Effect of the itinerant electron density on the magnetization and Curie temperature of Sr 2 FeMoO 6 ceramics

The itinerant electron density ( n ) near the Fermi level has a close correlation with the physical properties of Sr 2 FeMoO 6 . Two series of single-phase Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) and Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1, 0.2, 0.3) ceramics were specially design...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 8; no. 51; pp. 29071 - 29077
Main Authors Wang, Jin-Feng, Shi, Teng-Fei, Zhuang, Zhao-Tong, Gao, Qian-Qian, Zhang, Yan-Ming
Format Journal Article
LanguageEnglish
Published England 14.08.2018
Online AccessGet full text

Cover

Loading…
Abstract The itinerant electron density ( n ) near the Fermi level has a close correlation with the physical properties of Sr 2 FeMoO 6 . Two series of single-phase Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) and Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1, 0.2, 0.3) ceramics were specially designed and the itinerant electron density ( n ) of them can be artificially controlled to be: n = 1 − y and n = 1 − y + 3 x = 1 + 0.5 y , respectively. The corresponding crystal structure, magnetization and the ferromagnetic Curie temperature ( T C ) of two subjects were investigated systematically. The X-ray diffraction analysis indicates that Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) have comparable Fe/Mo anti-site defect (ASD) content in spite of decreased n . However, a drastically improved Fe/Mo ASD can be observed in Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1, 0.2, 0.3) caused by the intrinsic wrong occupation of normal Fe sites with excess Mo. Magnetization–magnetic field ( M – H ) behavior confirms that it is the Fe/Mo ASD not n that dominantly determines the magnetization properties. Interestingly, approximately when n ≤ 0.9, T C of Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) exhibits an overall increase with decreasing n , which is contrary to the T C response in electron-doped SFMO. Such abnormal T C is supposed to relate with the ratio variation of n (Mo)/ n (Fe). Moreover, when n ≥ 1, T C of Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.3) exhibits a considerable rise of about 75 K over that of Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1), resulting from improved n caused by introducing excess Mo into Sr (2−y) Na y FeMoO 6 . Maybe, our work can provide an effective strategy to artificially control n and ferromagnetic T C accordingly, and provoke further investigation on the FeMo-baseddouble perovskites.
AbstractList The itinerant electron density ( ) near the Fermi level has a close correlation with the physical properties of Sr FeMoO . Two series of single-phase Sr Na FeMoO ( = 0.1, 0.2, 0.3) and Sr Na Fe Mo O ( = 2 ; = 0.1, 0.2, 0.3) ceramics were specially designed and the itinerant electron density ( ) of them can be artificially controlled to be: = 1 - and = 1 - + 3 = 1 + 0.5 , respectively. The corresponding crystal structure, magnetization and the ferromagnetic Curie temperature ( ) of two subjects were investigated systematically. The X-ray diffraction analysis indicates that Sr Na FeMoO ( = 0.1, 0.2, 0.3) have comparable Fe/Mo anti-site defect (ASD) content in spite of decreased . However, a drastically improved Fe/Mo ASD can be observed in Sr Na Fe Mo O ( = 2 ; = 0.1, 0.2, 0.3) caused by the intrinsic wrong occupation of normal Fe sites with excess Mo. Magnetization-magnetic field ( - ) behavior confirms that it is the Fe/Mo ASD not that dominantly determines the magnetization properties. Interestingly, approximately when ≤ 0.9, of Sr Na FeMoO ( = 0.1, 0.2, 0.3) exhibits an overall increase with decreasing , which is contrary to the response in electron-doped SFMO. Such abnormal is supposed to relate with the ratio variation of (Mo)/ (Fe). Moreover, when ≥ 1, of Sr Na Fe Mo O ( = 2 ; = 0.3) exhibits a considerable rise of about 75 K over that of Sr Na Fe Mo O ( = 2 ; = 0.1), resulting from improved caused by introducing excess Mo into Sr Na FeMoO . Maybe, our work can provide an effective strategy to artificially control and ferromagnetic accordingly, and provoke further investigation on the FeMo-baseddouble perovskites.
The itinerant electron density ( n ) near the Fermi level has a close correlation with the physical properties of Sr 2 FeMoO 6 . Two series of single-phase Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) and Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1, 0.2, 0.3) ceramics were specially designed and the itinerant electron density ( n ) of them can be artificially controlled to be: n = 1 − y and n = 1 − y + 3 x = 1 + 0.5 y , respectively. The corresponding crystal structure, magnetization and the ferromagnetic Curie temperature ( T C ) of two subjects were investigated systematically. The X-ray diffraction analysis indicates that Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) have comparable Fe/Mo anti-site defect (ASD) content in spite of decreased n . However, a drastically improved Fe/Mo ASD can be observed in Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1, 0.2, 0.3) caused by the intrinsic wrong occupation of normal Fe sites with excess Mo. Magnetization–magnetic field ( M – H ) behavior confirms that it is the Fe/Mo ASD not n that dominantly determines the magnetization properties. Interestingly, approximately when n ≤ 0.9, T C of Sr (2−y) Na y FeMoO 6 ( y = 0.1, 0.2, 0.3) exhibits an overall increase with decreasing n , which is contrary to the T C response in electron-doped SFMO. Such abnormal T C is supposed to relate with the ratio variation of n (Mo)/ n (Fe). Moreover, when n ≥ 1, T C of Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.3) exhibits a considerable rise of about 75 K over that of Sr (2−y) Na y Fe (1−x) Mo (1+x) O 6 ( y = 2 x ; y = 0.1), resulting from improved n caused by introducing excess Mo into Sr (2−y) Na y FeMoO 6 . Maybe, our work can provide an effective strategy to artificially control n and ferromagnetic T C accordingly, and provoke further investigation on the FeMo-baseddouble perovskites.
Author Shi, Teng-Fei
Zhuang, Zhao-Tong
Gao, Qian-Qian
Wang, Jin-Feng
Zhang, Yan-Ming
Author_xml – sequence: 1
  givenname: Jin-Feng
  orcidid: 0000-0002-2034-6805
  surname: Wang
  fullname: Wang, Jin-Feng
  organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007
– sequence: 2
  givenname: Teng-Fei
  surname: Shi
  fullname: Shi, Teng-Fei
  organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007
– sequence: 3
  givenname: Zhao-Tong
  surname: Zhuang
  fullname: Zhuang, Zhao-Tong
  organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007
– sequence: 4
  givenname: Qian-Qian
  surname: Gao
  fullname: Gao, Qian-Qian
  organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007
– sequence: 5
  givenname: Yan-Ming
  surname: Zhang
  fullname: Zhang, Yan-Ming
  organization: College of Physics and Materials Science, National Demonstration Center for Experimental Physics Education, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35547967$$D View this record in MEDLINE/PubMed
BookMark eNptUE1LAzEQDVKxtfbiD5CchdV8bLLNsSytCpWC9r6k2YlGdrMlmx7qrze1iiLOZYY37z1m3jka-M4DQpeU3FDC1W05fZoRUQgxO0EjRnKZMSLV4Nc8RJO-fyOppKBM0jM05ELkhZLFCDVza8FE3FkcXwG76DwE7SOGJsGh87gG37u4x2k8MFr94iG6dx1dQrSvcbkLDnCEdpuUcRfgYPYcMMMLeOxWWGKTFq0z_QU6tbrpYfLVx2i9mK_L-2y5unsoZ8vMKFVkRU4h18zmU26Ackq1TedyXjCj5GZKcs6EUCoXVmkGtibCUgvEEICCUbXhY3R1tN3uNi3U1Ta4Vod99f11IpAjwYSu7wPYyrj4-VAM2jUVJdUh2-on2yS5_iP5dv2H_AED1nfn
CitedBy_id crossref_primary_10_1002_pssr_202300174
crossref_primary_10_1016_j_physb_2018_12_016
crossref_primary_10_1016_j_jmmm_2022_169990
crossref_primary_10_1016_j_radphyschem_2021_109422
crossref_primary_10_1016_j_ceramint_2020_03_264
Cites_doi 10.1016/j.physb.2009.12.013
10.1021/acs.jpcc.6b00100
10.1088/0022-3727/46/1/015001
10.1088/1361-6463/aa7607
10.1016/j.jmmm.2004.11.310
10.1021/am5052125
10.1039/C7RA02919E
10.1039/C6RA03923E
10.1039/c004370b
10.1063/1.2131205
10.1103/PhysRevB.68.012412
10.1016/j.ceramint.2018.02.047
10.1063/1.3058441
10.1103/PhysRevB.71.104410
10.1038/27167
10.1016/j.materresbull.2017.02.029
10.1002/chin.200103237
10.1016/j.ceramint.2016.05.094
10.1021/cm0493288
10.1103/PhysRevB.93.024101
10.1088/0022-3727/47/44/445003
10.1103/PhysRevB.70.054423
10.1039/c3ce40226f
10.1007/s00339-006-3646-5
10.1063/1.1346624
10.1103/PhysRevB.74.054423
10.1063/1.1667443
10.1016/j.progsolidstchem.2014.08.001
10.1002/aenm.201800062
10.1103/PhysRevB.70.094405
10.1103/PhysRevB.64.092411
10.1103/PhysRevLett.87.097204
10.1016/j.ceramint.2017.01.090
10.1016/j.jssc.2006.01.043
10.1103/PhysRevLett.98.157205
10.1103/PhysRevB.87.165104
10.1103/PhysRevB.72.045107
10.1063/1.1381101
10.1016/j.jallcom.2014.09.164
10.1103/PhysRevB.79.174427
10.1063/1.2208308
10.1016/j.jssc.2010.08.013
10.1039/C5RA23178G
10.1063/1.4731206
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
DBID AAYXX
CITATION
NPM
DOI 10.1039/C8RA05755A
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 29077
ExternalDocumentID 35547967
10_1039_C8RA05755A
Genre Journal Article
GroupedDBID 0-7
0R~
53G
AAEMU
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABJNI
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3G
J3H
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RAOCF
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
YAE
ZCN
-JG
ABGFH
AGSTE
NPM
SMJ
ID FETCH-LOGICAL-c997-741e4a2f483ce1311af5543372c96b80432559945f9a2efd05f1fe0c0ee7219b3
ISSN 2046-2069
IngestDate Thu Jan 02 22:53:48 EST 2025
Tue Jul 01 04:24:28 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c997-741e4a2f483ce1311af5543372c96b80432559945f9a2efd05f1fe0c0ee7219b3
ORCID 0000-0002-2034-6805
PMID 35547967
PageCount 7
ParticipantIDs pubmed_primary_35547967
crossref_citationtrail_10_1039_C8RA05755A
crossref_primary_10_1039_C8RA05755A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Aug-14
PublicationDateYYYYMMDD 2018-08-14
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2018
References Navarro (C8RA05755A-(cit18)/*[position()=1]) 2001; 64
Frontera (C8RA05755A-(cit19)/*[position()=1]) 2003; 68
Zhang (C8RA05755A-(cit29)/*[position()=1]) 2006; 84
Pickett (C8RA05755A-(cit2)/*[position()=1]) 2001; 54
Serrate (C8RA05755A-(cit3)/*[position()=1]) 2007; 19
Zhang (C8RA05755A-(cit24)/*[position()=1]) 2010; 405
Retuerto (C8RA05755A-(cit39)/*[position()=1]) 2010; 12
Zhang (C8RA05755A-(cit46)/*[position()=1]) 2010; 183
Wang (C8RA05755A-(cit30)/*[position()=1]) 2017; 7
Kumar (C8RA05755A-(cit17)/*[position()=1]) 2016; 6
Wang (C8RA05755A-(cit13)/*[position()=1]) 2013; 15
Meetei (C8RA05755A-(cit15)/*[position()=1]) 2013; 87
Yang (C8RA05755A-(cit36)/*[position()=1]) 2016; 93
Yoshida (C8RA05755A-(cit31)/*[position()=1]) 2005; 98
Anil Kumar (C8RA05755A-(cit43)/*[position()=1]) 2012; 100
Kim (C8RA05755A-(cit27)/*[position()=1]) 2005; 290
Saitoh (C8RA05755A-(cit23)/*[position()=1]) 2005; 72
Kobayashi (C8RA05755A-(cit1)/*[position()=1]) 1998; 395
Rubi (C8RA05755A-(cit25)/*[position()=1]) 2006; 18
Wang (C8RA05755A-(cit26)/*[position()=1]) 2017; 43
Huang (C8RA05755A-(cit12)/*[position()=1]) 2004; 16
Wang (C8RA05755A-(cit35)/*[position()=1]) 2017; 50
Navarro (C8RA05755A-(cit9)/*[position()=1]) 2004; 70
Jalili (C8RA05755A-(cit41)/*[position()=1]) 2009; 79
Wang (C8RA05755A-(cit4)/*[position()=1]) 2014; 47
Rubi (C8RA05755A-(cit20)/*[position()=1]) 2004; 95
Wang (C8RA05755A-(cit14)/*[position()=1]) 2018; 44
Hussain (C8RA05755A-(cit7)/*[position()=1]) 2016; 42
Panguluri (C8RA05755A-(cit44)/*[position()=1]) 2009; 94
Iranmanesh (C8RA05755A-(cit33)/*[position()=1]) 2016; 6
Vasala (C8RA05755A-(cit6)/*[position()=1]) 2015; 43
Hemery (C8RA05755A-(cit16)/*[position()=1]) 2006; 74
Wang (C8RA05755A-(cit34)/*[position()=1]) 2017; 90
Kovalev (C8RA05755A-(cit40)/*[position()=1]) 2014; 6
Balcells (C8RA05755A-(cit11)/*[position()=1]) 2001; 78
Cheong (C8RA05755A-(cit47)/*[position()=1]) 2001; 32
Azad (C8RA05755A-(cit22)/*[position()=1]) 2006; 179
Ji (C8RA05755A-(cit38)/*[position()=1]) 2013; 46
Wang (C8RA05755A-(cit5)/*[position()=1]) 2015; 621
Rubi (C8RA05755A-(cit21)/*[position()=1]) 2004; 70
Reyes (C8RA05755A-(cit37)/*[position()=1]) 2016; 120
Ray (C8RA05755A-(cit10)/*[position()=1]) 2001; 87
Kim (C8RA05755A-(cit28)/*[position()=1]) 2006; 99
Sanchez (C8RA05755A-(cit32)/*[position()=1]) 2005
Wojcik (C8RA05755A-(cit45)/*[position()=1]) 2005; 71
Du (C8RA05755A-(cit8)/*[position()=1]) 2018; 8
Sarma (C8RA05755A-(cit42)/*[position()=1]) 2007; 98
References_xml – volume: 405
  start-page: 1428
  year: 2010
  ident: C8RA05755A-(cit24)/*[position()=1]
  publication-title: Phys. B
  doi: 10.1016/j.physb.2009.12.013
– volume: 120
  start-page: 4048
  year: 2016
  ident: C8RA05755A-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00100
– volume: 46
  start-page: 015001
  year: 2013
  ident: C8RA05755A-(cit38)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/1/015001
– volume: 50
  start-page: 305001
  year: 2017
  ident: C8RA05755A-(cit35)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aa7607
– volume: 290
  start-page: 1009
  year: 2005
  ident: C8RA05755A-(cit27)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.11.310
– volume: 6
  start-page: 19201
  year: 2014
  ident: C8RA05755A-(cit40)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5052125
– volume: 18
  start-page: 7991
  year: 2006
  ident: C8RA05755A-(cit25)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 7
  start-page: 26185
  year: 2017
  ident: C8RA05755A-(cit30)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA02919E
– volume: 6
  start-page: 42069
  year: 2016
  ident: C8RA05755A-(cit33)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03923E
– volume: 12
  start-page: 13616
  year: 2010
  ident: C8RA05755A-(cit39)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c004370b
– volume: 98
  start-page: 103901
  year: 2005
  ident: C8RA05755A-(cit31)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2131205
– volume: 68
  start-page: 012412
  year: 2003
  ident: C8RA05755A-(cit19)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.68.012412
– volume: 44
  start-page: 8492
  year: 2018
  ident: C8RA05755A-(cit14)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.02.047
– volume: 94
  start-page: 012501
  year: 2009
  ident: C8RA05755A-(cit44)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3058441
– volume: 71
  start-page: 104410
  year: 2005
  ident: C8RA05755A-(cit45)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.104410
– volume: 395
  start-page: 677
  year: 1998
  ident: C8RA05755A-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/27167
– volume: 90
  start-page: 145
  year: 2017
  ident: C8RA05755A-(cit34)/*[position()=1]
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2017.02.029
– volume: 32
  year: 2001
  ident: C8RA05755A-(cit47)/*[position()=1]
  publication-title: ChemInform
  doi: 10.1002/chin.200103237
– volume: 42
  start-page: 13098
  year: 2016
  ident: C8RA05755A-(cit7)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.05.094
– volume: 16
  start-page: 4337
  year: 2004
  ident: C8RA05755A-(cit12)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm0493288
– volume: 93
  start-page: 024101
  year: 2016
  ident: C8RA05755A-(cit36)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.93.024101
– volume: 47
  start-page: 445003
  year: 2014
  ident: C8RA05755A-(cit4)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/44/445003
– start-page: 3673
  year: 2005
  ident: C8RA05755A-(cit32)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 70
  start-page: 054423
  year: 2004
  ident: C8RA05755A-(cit9)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.054423
– volume: 15
  start-page: 4601
  year: 2013
  ident: C8RA05755A-(cit13)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c3ce40226f
– volume: 84
  start-page: 459
  year: 2006
  ident: C8RA05755A-(cit29)/*[position()=1]
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-006-3646-5
– volume: 78
  start-page: 781
  year: 2001
  ident: C8RA05755A-(cit11)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1346624
– volume: 74
  start-page: 054423
  year: 2006
  ident: C8RA05755A-(cit16)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.74.054423
– volume: 95
  start-page: 7082
  year: 2004
  ident: C8RA05755A-(cit20)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1667443
– volume: 43
  start-page: 1
  year: 2015
  ident: C8RA05755A-(cit6)/*[position()=1]
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2014.08.001
– volume: 19
  start-page: 023201
  year: 2007
  ident: C8RA05755A-(cit3)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 8
  start-page: 1800062
  year: 2018
  ident: C8RA05755A-(cit8)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800062
– volume: 70
  start-page: 094405
  year: 2004
  ident: C8RA05755A-(cit21)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.70.094405
– volume: 64
  start-page: 092411
  year: 2001
  ident: C8RA05755A-(cit18)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.64.092411
– volume: 87
  start-page: 097204
  year: 2001
  ident: C8RA05755A-(cit10)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.097204
– volume: 43
  start-page: 5585
  year: 2017
  ident: C8RA05755A-(cit26)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.01.090
– volume: 179
  start-page: 1303
  year: 2006
  ident: C8RA05755A-(cit22)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2006.01.043
– volume: 98
  start-page: 157205
  year: 2007
  ident: C8RA05755A-(cit42)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.157205
– volume: 87
  start-page: 165104
  year: 2013
  ident: C8RA05755A-(cit15)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.87.165104
– volume: 72
  start-page: 045107
  year: 2005
  ident: C8RA05755A-(cit23)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.72.045107
– volume: 54
  start-page: 39
  year: 2001
  ident: C8RA05755A-(cit2)/*[position()=1]
  publication-title: Phys. Today
  doi: 10.1063/1.1381101
– volume: 621
  start-page: 131
  year: 2015
  ident: C8RA05755A-(cit5)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.09.164
– volume: 79
  start-page: 174427
  year: 2009
  ident: C8RA05755A-(cit41)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.79.174427
– volume: 99
  start-page: 677
  year: 2006
  ident: C8RA05755A-(cit28)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2208308
– volume: 183
  start-page: 2432
  year: 2010
  ident: C8RA05755A-(cit46)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2010.08.013
– volume: 6
  start-page: 22094
  year: 2016
  ident: C8RA05755A-(cit17)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23178G
– volume: 100
  start-page: 2472
  year: 2012
  ident: C8RA05755A-(cit43)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4731206
SSID ssj0000651261
Score 2.2060218
Snippet The itinerant electron density ( n ) near the Fermi level has a close correlation with the physical properties of Sr 2 FeMoO 6 . Two series of single-phase Sr...
The itinerant electron density ( ) near the Fermi level has a close correlation with the physical properties of Sr FeMoO . Two series of single-phase Sr Na...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 29071
Title Effect of the itinerant electron density on the magnetization and Curie temperature of Sr 2 FeMoO 6 ceramics
URI https://www.ncbi.nlm.nih.gov/pubmed/35547967
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtCm0upc80fSFoL8UoteWnjotpGgJpSePS0MsiyXK6kLXD4lzy6zMjS_Zu2ULbizF62FjzIc-MZr4h5H2W1jKKpWBc1SlDAi-meKhYKoWWPK-hFf0dJ1-yo-_J8Xl6PsWq2uySXh3om615Jf8jVWgDuWKW7D9IdnwoNMA9yBeuIGG4_pWMHfWwO-Zf9JjIBysV-No2QY3h6RhzMQQzLuVFa3qXeWmPDUqsWBcgP5UjV7ZJLKuAB4fmpPsaZIGGjqUPifdM3melDx4YVfIfzvF8vGgZLNLF6LqxVYODCpqgfTE5qq_dhJ-_ZMeqbprxWVr37SkAl5169DrHRIRE12xICD0wdgPjYHuDvIZSLH63LdZA5ahm3dYJZnq0dVMPY-RE1cVKonKZyvVBIJCrpRUvKk65GGp7_Eah7bvuknscrIl1y3v4YYPWk0WevDYWH6d37ZL7fvaG5rJhg1hdpHpEHjojgs4GRDwmd0z7hDwofe2-p-RyQAbtGgpypyMyqEcGdcigcIsjNpBBARnUIoOuIQMfdrainFpk0Ix6ZDwj1eGnqjxirq4G08i9CzqkSSRvkiLWBtmWZANfGMc51yJTBXI0Ig1dkjZCctPUYdpEjQl1aEwO_zcVPyc7bdeaF4QWWgrQCOO8xuPrJlSRypOwVhK0ZtXkYp988Es2145zHkufXM5t7EMs5mXxbWZXerZP3o1jrwamla2j9oaVH8d48bz8Y88rsjvh8zXZ6VfX5g2okr16a4FwC1uhclk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+itinerant+electron+density+on+the+magnetization+and+Curie+temperature+of+Sr+2+FeMoO+6+ceramics&rft.jtitle=RSC+advances&rft.au=Wang%2C+Jin-Feng&rft.au=Shi%2C+Teng-Fei&rft.au=Zhuang%2C+Zhao-Tong&rft.au=Gao%2C+Qian-Qian&rft.date=2018-08-14&rft.eissn=2046-2069&rft.volume=8&rft.issue=51&rft.spage=29071&rft_id=info:doi/10.1039%2Fc8ra05755a&rft_id=info%3Apmid%2F35547967&rft.externalDocID=35547967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon