Effect of the itinerant electron density on the magnetization and Curie temperature of Sr 2 FeMoO 6 ceramics
The itinerant electron density ( n ) near the Fermi level has a close correlation with the physical properties of Sr 2 FeMoO 6 . Two series of single-phase Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) and Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1, 0.2, 0.3) ceramics were specially design...
Saved in:
Published in | RSC advances Vol. 8; no. 51; pp. 29071 - 29077 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
14.08.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | The itinerant electron density (
n
) near the Fermi level has a close correlation with the physical properties of Sr
2
FeMoO
6
. Two series of single-phase Sr
(2−y)
Na
y
FeMoO
6
(
y
= 0.1, 0.2, 0.3) and Sr
(2−y)
Na
y
Fe
(1−x)
Mo
(1+x)
O
6
(
y
= 2
x
;
y
= 0.1, 0.2, 0.3) ceramics were specially designed and the itinerant electron density (
n
) of them can be artificially controlled to be:
n
= 1 −
y
and
n
= 1 −
y
+ 3
x
= 1 + 0.5
y
, respectively. The corresponding crystal structure, magnetization and the ferromagnetic Curie temperature (
T
C
) of two subjects were investigated systematically. The X-ray diffraction analysis indicates that Sr
(2−y)
Na
y
FeMoO
6
(
y
= 0.1, 0.2, 0.3) have comparable Fe/Mo anti-site defect (ASD) content in spite of decreased
n
. However, a drastically improved Fe/Mo ASD can be observed in Sr
(2−y)
Na
y
Fe
(1−x)
Mo
(1+x)
O
6
(
y
= 2
x
;
y
= 0.1, 0.2, 0.3) caused by the intrinsic wrong occupation of normal Fe sites with excess Mo. Magnetization–magnetic field (
M
–
H
) behavior confirms that it is the Fe/Mo ASD not
n
that dominantly determines the magnetization properties. Interestingly, approximately when
n
≤ 0.9,
T
C
of Sr
(2−y)
Na
y
FeMoO
6
(
y
= 0.1, 0.2, 0.3) exhibits an overall increase with decreasing
n
, which is contrary to the
T
C
response in electron-doped SFMO. Such abnormal
T
C
is supposed to relate with the ratio variation of
n
(Mo)/
n
(Fe). Moreover, when
n
≥ 1,
T
C
of Sr
(2−y)
Na
y
Fe
(1−x)
Mo
(1+x)
O
6
(
y
= 2
x
;
y
= 0.3) exhibits a considerable rise of about 75 K over that of Sr
(2−y)
Na
y
Fe
(1−x)
Mo
(1+x)
O
6
(
y
= 2
x
;
y
= 0.1), resulting from improved
n
caused by introducing excess Mo into Sr
(2−y)
Na
y
FeMoO
6
. Maybe, our work can provide an effective strategy to artificially control
n
and ferromagnetic
T
C
accordingly, and provoke further investigation on the FeMo-baseddouble perovskites. |
---|---|
AbstractList | The itinerant electron density (
) near the Fermi level has a close correlation with the physical properties of Sr
FeMoO
. Two series of single-phase Sr
Na
FeMoO
(
= 0.1, 0.2, 0.3) and Sr
Na
Fe
Mo
O
(
= 2
;
= 0.1, 0.2, 0.3) ceramics were specially designed and the itinerant electron density (
) of them can be artificially controlled to be:
= 1 -
and
= 1 -
+ 3
= 1 + 0.5
, respectively. The corresponding crystal structure, magnetization and the ferromagnetic Curie temperature (
) of two subjects were investigated systematically. The X-ray diffraction analysis indicates that Sr
Na
FeMoO
(
= 0.1, 0.2, 0.3) have comparable Fe/Mo anti-site defect (ASD) content in spite of decreased
. However, a drastically improved Fe/Mo ASD can be observed in Sr
Na
Fe
Mo
O
(
= 2
;
= 0.1, 0.2, 0.3) caused by the intrinsic wrong occupation of normal Fe sites with excess Mo. Magnetization-magnetic field (
-
) behavior confirms that it is the Fe/Mo ASD not
that dominantly determines the magnetization properties. Interestingly, approximately when
≤ 0.9,
of Sr
Na
FeMoO
(
= 0.1, 0.2, 0.3) exhibits an overall increase with decreasing
, which is contrary to the
response in electron-doped SFMO. Such abnormal
is supposed to relate with the ratio variation of
(Mo)/
(Fe). Moreover, when
≥ 1,
of Sr
Na
Fe
Mo
O
(
= 2
;
= 0.3) exhibits a considerable rise of about 75 K over that of Sr
Na
Fe
Mo
O
(
= 2
;
= 0.1), resulting from improved
caused by introducing excess Mo into Sr
Na
FeMoO
. Maybe, our work can provide an effective strategy to artificially control
and ferromagnetic
accordingly, and provoke further investigation on the FeMo-baseddouble perovskites. The itinerant electron density ( n ) near the Fermi level has a close correlation with the physical properties of Sr 2 FeMoO 6 . Two series of single-phase Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) and Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1, 0.2, 0.3) ceramics were specially designed and the itinerant electron density ( n ) of them can be artificially controlled to be: n = 1 − y and n = 1 − y + 3 x = 1 + 0.5 y , respectively. The corresponding crystal structure, magnetization and the ferromagnetic Curie temperature ( T C ) of two subjects were investigated systematically. The X-ray diffraction analysis indicates that Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) have comparable Fe/Mo anti-site defect (ASD) content in spite of decreased n . However, a drastically improved Fe/Mo ASD can be observed in Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1, 0.2, 0.3) caused by the intrinsic wrong occupation of normal Fe sites with excess Mo. Magnetization–magnetic field ( M – H ) behavior confirms that it is the Fe/Mo ASD not n that dominantly determines the magnetization properties. Interestingly, approximately when n ≤ 0.9, T C of Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) exhibits an overall increase with decreasing n , which is contrary to the T C response in electron-doped SFMO. Such abnormal T C is supposed to relate with the ratio variation of n (Mo)/ n (Fe). Moreover, when n ≥ 1, T C of Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.3) exhibits a considerable rise of about 75 K over that of Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1), resulting from improved n caused by introducing excess Mo into Sr (2−y) Na y FeMoO 6 . Maybe, our work can provide an effective strategy to artificially control n and ferromagnetic T C accordingly, and provoke further investigation on the FeMo-baseddouble perovskites. |
Author | Shi, Teng-Fei Zhuang, Zhao-Tong Gao, Qian-Qian Wang, Jin-Feng Zhang, Yan-Ming |
Author_xml | – sequence: 1 givenname: Jin-Feng orcidid: 0000-0002-2034-6805 surname: Wang fullname: Wang, Jin-Feng organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 – sequence: 2 givenname: Teng-Fei surname: Shi fullname: Shi, Teng-Fei organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 – sequence: 3 givenname: Zhao-Tong surname: Zhuang fullname: Zhuang, Zhao-Tong organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 – sequence: 4 givenname: Qian-Qian surname: Gao fullname: Gao, Qian-Qian organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 – sequence: 5 givenname: Yan-Ming surname: Zhang fullname: Zhang, Yan-Ming organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35547967$$D View this record in MEDLINE/PubMed |
BookMark | eNptUE1LAzEQDVKxtfbiD5CchdV8bLLNsSytCpWC9r6k2YlGdrMlmx7qrze1iiLOZYY37z1m3jka-M4DQpeU3FDC1W05fZoRUQgxO0EjRnKZMSLV4Nc8RJO-fyOppKBM0jM05ELkhZLFCDVza8FE3FkcXwG76DwE7SOGJsGh87gG37u4x2k8MFr94iG6dx1dQrSvcbkLDnCEdpuUcRfgYPYcMMMLeOxWWGKTFq0z_QU6tbrpYfLVx2i9mK_L-2y5unsoZ8vMKFVkRU4h18zmU26Ackq1TedyXjCj5GZKcs6EUCoXVmkGtibCUgvEEICCUbXhY3R1tN3uNi3U1Ta4Vod99f11IpAjwYSu7wPYyrj4-VAM2jUVJdUh2-on2yS5_iP5dv2H_AED1nfn |
CitedBy_id | crossref_primary_10_1002_pssr_202300174 crossref_primary_10_1016_j_physb_2018_12_016 crossref_primary_10_1016_j_jmmm_2022_169990 crossref_primary_10_1016_j_radphyschem_2021_109422 crossref_primary_10_1016_j_ceramint_2020_03_264 |
Cites_doi | 10.1016/j.physb.2009.12.013 10.1021/acs.jpcc.6b00100 10.1088/0022-3727/46/1/015001 10.1088/1361-6463/aa7607 10.1016/j.jmmm.2004.11.310 10.1021/am5052125 10.1039/C7RA02919E 10.1039/C6RA03923E 10.1039/c004370b 10.1063/1.2131205 10.1103/PhysRevB.68.012412 10.1016/j.ceramint.2018.02.047 10.1063/1.3058441 10.1103/PhysRevB.71.104410 10.1038/27167 10.1016/j.materresbull.2017.02.029 10.1002/chin.200103237 10.1016/j.ceramint.2016.05.094 10.1021/cm0493288 10.1103/PhysRevB.93.024101 10.1088/0022-3727/47/44/445003 10.1103/PhysRevB.70.054423 10.1039/c3ce40226f 10.1007/s00339-006-3646-5 10.1063/1.1346624 10.1103/PhysRevB.74.054423 10.1063/1.1667443 10.1016/j.progsolidstchem.2014.08.001 10.1002/aenm.201800062 10.1103/PhysRevB.70.094405 10.1103/PhysRevB.64.092411 10.1103/PhysRevLett.87.097204 10.1016/j.ceramint.2017.01.090 10.1016/j.jssc.2006.01.043 10.1103/PhysRevLett.98.157205 10.1103/PhysRevB.87.165104 10.1103/PhysRevB.72.045107 10.1063/1.1381101 10.1016/j.jallcom.2014.09.164 10.1103/PhysRevB.79.174427 10.1063/1.2208308 10.1016/j.jssc.2010.08.013 10.1039/C5RA23178G 10.1063/1.4731206 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. |
DBID | AAYXX CITATION NPM |
DOI | 10.1039/C8RA05755A |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 29077 |
ExternalDocumentID | 35547967 10_1039_C8RA05755A |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 53G AAEMU AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABJNI ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3G J3H J3I M~E O9- OK1 PGMZT R7C R7G RAOCF RCNCU RPM RPMJG RRC RSCEA RVUXY SLH YAE ZCN -JG ABGFH AGSTE NPM SMJ |
ID | FETCH-LOGICAL-c997-741e4a2f483ce1311af5543372c96b80432559945f9a2efd05f1fe0c0ee7219b3 |
ISSN | 2046-2069 |
IngestDate | Thu Jan 02 22:53:48 EST 2025 Tue Jul 01 04:24:28 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c997-741e4a2f483ce1311af5543372c96b80432559945f9a2efd05f1fe0c0ee7219b3 |
ORCID | 0000-0002-2034-6805 |
PMID | 35547967 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_35547967 crossref_citationtrail_10_1039_C8RA05755A crossref_primary_10_1039_C8RA05755A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Aug-14 |
PublicationDateYYYYMMDD | 2018-08-14 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-Aug-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2018 |
References | Navarro (C8RA05755A-(cit18)/*[position()=1]) 2001; 64 Frontera (C8RA05755A-(cit19)/*[position()=1]) 2003; 68 Zhang (C8RA05755A-(cit29)/*[position()=1]) 2006; 84 Pickett (C8RA05755A-(cit2)/*[position()=1]) 2001; 54 Serrate (C8RA05755A-(cit3)/*[position()=1]) 2007; 19 Zhang (C8RA05755A-(cit24)/*[position()=1]) 2010; 405 Retuerto (C8RA05755A-(cit39)/*[position()=1]) 2010; 12 Zhang (C8RA05755A-(cit46)/*[position()=1]) 2010; 183 Wang (C8RA05755A-(cit30)/*[position()=1]) 2017; 7 Kumar (C8RA05755A-(cit17)/*[position()=1]) 2016; 6 Wang (C8RA05755A-(cit13)/*[position()=1]) 2013; 15 Meetei (C8RA05755A-(cit15)/*[position()=1]) 2013; 87 Yang (C8RA05755A-(cit36)/*[position()=1]) 2016; 93 Yoshida (C8RA05755A-(cit31)/*[position()=1]) 2005; 98 Anil Kumar (C8RA05755A-(cit43)/*[position()=1]) 2012; 100 Kim (C8RA05755A-(cit27)/*[position()=1]) 2005; 290 Saitoh (C8RA05755A-(cit23)/*[position()=1]) 2005; 72 Kobayashi (C8RA05755A-(cit1)/*[position()=1]) 1998; 395 Rubi (C8RA05755A-(cit25)/*[position()=1]) 2006; 18 Wang (C8RA05755A-(cit26)/*[position()=1]) 2017; 43 Huang (C8RA05755A-(cit12)/*[position()=1]) 2004; 16 Wang (C8RA05755A-(cit35)/*[position()=1]) 2017; 50 Navarro (C8RA05755A-(cit9)/*[position()=1]) 2004; 70 Jalili (C8RA05755A-(cit41)/*[position()=1]) 2009; 79 Wang (C8RA05755A-(cit4)/*[position()=1]) 2014; 47 Rubi (C8RA05755A-(cit20)/*[position()=1]) 2004; 95 Wang (C8RA05755A-(cit14)/*[position()=1]) 2018; 44 Hussain (C8RA05755A-(cit7)/*[position()=1]) 2016; 42 Panguluri (C8RA05755A-(cit44)/*[position()=1]) 2009; 94 Iranmanesh (C8RA05755A-(cit33)/*[position()=1]) 2016; 6 Vasala (C8RA05755A-(cit6)/*[position()=1]) 2015; 43 Hemery (C8RA05755A-(cit16)/*[position()=1]) 2006; 74 Wang (C8RA05755A-(cit34)/*[position()=1]) 2017; 90 Kovalev (C8RA05755A-(cit40)/*[position()=1]) 2014; 6 Balcells (C8RA05755A-(cit11)/*[position()=1]) 2001; 78 Cheong (C8RA05755A-(cit47)/*[position()=1]) 2001; 32 Azad (C8RA05755A-(cit22)/*[position()=1]) 2006; 179 Ji (C8RA05755A-(cit38)/*[position()=1]) 2013; 46 Wang (C8RA05755A-(cit5)/*[position()=1]) 2015; 621 Rubi (C8RA05755A-(cit21)/*[position()=1]) 2004; 70 Reyes (C8RA05755A-(cit37)/*[position()=1]) 2016; 120 Ray (C8RA05755A-(cit10)/*[position()=1]) 2001; 87 Kim (C8RA05755A-(cit28)/*[position()=1]) 2006; 99 Sanchez (C8RA05755A-(cit32)/*[position()=1]) 2005 Wojcik (C8RA05755A-(cit45)/*[position()=1]) 2005; 71 Du (C8RA05755A-(cit8)/*[position()=1]) 2018; 8 Sarma (C8RA05755A-(cit42)/*[position()=1]) 2007; 98 |
References_xml | – volume: 405 start-page: 1428 year: 2010 ident: C8RA05755A-(cit24)/*[position()=1] publication-title: Phys. B doi: 10.1016/j.physb.2009.12.013 – volume: 120 start-page: 4048 year: 2016 ident: C8RA05755A-(cit37)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00100 – volume: 46 start-page: 015001 year: 2013 ident: C8RA05755A-(cit38)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/46/1/015001 – volume: 50 start-page: 305001 year: 2017 ident: C8RA05755A-(cit35)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aa7607 – volume: 290 start-page: 1009 year: 2005 ident: C8RA05755A-(cit27)/*[position()=1] publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2004.11.310 – volume: 6 start-page: 19201 year: 2014 ident: C8RA05755A-(cit40)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5052125 – volume: 18 start-page: 7991 year: 2006 ident: C8RA05755A-(cit25)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 7 start-page: 26185 year: 2017 ident: C8RA05755A-(cit30)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA02919E – volume: 6 start-page: 42069 year: 2016 ident: C8RA05755A-(cit33)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA03923E – volume: 12 start-page: 13616 year: 2010 ident: C8RA05755A-(cit39)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c004370b – volume: 98 start-page: 103901 year: 2005 ident: C8RA05755A-(cit31)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2131205 – volume: 68 start-page: 012412 year: 2003 ident: C8RA05755A-(cit19)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.68.012412 – volume: 44 start-page: 8492 year: 2018 ident: C8RA05755A-(cit14)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.02.047 – volume: 94 start-page: 012501 year: 2009 ident: C8RA05755A-(cit44)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3058441 – volume: 71 start-page: 104410 year: 2005 ident: C8RA05755A-(cit45)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.104410 – volume: 395 start-page: 677 year: 1998 ident: C8RA05755A-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/27167 – volume: 90 start-page: 145 year: 2017 ident: C8RA05755A-(cit34)/*[position()=1] publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2017.02.029 – volume: 32 year: 2001 ident: C8RA05755A-(cit47)/*[position()=1] publication-title: ChemInform doi: 10.1002/chin.200103237 – volume: 42 start-page: 13098 year: 2016 ident: C8RA05755A-(cit7)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.05.094 – volume: 16 start-page: 4337 year: 2004 ident: C8RA05755A-(cit12)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm0493288 – volume: 93 start-page: 024101 year: 2016 ident: C8RA05755A-(cit36)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.93.024101 – volume: 47 start-page: 445003 year: 2014 ident: C8RA05755A-(cit4)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/47/44/445003 – start-page: 3673 year: 2005 ident: C8RA05755A-(cit32)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 70 start-page: 054423 year: 2004 ident: C8RA05755A-(cit9)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.054423 – volume: 15 start-page: 4601 year: 2013 ident: C8RA05755A-(cit13)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c3ce40226f – volume: 84 start-page: 459 year: 2006 ident: C8RA05755A-(cit29)/*[position()=1] publication-title: Appl. Phys. A doi: 10.1007/s00339-006-3646-5 – volume: 78 start-page: 781 year: 2001 ident: C8RA05755A-(cit11)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1346624 – volume: 74 start-page: 054423 year: 2006 ident: C8RA05755A-(cit16)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.74.054423 – volume: 95 start-page: 7082 year: 2004 ident: C8RA05755A-(cit20)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1667443 – volume: 43 start-page: 1 year: 2015 ident: C8RA05755A-(cit6)/*[position()=1] publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2014.08.001 – volume: 19 start-page: 023201 year: 2007 ident: C8RA05755A-(cit3)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 8 start-page: 1800062 year: 2018 ident: C8RA05755A-(cit8)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800062 – volume: 70 start-page: 094405 year: 2004 ident: C8RA05755A-(cit21)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.70.094405 – volume: 64 start-page: 092411 year: 2001 ident: C8RA05755A-(cit18)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.64.092411 – volume: 87 start-page: 097204 year: 2001 ident: C8RA05755A-(cit10)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.097204 – volume: 43 start-page: 5585 year: 2017 ident: C8RA05755A-(cit26)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.01.090 – volume: 179 start-page: 1303 year: 2006 ident: C8RA05755A-(cit22)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2006.01.043 – volume: 98 start-page: 157205 year: 2007 ident: C8RA05755A-(cit42)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.157205 – volume: 87 start-page: 165104 year: 2013 ident: C8RA05755A-(cit15)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.87.165104 – volume: 72 start-page: 045107 year: 2005 ident: C8RA05755A-(cit23)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.72.045107 – volume: 54 start-page: 39 year: 2001 ident: C8RA05755A-(cit2)/*[position()=1] publication-title: Phys. Today doi: 10.1063/1.1381101 – volume: 621 start-page: 131 year: 2015 ident: C8RA05755A-(cit5)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.09.164 – volume: 79 start-page: 174427 year: 2009 ident: C8RA05755A-(cit41)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.79.174427 – volume: 99 start-page: 677 year: 2006 ident: C8RA05755A-(cit28)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2208308 – volume: 183 start-page: 2432 year: 2010 ident: C8RA05755A-(cit46)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2010.08.013 – volume: 6 start-page: 22094 year: 2016 ident: C8RA05755A-(cit17)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA23178G – volume: 100 start-page: 2472 year: 2012 ident: C8RA05755A-(cit43)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4731206 |
SSID | ssj0000651261 |
Score | 2.2060218 |
Snippet | The itinerant electron density (
n
) near the Fermi level has a close correlation with the physical properties of Sr
2
FeMoO
6
. Two series of single-phase Sr... The itinerant electron density ( ) near the Fermi level has a close correlation with the physical properties of Sr FeMoO . Two series of single-phase Sr Na... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 29071 |
Title | Effect of the itinerant electron density on the magnetization and Curie temperature of Sr 2 FeMoO 6 ceramics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35547967 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtCm0upc80fSFoL8UoteWnjotpGgJpSePS0MsiyXK6kLXD4lzy6zMjS_Zu2ULbizF62FjzIc-MZr4h5H2W1jKKpWBc1SlDAi-meKhYKoWWPK-hFf0dJ1-yo-_J8Xl6PsWq2uySXh3om615Jf8jVWgDuWKW7D9IdnwoNMA9yBeuIGG4_pWMHfWwO-Zf9JjIBysV-No2QY3h6RhzMQQzLuVFa3qXeWmPDUqsWBcgP5UjV7ZJLKuAB4fmpPsaZIGGjqUPifdM3melDx4YVfIfzvF8vGgZLNLF6LqxVYODCpqgfTE5qq_dhJ-_ZMeqbprxWVr37SkAl5169DrHRIRE12xICD0wdgPjYHuDvIZSLH63LdZA5ahm3dYJZnq0dVMPY-RE1cVKonKZyvVBIJCrpRUvKk65GGp7_Eah7bvuknscrIl1y3v4YYPWk0WevDYWH6d37ZL7fvaG5rJhg1hdpHpEHjojgs4GRDwmd0z7hDwofe2-p-RyQAbtGgpypyMyqEcGdcigcIsjNpBBARnUIoOuIQMfdrainFpk0Ix6ZDwj1eGnqjxirq4G08i9CzqkSSRvkiLWBtmWZANfGMc51yJTBXI0Ig1dkjZCctPUYdpEjQl1aEwO_zcVPyc7bdeaF4QWWgrQCOO8xuPrJlSRypOwVhK0ZtXkYp988Es2145zHkufXM5t7EMs5mXxbWZXerZP3o1jrwamla2j9oaVH8d48bz8Y88rsjvh8zXZ6VfX5g2okr16a4FwC1uhclk |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+itinerant+electron+density+on+the+magnetization+and+Curie+temperature+of+Sr+2+FeMoO+6+ceramics&rft.jtitle=RSC+advances&rft.au=Wang%2C+Jin-Feng&rft.au=Shi%2C+Teng-Fei&rft.au=Zhuang%2C+Zhao-Tong&rft.au=Gao%2C+Qian-Qian&rft.date=2018-08-14&rft.eissn=2046-2069&rft.volume=8&rft.issue=51&rft.spage=29071&rft_id=info:doi/10.1039%2Fc8ra05755a&rft_id=info%3Apmid%2F35547967&rft.externalDocID=35547967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |