), phosphorous (P), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), boron (B), and zinc (Zn) grain minerals decreased by 22.9, 9.0, 4.9, 10.1, 21.3, 28.1, 18.5, and 25.9% under eCO conditions, respectively. Soluble sugars and starch increased by 9.1 and 16.0%, respectively, phytic acid accumulation increased by 8.1%, but grain protein content significantly decreased by 5.6% across soybean genotypes. Furthermore, the antioxidant activity decreased by 36.9%, but the total phenolic content was not affected by eCO conditions. Genotypes, such as Winsconsin Black, Primorskaja, and L-117, were considered the most responsive to eCO in terms of yield enhancement and less affected in the nutritional quality. Our results confirm the existence of genetic variability in soybean responses to eCO , and differences between genotypes in yield improvement and decreased sensitivity to eCO in terms of grain quality loss could be included in future soybean selection to enable adaptation to climate change.
The impact of elevated CO 2 (eCO 2 ) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins. This study aimed to understand the yield responses and nutritional impact under free‐air CO 2 enrichment (FACE) conditions of soybean genotypes. Here we report that grain yield increased by 46.9% and no reduction in harvest index was observed among soybean genotypes. Elevated CO 2 improved the photosynthetic carbon assimilation rate, leaf area, plant height, and aboveground biomass at vegetative and pod filling stages. Besides the positive effects on yield parameters, eCO 2 differentially affected the overall grain quality. The levels of calcium (Ca), phosphorous (P), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), boron (B), and zinc (Zn) grain minerals decreased by 22.9, 9.0, 4.9, 10.1, 21.3, 28.1, 18.5, and 25.9% under eCO 2 conditions, respectively. Soluble sugars and starch increased by 9.1 and 16.0%, respectively, phytic acid accumulation increased by 8.1%, but grain protein content significantly decreased by 5.6% across soybean genotypes. Furthermore, the antioxidant activity decreased by 36.9%, but the total phenolic content was not affected by eCO 2 conditions. Genotypes, such as Winsconsin Black, Primorskaja, and L‐117, were considered the most responsive to eCO 2 in terms of yield enhancement and less affected in the nutritional quality. Our results confirm the existence of genetic variability in soybean responses to eCO 2 , and differences between genotypes in yield improvement and decreased sensitivity to eCO 2 in terms of grain quality loss could be included in future soybean selection to enable adaptation to climate change.
Author Muller, Onno
Zimmermann, Lars
Zendonadi dos Santos, Nicolas
Vasconcelos, Marta W.
Pintado, Manuela
Soares, José C.
Author_xml – sequence: 1
  givenname: José C.
  orcidid: 0000-0002-7241-8719
  surname: Soares
  fullname: Soares, José C.
  organization: CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado Escola Superior de Biotecnologia Universidade Católica Portuguesa Porto Portugal
– sequence: 2
  givenname: Lars
  surname: Zimmermann
  fullname: Zimmermann, Lars
  organization: Field Lab Campus Klein Altendorf University of Bonn Rheinbach Germany
– sequence: 3
  givenname: Nicolas
  orcidid: 0000-0002-3365-6060
  surname: Zendonadi dos Santos
  fullname: Zendonadi dos Santos, Nicolas
  organization: Institute for Bio‐ and Geosciences IBG‐2: Plant Sciences Forschungszentrum Jülich GmbH Jülich Germany
– sequence: 4
  givenname: Onno
  orcidid: 0000-0002-0473-5632
  surname: Muller
  fullname: Muller, Onno
  organization: Institute for Bio‐ and Geosciences IBG‐2: Plant Sciences Forschungszentrum Jülich GmbH Jülich Germany
– sequence: 5
  givenname: Manuela
  orcidid: 0000-0002-0760-3184
  surname: Pintado
  fullname: Pintado, Manuela
  organization: CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado Escola Superior de Biotecnologia Universidade Católica Portuguesa Porto Portugal
– sequence: 6
  givenname: Marta W.
  orcidid: 0000-0002-5110-7006
  surname: Vasconcelos
  fullname: Vasconcelos, Marta W.
  organization: CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado Escola Superior de Biotecnologia Universidade Católica Portuguesa Porto Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37284177$$D View this record in MEDLINE/PubMed
BookMark eNptUE1LAzEUDFKxtfbiD5CchdUk-5HkJLJoFQq99B6y2ReMbDdLshb237vbWhDx9IZhZngz12jW-hYQuqXkgRLCHjtw6YSK_AItWM7zpGBFPvuF52gV4ycZxZRTkpErNE85ExnlfIGe1tD6fuicwQcdnO6db7Frcf8BOEDsfBsBe4ujHyrQI-8xNHDQPdS43GJ2gy6tbiKsfu4S7V5fduVbstmu38vnTWKk5IkGWhmiBWOG1NZwa7StK2ErJkxGGbFMgxUyk-O_TEhZjFyeCgApDWRg0iW6O8V2X9UeatUFt9dhUOcio4CcBCb4GANYZVx_bNMH7RpFiZrmUtNc6jjXaLn_Yzmn_iP-BolRago
CitedBy_id crossref_primary_10_1002_pca_3473
crossref_primary_10_1007_s11104_024_07074_y
crossref_primary_10_2480_agrmet_D_23_00009
crossref_primary_10_3389_fpls_2023_1087712
crossref_primary_10_3389_fnut_2024_1444962
crossref_primary_10_1093_jxb_erad496
crossref_primary_10_3390_agriculture14071045
crossref_primary_10_1111_gcb_17170
crossref_primary_10_1007_s11104_023_06143_y
crossref_primary_10_1016_j_scitotenv_2025_178415
crossref_primary_10_3389_fpls_2023_1304751
crossref_primary_10_1016_j_plaphy_2024_108802
crossref_primary_10_13005_bpj_2898
crossref_primary_10_1111_gcb_16562
Cites_doi 10.1111/pce.12443
10.1016/j.ab.2004.12.001
10.1016/j.agrformet.2015.12.061
10.1177/15648265100312S206
10.1007/s11104-018-3603-z
10.1016/j.heliyon.2020.e03682
10.1016/j.plantsci.2014.01.002
10.1111/j.1365-3040.2011.02427.x
10.2135/cropsci1971.0011183X001100060051x
10.1034/j.1399-3054.2000.108001061.x
10.1007/s11120-014-0056-y
10.3389/fpls.2018.00924
10.1016/j.envexpbot.2018.10.028
10.1111/j.1469-8137.2004.01224.x
10.1016/j.agee.2004.01.018
10.1016/j.plantsci.2014.06.013
10.1016/j.eja.2017.05.003
10.1007/978-1-4614-0634-1_16
10.1016/j.agee.2014.04.002
10.1111/tpj.14166
10.1016/j.cpb.2020.100149
10.3389/fpls.2018.01413
10.2135/cropsci2007.03.0122
10.1016/S0378-4290(97)00050-6
10.2135/cropsci2001.41178x
10.1038/nature13179
10.1016/j.foodres.2017.09.026
10.1071/CP18421
10.2135/cropsci2001.412385x
10.1093/treephys/24.10.1129
10.3390/antiox8120609
10.1016/j.pld.2019.09.004
10.1016/j.plaphy.2017.12.010
10.7554/eLife.02245
10.1016/j.ecoenv.2013.12.021
10.3389/fpls.2019.01482
10.1016/j.jcs.2013.12.002
10.1007/s11104-019-04229-0
10.1016/j.plantsci.2018.12.021
10.1038/sdata.2015.36
10.1021/jf8020199
10.1016/j.plantsci.2014.11.001
10.1046/j.1365-2486.2002.00498.x
10.1016/j.fcr.2015.11.010
10.1109/IGARSS.2018.8517301
10.3389/fpls.2016.01967
10.3390/plants8110465
10.1093/jxb/erp096
10.1023/A:1004790612630
10.1016/j.jcs.2013.10.013
10.1111/j.1365-3040.2011.02378.x
10.1080/10942912.2017.1280678
10.1016/j.jcs.2008.01.006
10.1016/j.pbi.2016.03.006
ContentType Journal Article
Copyright 2021 The Authors. Plant‐Environment Interactions published by New Phytologist Foundation and John Wiley & Sons Ltd.
Copyright_xml – notice: 2021 The Authors. Plant‐Environment Interactions published by New Phytologist Foundation and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
NPM
DOI 10.1002/pei3.10065
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2575-6265
EndPage 276
ExternalDocumentID 37284177
10_1002_pei3_10065
Genre Journal Article
GroupedDBID 0R~
1OC
24P
AAHHS
AAYXX
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BHPHI
CCPQU
CITATION
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
IEP
IGS
ITC
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PYCSY
RPM
NPM
WIN
ID FETCH-LOGICAL-c997-ae1bc0a822c0dfc7fcafdb8fb28c4120f2aef894962628996120538ee99ce4ec3
ISSN 2575-6265
IngestDate Wed Feb 19 02:02:37 EST 2025
Tue Jul 01 02:51:06 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords soybean
minerals
genetic variation
grain quality
elevated CO2
photosynthesis
Language English
License 2021 The Authors. Plant‐Environment Interactions published by New Phytologist Foundation and John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c997-ae1bc0a822c0dfc7fcafdb8fb28c4120f2aef894962628996120538ee99ce4ec3
ORCID 0000-0002-0760-3184
0000-0002-7241-8719
0000-0002-3365-6060
0000-0002-0473-5632
0000-0002-5110-7006
PMID 37284177
PageCount 14
ParticipantIDs pubmed_primary_37284177
crossref_citationtrail_10_1002_pei3_10065
crossref_primary_10_1002_pei3_10065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-00
2021-Dec
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plant-environment interactions (Hoboken, N.J. : 2018)
PublicationTitleAlternate Plant Environ Interact
PublicationYear 2021
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
Kumagai E. (e_1_2_9_33_1) 2015; 169
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Weaver C. M. (e_1_2_9_55_1) 2002; 2002
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_9_1
  doi: 10.1111/pce.12443
– ident: e_1_2_9_40_1
  doi: 10.1016/j.ab.2004.12.001
– ident: e_1_2_9_27_1
  doi: 10.1016/j.agrformet.2015.12.061
– ident: e_1_2_9_20_1
  doi: 10.1177/15648265100312S206
– ident: e_1_2_9_7_1
  doi: 10.1007/s11104-018-3603-z
– ident: e_1_2_9_34_1
  doi: 10.1016/j.heliyon.2020.e03682
– ident: e_1_2_9_12_1
  doi: 10.1016/j.plantsci.2014.01.002
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-3040.2011.02427.x
– ident: e_1_2_9_17_1
  doi: 10.2135/cropsci1971.0011183X001100060051x
– ident: e_1_2_9_47_1
  doi: 10.1034/j.1399-3054.2000.108001061.x
– ident: e_1_2_9_10_1
  doi: 10.1007/s11120-014-0056-y
– ident: e_1_2_9_16_1
  doi: 10.3389/fpls.2018.00924
– ident: e_1_2_9_37_1
  doi: 10.1016/j.envexpbot.2018.10.028
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1469-8137.2004.01224.x
– ident: e_1_2_9_56_1
  doi: 10.1016/j.agee.2004.01.018
– ident: e_1_2_9_49_1
  doi: 10.1016/j.plantsci.2014.06.013
– ident: e_1_2_9_11_1
  doi: 10.1016/j.eja.2017.05.003
– ident: e_1_2_9_25_1
  doi: 10.1007/978-1-4614-0634-1_16
– ident: e_1_2_9_26_1
  doi: 10.1016/j.agee.2014.04.002
– ident: e_1_2_9_32_1
  doi: 10.1111/tpj.14166
– ident: e_1_2_9_44_1
  doi: 10.1016/j.cpb.2020.100149
– ident: e_1_2_9_38_1
  doi: 10.3389/fpls.2018.01413
– ident: e_1_2_9_19_1
  doi: 10.2135/cropsci2007.03.0122
– volume: 169
  start-page: 2021
  year: 2015
  ident: e_1_2_9_33_1
  article-title: Phenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 Concentration
  publication-title: Plant Physiology
– volume: 2002
  start-page: 211
  year: 2002
  ident: e_1_2_9_55_1
  article-title: Phytate and mineral bioavailability
  publication-title: Food Phytates
– ident: e_1_2_9_6_1
– ident: e_1_2_9_54_1
  doi: 10.1016/S0378-4290(97)00050-6
– ident: e_1_2_9_41_1
  doi: 10.2135/cropsci2001.41178x
– ident: e_1_2_9_43_1
  doi: 10.1038/nature13179
– ident: e_1_2_9_50_1
  doi: 10.1016/j.foodres.2017.09.026
– ident: e_1_2_9_45_1
  doi: 10.1071/CP18421
– ident: e_1_2_9_59_1
  doi: 10.2135/cropsci2001.412385x
– ident: e_1_2_9_14_1
  doi: 10.1093/treephys/24.10.1129
– ident: e_1_2_9_48_1
  doi: 10.3390/antiox8120609
– ident: e_1_2_9_57_1
  doi: 10.1016/j.pld.2019.09.004
– ident: e_1_2_9_46_1
  doi: 10.1016/j.plaphy.2017.12.010
– ident: e_1_2_9_39_1
  doi: 10.7554/eLife.02245
– ident: e_1_2_9_35_1
  doi: 10.1016/j.ecoenv.2013.12.021
– ident: e_1_2_9_30_1
  doi: 10.3389/fpls.2019.01482
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jcs.2013.12.002
– ident: e_1_2_9_53_1
  doi: 10.1007/s11104-019-04229-0
– ident: e_1_2_9_8_1
  doi: 10.1016/j.plantsci.2018.12.021
– ident: e_1_2_9_15_1
  doi: 10.1038/sdata.2015.36
– ident: e_1_2_9_23_1
  doi: 10.1021/jf8020199
– ident: e_1_2_9_2_1
  doi: 10.1016/j.plantsci.2014.11.001
– ident: e_1_2_9_3_1
  doi: 10.1046/j.1365-2486.2002.00498.x
– ident: e_1_2_9_13_1
  doi: 10.1016/j.fcr.2015.11.010
– ident: e_1_2_9_42_1
  doi: 10.1109/IGARSS.2018.8517301
– ident: e_1_2_9_51_1
  doi: 10.3389/fpls.2016.01967
– ident: e_1_2_9_52_1
  doi: 10.3390/plants8110465
– ident: e_1_2_9_36_1
  doi: 10.1093/jxb/erp096
– ident: e_1_2_9_21_1
  doi: 10.1023/A:1004790612630
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jcs.2013.10.013
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1365-3040.2011.02378.x
– ident: e_1_2_9_58_1
  doi: 10.1080/10942912.2017.1280678
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jcs.2008.01.006
– ident: e_1_2_9_29_1
– ident: e_1_2_9_31_1
  doi: 10.1016/j.pbi.2016.03.006
SSID ssj0002171040
Score 2.1660774
Snippet The impact of elevated CO 2 (eCO 2 ) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable...
The impact of elevated CO (eCO ) on soybean productivity is essential to the global food supply because it is the world's leading source of vegetable proteins....
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 263
Title Genotypic variation in the response of soybean to elevated CO 2
URI https://www.ncbi.nlm.nih.gov/pubmed/37284177
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_rKXIv4rfnxxHQF1l67qbpXvokuqjLoe7DrXDcy5KkEyh6zbLbE9e_3knSjyyeoEIppU1bmPkx-c0kM0PICyZAmFylCXCtnYOiEsWzLJFokLmYAIDfRPPp82T2hZ-cZWeDwY9o19JlrY70zyvzSv5Hq3gP9eqyZP9Bs91H8QZeo37xjBrG81_p-ANUtt6uSj38ji6vjPctrsPeVx8R2NitcgF3pJkum1w6kjmdD1lMTF3zojqJ0t58IYl1SHvwkdmZVfYrNOlZJ0c-loDzuohiCafWZTM1CwthCb6Pwp6XLkZ-0TRl_ij7ZaRzcC1FZFEind8MT11b402HUrnpMdGmLc6rysbhCjaOtn6AN2toI7IE3agstsEsgtqOPQ3W7zc7H-rGrqBM3XX4VqTw1YXXeHqMk--4aROzW1W7fXSNXGfoYKRRnMfN4eiooZ866urZslf9v_bJzfbtHTKz45Z4erK4TW41fgV9E0ByhwyguktuvLXI_bf3yOsOKbRDCi0rikihLVKoNbRBCq0tbZFCp3PK7pPF-3eL6SxpWmck2pXXlTBWeiSR_OlRYfSx0dIUShjFhOZjNjJMghE5z1EPzuNGmovGWADkuQYOOn1A9ipbwSNC0wIMM0VuuMZDiRzFVUyE5DmyGiXSA_KyFcFSN2XlXXeTb8tQEJstneSWXnIH5Hk3dhWKqVw56mGQZDemFffjPz55QvZ7sD0le_X6Ep4hW6zVoY-yHHr1_gI_o2mS
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genotypic+variation+in+the+response+of+soybean+to+elevated+CO+2&rft.jtitle=Plant-environment+interactions+%28Hoboken%2C+N.J.+%3A+2018%29&rft.au=Soares%2C+Jos%C3%A9+C&rft.au=Zimmermann%2C+Lars&rft.au=Zendonadi+Dos+Santos%2C+Nicolas&rft.au=Muller%2C+Onno&rft.date=2021-12-01&rft.eissn=2575-6265&rft.volume=2&rft.issue=6&rft.spage=263&rft_id=info:doi/10.1002%2Fpei3.10065&rft_id=info%3Apmid%2F37284177&rft.externalDocID=37284177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-6265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-6265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-6265&client=summon