Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass
When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovasc...
Saved in:
Published in | PLoS biology Vol. 11; no. 2; p. e1001485 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.02.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.1001485 |
Cover
Loading…
Abstract | When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. |
---|---|
AbstractList | Partial inhibition of adipose tissue lipolysis does not increase fat mass but improves glucose metabolism and insulin sensitivity through modulation of fatty acid turnover and induction of fat cell de novo lipogenesis.
When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet–fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.
In periods of energy demand, mobilization of fat stores in mammals (i.e., adipose tissue lipolysis) is essential to provide energy in the form of fatty acids. In excess, however, fatty acids induce resistance to the action of insulin, which serves to regulate glucose metabolism in skeletal muscle and liver. Insulin resistance (or low insulin sensitivity) is believed to be a cornerstone of the complications of obesity such as type 2 diabetes and cardiovascular diseases. In this study, our clinical observation of natural variation in fat cell lipolysis in individuals reveals that a high lipolytic rate is associated with low insulin sensitivity. Furthermore, partial genetic and pharmacologic inhibition of hormone-sensitive lipase, one of the enzymes involved in the breakdown of white adipose tissue lipids, results in improvement of insulin sensitivity in mice without gain in body weight and fat mass. We undertake a series of mechanistic studies in mice and in human fat cells to show that blunted lipolytic capacity increases the synthesis of new fatty acids from glucose in fat cells, a pathway that has recently been shown by others to be a major determinant of whole body insulin sensitivity. In conclusion, partial inhibition of adipose tissue lipolysis is a plausible strategy in the treatment of obesity-related insulin resistance. When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. |
Audience | Academic |
Author | Louche, Katie Besse-Patin, Aurèle Vila, Isabelle Marques, Marie-Adeline Dinel, Anne-Laure Arner, Peter Girousse, Amandine Monbrun, Laurent Holm, Cecilia Waget, Aurélie Caspar-Bauguil, Sylvie Galitzky, Jean Sulpice, Thierry Houssier, Marianne Burcelin, Rémy Moro, Cedric Roussel, Balbine Bézaire, Véronic Mir, Lucile Combes, Marion Mairal, Aline Mouisel, Etienne Tavernier, Geneviève Langin, Dominique Thalamas, Claire Mejhert, Niklas Renoud, Marie-Laure Viguerie, Nathalie Valle, Carine Prunet-Marcassus, Bénédicte |
AuthorAffiliation | 7 INSERM, UMR1048, Team 1, I2MC, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France 5 INSERM, UMR1048,Team 2, I2MC, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France 4 Physiogenex, Prologue Biotech, Labège-Innopole, France 8 Department of Experimental Medical Science, Lund University, Lund, Sweden 9 Toulouse University Hospitals, INSERM, Clinical Investigation Center, Toulouse, France University of Cambridge, United Kingdom 3 Department of Medicine, Karolinska Institute at Karolinska Hospital, Huddinge, Stockholm, Sweden 6 Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France 1 INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France 2 University of Toulouse, UMR1048, Paul Sabatier University, France |
AuthorAffiliation_xml | – name: 3 Department of Medicine, Karolinska Institute at Karolinska Hospital, Huddinge, Stockholm, Sweden – name: 5 INSERM, UMR1048,Team 2, I2MC, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France – name: University of Cambridge, United Kingdom – name: 8 Department of Experimental Medical Science, Lund University, Lund, Sweden – name: 4 Physiogenex, Prologue Biotech, Labège-Innopole, France – name: 1 INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France – name: 7 INSERM, UMR1048, Team 1, I2MC, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France – name: 9 Toulouse University Hospitals, INSERM, Clinical Investigation Center, Toulouse, France – name: 2 University of Toulouse, UMR1048, Paul Sabatier University, France – name: 6 Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France |
Author_xml | – sequence: 1 givenname: Amandine surname: Girousse fullname: Girousse, Amandine – sequence: 2 givenname: Geneviève surname: Tavernier fullname: Tavernier, Geneviève – sequence: 3 givenname: Carine surname: Valle fullname: Valle, Carine – sequence: 4 givenname: Cedric surname: Moro fullname: Moro, Cedric – sequence: 5 givenname: Niklas surname: Mejhert fullname: Mejhert, Niklas – sequence: 6 givenname: Anne-Laure surname: Dinel fullname: Dinel, Anne-Laure – sequence: 7 givenname: Marianne surname: Houssier fullname: Houssier, Marianne – sequence: 8 givenname: Balbine surname: Roussel fullname: Roussel, Balbine – sequence: 9 givenname: Aurèle surname: Besse-Patin fullname: Besse-Patin, Aurèle – sequence: 10 givenname: Marion surname: Combes fullname: Combes, Marion – sequence: 11 givenname: Lucile surname: Mir fullname: Mir, Lucile – sequence: 12 givenname: Laurent surname: Monbrun fullname: Monbrun, Laurent – sequence: 13 givenname: Véronic surname: Bézaire fullname: Bézaire, Véronic – sequence: 14 givenname: Bénédicte surname: Prunet-Marcassus fullname: Prunet-Marcassus, Bénédicte – sequence: 15 givenname: Aurélie surname: Waget fullname: Waget, Aurélie – sequence: 16 givenname: Isabelle surname: Vila fullname: Vila, Isabelle – sequence: 17 givenname: Sylvie surname: Caspar-Bauguil fullname: Caspar-Bauguil, Sylvie – sequence: 18 givenname: Katie surname: Louche fullname: Louche, Katie – sequence: 19 givenname: Marie-Adeline surname: Marques fullname: Marques, Marie-Adeline – sequence: 20 givenname: Aline surname: Mairal fullname: Mairal, Aline – sequence: 21 givenname: Marie-Laure surname: Renoud fullname: Renoud, Marie-Laure – sequence: 22 givenname: Jean surname: Galitzky fullname: Galitzky, Jean – sequence: 23 givenname: Cecilia surname: Holm fullname: Holm, Cecilia – sequence: 24 givenname: Etienne surname: Mouisel fullname: Mouisel, Etienne – sequence: 25 givenname: Claire surname: Thalamas fullname: Thalamas, Claire – sequence: 26 givenname: Nathalie surname: Viguerie fullname: Viguerie, Nathalie – sequence: 27 givenname: Thierry surname: Sulpice fullname: Sulpice, Thierry – sequence: 28 givenname: Rémy surname: Burcelin fullname: Burcelin, Rémy – sequence: 29 givenname: Peter surname: Arner fullname: Arner, Peter – sequence: 30 givenname: Dominique surname: Langin fullname: Langin, Dominique |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23431266$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-00841328$$DView record in HAL https://lup.lub.lu.se/record/3674672$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/e9d88119-b1e3-4dd3-8fc3-c541d330beac$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:126238584$$DView record from Swedish Publication Index |
BookMark | eNqVlF1v0zAYhSMEYh_wDxBE4gYkWuzYjhMukKqJbZU6htiAS8uxndXDjYPtFHbJP8dpU7ROGxqKoiTOc47fnDf2XvKwsY1KkmcQjCGi8O2l7VzDzbittB1DACAuyINkFxJMRrQoyMNr9zvJnveXAGRZmRWPk50MYQSzPN9Nfn_iLmhu0mkz15UO2japrdOJ1K31Kj3X3ncqncUnc-W1T6eL1tml8umR6URPnKjAK2u0X6S8kdHGd0Y36ZlqfHRb6nCVftNhbruQTkxQjm-mOOQhPeHeP0ke1dx49XS47idfDj-cHxyPZqdH04PJbCTKkoSRqkBdYoFEUakaUpxjASXIKkwkpQIAIgmo6pyqvISScgyozDiXZc5rRGkm0H7yYu3bGuvZkJ5nEEEc06CkiMR0TUjLL1nr9IK7K2a5ZqsB6y5YH5YwiuEMw5xAWHEocAVhIeuMYE6JQggISqPXaO3lf6q2q7bchqHv8U4xEhuBUeT5nXxrXeCGOeUVd2LOTNcLI2W0WMXpmSplUUBYsgoqxLCUiBW1QEwQDGUsqVK8T2B25xyma-NZDd73tHs_BNpVCyWFaoKLZW5VvvWm0XN2YZcMEZqjvIwGb9YG8xuy48mM6cYrt2AAFBiirFjCiL8a5nP2R6d8YAvthTKGN8p2q05mkPbGEX15A7293wN1wWNLdVPbWKboTdkEZRmIC6QgkRrfQsVDqoUWcU3WOo5vCV5vCSIT1K9wwTvv2fTs83-wH-_Pnn7dZp9f783fdDcLPwLv1oBw1nunaiZ0WP1M8eu0YRCwfpfZ5Mb6XYYNu0wU4xvijf8_ZX8ALX6DIA |
CitedBy_id | crossref_primary_10_1016_j_genrep_2023_101788 crossref_primary_10_1017_S095442241400002X crossref_primary_10_1007_s11356_021_14904_4 crossref_primary_10_3390_nu15020444 crossref_primary_10_1038_s41598_021_98234_y crossref_primary_10_3389_fendo_2021_716431 crossref_primary_10_1590_0004_2730000002727 crossref_primary_10_1016_j_molmet_2014_12_008 crossref_primary_10_15252_emmm_201404846 crossref_primary_10_1139_apnm_2018_0814 crossref_primary_10_1038_s42255_018_0007_6 crossref_primary_10_1007_s13679_016_0232_9 crossref_primary_10_1016_j_bbrc_2015_03_090 crossref_primary_10_1111_jnc_16064 crossref_primary_10_1016_j_aca_2021_338358 crossref_primary_10_1016_j_bcp_2018_07_005 crossref_primary_10_4155_fsoa_2017_0015 crossref_primary_10_1038_s41598_018_19619_0 crossref_primary_10_1080_10408398_2022_2115457 crossref_primary_10_18632_oncotarget_12080 crossref_primary_10_1016_j_taap_2014_07_025 crossref_primary_10_1016_j_tem_2014_03_002 crossref_primary_10_1038_s41598_017_02546_x crossref_primary_10_1038_s41574_019_0156_z crossref_primary_10_1038_s41574_021_00471_8 crossref_primary_10_1007_s13105_019_00676_6 crossref_primary_10_1126_sciadv_ads5963 crossref_primary_10_1017_S0007114522003622 crossref_primary_10_4239_wjd_v8_i4_143 crossref_primary_10_3390_molecules29061294 crossref_primary_10_1124_dmd_119_086538 crossref_primary_10_3945_ajcn_115_123463 crossref_primary_10_1124_mol_114_097485 crossref_primary_10_1194_jlr_M068395 crossref_primary_10_2147_DMSO_S250699 crossref_primary_10_1016_j_jnutbio_2022_108998 crossref_primary_10_1152_physrev_00063_2017 crossref_primary_10_3389_fendo_2017_00372 crossref_primary_10_1172_jci_insight_161229 crossref_primary_10_1186_s12967_023_03902_4 crossref_primary_10_1038_ijo_2014_70 crossref_primary_10_3389_fendo_2025_1514660 crossref_primary_10_1152_ajpendo_00110_2018 crossref_primary_10_1007_s00430_013_0294_1 crossref_primary_10_1016_j_metabol_2019_153999 crossref_primary_10_1016_j_metabol_2017_01_033 crossref_primary_10_1016_j_celrep_2020_108265 crossref_primary_10_3390_biom10101457 crossref_primary_10_1111_eci_13017 crossref_primary_10_1172_JCI145331 crossref_primary_10_3390_ijms20163987 crossref_primary_10_1038_s41574_020_00418_5 crossref_primary_10_1371_journal_pcbi_1004047 crossref_primary_10_1371_journal_pone_0098707 crossref_primary_10_1007_s00125_015_3719_0 crossref_primary_10_1002_cbic_201500501 crossref_primary_10_1038_s42255_023_00957_x crossref_primary_10_3390_antiox12081549 crossref_primary_10_1194_jlr_M058149 crossref_primary_10_1016_j_molmet_2019_05_002 crossref_primary_10_1194_jlr_M055798 crossref_primary_10_1016_j_coemr_2024_100559 crossref_primary_10_1111_cbdd_13463 crossref_primary_10_1007_s00125_015_3692_7 crossref_primary_10_1038_s41467_021_26638_5 crossref_primary_10_1096_fj_201802706R crossref_primary_10_1172_jci_insight_175623 crossref_primary_10_1007_s13105_023_00950_8 crossref_primary_10_1016_j_tem_2016_11_007 crossref_primary_10_1021_jacs_1c10836 crossref_primary_10_1002_bit_26711 crossref_primary_10_1073_pnas_1516004112 crossref_primary_10_1172_jci_insight_92564 crossref_primary_10_1111_bph_13498 crossref_primary_10_1016_j_diabet_2017_10_010 crossref_primary_10_1051_medsci_2019107 crossref_primary_10_1016_j_cmet_2014_07_018 crossref_primary_10_1016_j_bbalip_2016_02_016 crossref_primary_10_1002_advs_202100106 crossref_primary_10_1042_BCJ20190472 crossref_primary_10_1210_jc_2014_1074 crossref_primary_10_1016_j_cmet_2013_07_001 crossref_primary_10_1038_s41598_019_48775_0 crossref_primary_10_1152_ajpendo_00374_2016 crossref_primary_10_1186_s12933_023_02100_2 crossref_primary_10_1016_j_cmet_2017_07_004 crossref_primary_10_1186_s12986_017_0184_4 crossref_primary_10_1073_pnas_1517142113 crossref_primary_10_1371_journal_pone_0153990 crossref_primary_10_1016_j_biochi_2015_10_024 crossref_primary_10_1172_jci_insight_131870 crossref_primary_10_4161_adip_25162 crossref_primary_10_1038_s42003_021_01858_z crossref_primary_10_1111_obr_12298 crossref_primary_10_1038_s41467_020_16756_x crossref_primary_10_1007_s12265_013_9495_7 crossref_primary_10_1530_JOE_16_0513 crossref_primary_10_1016_j_cmet_2014_07_008 crossref_primary_10_2337_dc16_1072 crossref_primary_10_1016_j_atherosclerosis_2018_03_041 crossref_primary_10_1038_nrm_2017_76 crossref_primary_10_1371_journal_pone_0188621 crossref_primary_10_1016_j_ejphar_2015_03_005 crossref_primary_10_1371_journal_pone_0097675 crossref_primary_10_1016_j_coph_2020_09_008 crossref_primary_10_1007_s11684_024_1116_0 crossref_primary_10_2337_db17_0551 crossref_primary_10_1007_s00125_018_4572_8 crossref_primary_10_1016_j_diabet_2015_02_004 crossref_primary_10_1186_s40104_018_0293_6 crossref_primary_10_1016_j_celrep_2018_04_055 crossref_primary_10_1080_10408363_2017_1343274 crossref_primary_10_1039_C7FO01599B crossref_primary_10_1152_ajpheart_00191_2019 crossref_primary_10_1093_cvr_cvac120 crossref_primary_10_2147_DDDT_S243893 crossref_primary_10_2337_db16_0014 crossref_primary_10_1038_ncomms14859 crossref_primary_10_1016_j_metabol_2016_09_008 crossref_primary_10_1038_s42255_021_00493_6 crossref_primary_10_3389_fendo_2024_1313597 crossref_primary_10_1016_j_molmet_2016_03_002 crossref_primary_10_4103_pm_pm_108_19 crossref_primary_10_1097_SHK_0000000000001439 crossref_primary_10_3390_ijms23095099 crossref_primary_10_1016_j_stem_2020_03_013 crossref_primary_10_3390_ijms15046184 crossref_primary_10_1002_oby_23081 crossref_primary_10_1159_000381224 crossref_primary_10_1194_jlr_M084947 crossref_primary_10_15212_AMM_2024_0057 crossref_primary_10_1016_j_molmet_2023_101830 crossref_primary_10_1074_jbc_RA120_014682 crossref_primary_10_1016_j_tem_2016_04_007 crossref_primary_10_1194_jlr_M075044 crossref_primary_10_1042_CS20150423 crossref_primary_10_1016_j_ecl_2020_02_002 crossref_primary_10_3389_fphar_2024_1364881 crossref_primary_10_3389_fphys_2019_00528 crossref_primary_10_1016_j_xpro_2022_101518 crossref_primary_10_1016_j_jsbmb_2014_11_017 crossref_primary_10_1152_physrev_00034_2017 crossref_primary_10_1016_j_hfc_2024_12_006 crossref_primary_10_1038_s41598_021_83018_1 crossref_primary_10_1016_j_jep_2023_117049 crossref_primary_10_1093_molehr_gax049 crossref_primary_10_1152_ajpendo_00301_2023 crossref_primary_10_1152_ajpendo_00084_2017 crossref_primary_10_3389_fphys_2022_826314 crossref_primary_10_1038_ijo_2015_211 crossref_primary_10_1074_jbc_M114_626077 crossref_primary_10_1016_j_bbadis_2022_166476 crossref_primary_10_1016_j_molmet_2020_01_009 crossref_primary_10_1152_japplphysiol_00475_2017 crossref_primary_10_1016_j_cmet_2020_10_006 crossref_primary_10_1016_j_plipres_2020_101084 crossref_primary_10_1126_scisignal_aaa4374 crossref_primary_10_1080_13813455_2017_1415359 crossref_primary_10_1194_jlr_M072066 crossref_primary_10_1038_s41574_023_00809_4 crossref_primary_10_15547_bjvm_2390 crossref_primary_10_1016_j_molmet_2022_101480 crossref_primary_10_1016_j_cmet_2021_01_001 |
Cites_doi | 10.1016/j.tem.2010.09.002 10.1172/JCI108764 10.2337/db11-1508 10.2337/diabetes.50.5.1158 10.1038/nature03711 10.1172/JCI34260 10.1016/S0022-2275(20)32429-9 10.1016/j.bbrc.2009.05.002 10.1016/S0140-6736(04)16359-9 10.1371/journal.pgen.1002959 10.1038/ijo.2011.113 10.1073/pnas.90.11.4897 10.1038/35055575 10.1126/science.1100747 10.1172/JCI42845 10.1210/jc.2010-1575 10.1016/j.plipres.2009.05.001 10.1210/en.2002-0036 10.1016/j.cmet.2011.05.002 10.2337/diabetes.54.11.3190 10.1152/ajpendo.00259.2003 10.1038/nature10986 10.1001/archinte.167.7.642 10.1074/jbc.M112.374041 10.1139/y04-117 10.1096/fj.08-120923 10.1016/j.chembiol.2006.09.010 10.1016/j.bbrc.2004.01.053 10.1097/MED.0b013e3283444b09 10.1124/jpet.105.086926 10.1194/jlr.M200250-JLR200 10.1007/s00125-009-1300-4 10.1194/jlr.M300190-JLR200 10.1210/en.2010-0661 10.1016/S0140-6736(10)60408-4 10.1016/S0022-2275(20)32199-4 10.1016/j.diabet.2009.05.001 10.1074/jbc.M213032200 10.1194/jlr.M500294-JLR200 10.1016/j.bbalip.2010.10.001 10.1074/jbc.M109.008631 10.1371/journal.pone.0001793 10.1074/jbc.M109.047787 10.1161/01.ATV.0000183883.72263.13 10.1172/JCI41636 10.2337/db11-0425 10.1126/science.1439783 10.1038/nm.2439 10.2337/diab.31.10.911 10.1126/science.1123965 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Public Library of Science 2013 Girousse et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Girousse A, Tavernier G, Valle C, Moro C, Mejhert N, et al. (2013) Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass. PLoS Biol 11(2): e1001485. doi:10.1371/journal.pbio.1001485 Distributed under a Creative Commons Attribution 4.0 International License 2013 Girousse et al 2013 Girousse et al |
Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Girousse et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Girousse A, Tavernier G, Valle C, Moro C, Mejhert N, et al. (2013) Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass. PLoS Biol 11(2): e1001485. doi:10.1371/journal.pbio.1001485 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2013 Girousse et al 2013 Girousse et al |
CorporateAuthor | Lunds universitet Institutionen för experimentell medicinsk vetenskap Profile areas and other strong research environments Lund University Strategiska forskningsområden (SFO) Department of Experimental Medical Science Molecular Endocrinology EXODIAB: Excellence of Diabetes Research in Sweden Faculty of Medicine Strategic research areas (SRA) Medicinska fakulteten Profilområden och andra starka forskningsmiljöer Molekylär endokrinologi |
CorporateAuthor_xml | – name: Faculty of Medicine – name: Medicinska fakulteten – name: Molecular Endocrinology – name: Strategiska forskningsområden (SFO) – name: Department of Experimental Medical Science – name: Molekylär endokrinologi – name: Strategic research areas (SRA) – name: Lunds universitet – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: EXODIAB: Excellence of Diabetes Research in Sweden – name: Institutionen för experimentell medicinsk vetenskap – name: Profile areas and other strong research environments |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 1XC VOOES 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC DOA CZG |
DOI | 10.1371/journal.pbio.1001485 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
DocumentTitleAlternate | Adipose Tissue Lipolysis and Insulin Sensitivity |
EISSN | 1545-7885 |
ExternalDocumentID | 1314343758 oai_doaj_org_article_42416511ba1c4b118df254a75e330c77 oai_swepub_ki_se_531243 oai_portal_research_lu_se_publications_e9d88119_b1e3_4dd3_8fc3_c541d330beac oai_lup_lub_lu_se_e9d88119_b1e3_4dd3_8fc3_c541d330beac PMC3576369 oai_HAL_inserm_00841328v1 2906546241 A322026685 23431266 10_1371_journal_pbio_1001485 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY QF4 QN7 RNS RPM SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M .GJ ADXHL C1A CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 1XC UMC VOOES 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC AAPBV ABPTK AGJBV CZG M~E ZA5 |
ID | FETCH-LOGICAL-c995t-eb0f94c3c8bef17464c1d02b45d77c005d50bf67e691d7a407d2aad96af3772c3 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:29 EDT 2023 Wed Aug 27 01:31:38 EDT 2025 Mon Sep 01 03:29:13 EDT 2025 Sat Aug 30 03:21:46 EDT 2025 Thu Jul 03 04:54:01 EDT 2025 Thu Aug 21 18:09:41 EDT 2025 Fri May 09 12:22:10 EDT 2025 Fri Sep 05 08:25:41 EDT 2025 Fri Jul 25 10:20:31 EDT 2025 Tue Jun 17 22:01:45 EDT 2025 Tue Jun 10 21:02:05 EDT 2025 Fri Jun 27 05:31:34 EDT 2025 Fri Jun 27 05:31:19 EDT 2025 Fri Jun 27 05:30:04 EDT 2025 Mon Jul 21 05:54:38 EDT 2025 Tue Jul 01 00:57:32 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Sterol Esterase Humans Middle Aged Lipid Metabolism Male Glucose Niacin Lipolysis Young Adult Adipose Tissue, White Animals Adolescent Adult Aged Mice Adipose Tissue |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c995t-eb0f94c3c8bef17464c1d02b45d77c005d50bf67e691d7a407d2aad96af3772c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: AG GT CT NV TS RB PA DL. Performed the experiments: AG GT CV CM NM ALD MH ABP MC LMir LMonbrun VB BPM AW IV KL MAM AM MLR JG. Analyzed the data: AG GT CV CM NM BR BPM SCB TS CH EM RB PA DL. Contributed reagents/materials/analysis tools: CH. Wrote the paper: AG DL. The authors have declared that no competing interests exist. |
ORCID | 0000-0002-1730-9915 0000-0001-5812-6720 0000-0002-0214-0344 0000-0002-6834-5721 0000-0002-5329-4597 0000-0003-4294-0597 0000-0002-8668-9413 0000-0002-2669-7825 0000-0001-6142-4710 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.1001485 |
PMID | 23431266 |
PQID | 1314343758 |
PQPubID | 1436341 |
ParticipantIDs | plos_journals_1314343758 doaj_primary_oai_doaj_org_article_42416511ba1c4b118df254a75e330c77 swepub_primary_oai_swepub_ki_se_531243 swepub_primary_oai_portal_research_lu_se_publications_e9d88119_b1e3_4dd3_8fc3_c541d330beac swepub_primary_oai_lup_lub_lu_se_e9d88119_b1e3_4dd3_8fc3_c541d330beac pubmedcentral_primary_oai_pubmedcentral_nih_gov_3576369 hal_primary_oai_HAL_inserm_00841328v1 proquest_miscellaneous_1312173693 proquest_journals_1314343758 gale_infotracmisc_A322026685 gale_infotracacademiconefile_A322026685 gale_incontextgauss_ISR_A322026685 gale_incontextgauss_ISN_A322026685 gale_incontextgauss_IOV_A322026685 pubmed_primary_23431266 crossref_citationtrail_10_1371_journal_pbio_1001485 crossref_primary_10_1371_journal_pbio_1001485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-01 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | JW Kolaczynski (ref49) 1994; 18 V Large (ref10) 1998; 39 S Lucas (ref44) 2003; 44 D Langin (ref11) 2005; 54 K Strom (ref15) 2008; 3 R Zimmermann (ref16) 2003; 44 V Bourlier (ref39) 2009; 35 A Kosteli (ref17) 2010; 120 H Mulder (ref43) 2003; 278 T McLaughlin (ref4) 2007; 167 PJ Voshol (ref33) 2003; 144 A Girousse (ref9) 2012; 36 AJ Hoy (ref25) 2011; 152 VT Samuel (ref7) 2010; 375 M Lafontan (ref1) 2009; 48 K Harada (ref13) 2003; 285 E Arner (ref50) 2012; 61 TH Claus (ref19) 2005; 315 G Haemmerle (ref24) 2006; 312 Q Yang (ref20) 2005; 436 F Benhamed (ref37) 2012; 122 N Viguerie (ref51) 2012; 8 G Haemmerle (ref30) 2011; 17 MA Herman (ref35) 2012; 484 D Langin (ref42) 1993; 90 J Bolinder (ref48) 1982; 31 JD McGarry (ref32) 1977; 60 V Large (ref12) 1999; 40 S Cinti (ref23) 2005; 46 AM Rodriguez (ref28) 2004; 315 WJ Shen (ref29) 2011; 1811 ND Oakes (ref18) 2001; 50 IJ Lodhi (ref38) 2011; 22 M Riachi (ref45) 2004; 82 PC Kienesberger (ref26) 2009; 284 EP Mottillo (ref31) 2012; 287 F Karpe (ref6) 2011; 60 E Klimcakova (ref47) 2011; 96 K Strom (ref14) 2009; 23 S Schenk (ref22) 2008; 118 ED Abel (ref34) 2001; 409 M Wang (ref41) 2006; 13 C Duffaut (ref46) 2009; 384 R Zimmermann (ref3) 2004; 306 M Ahmadian (ref27) 2011; 13 F Karpe (ref40) 2004; 363 V Bezaire (ref2) 2009; 284 JD McGarry (ref5) 1992; 258 R Roberts (ref36) 2009; 52 G Boden (ref21) 2011; 18 T Suganami (ref8) 2005; 25 23431264 - PLoS Biol. 2013;11(2):e1001483 17052606 - Chem Biol. 2006 Oct;13(10):1019-27 12923228 - J Lipid Res. 2003 Nov;44(11):2089-99 16162821 - J Pharmacol Exp Ther. 2005 Dec;315(3):1396-402 12835327 - J Biol Chem. 2003 Sep 19;278(38):36380-8 21673652 - Int J Obes (Lond). 2012 Apr;36(4):581-94 22688341 - Diabetes. 2012 Aug;61(8):1986-93 19539513 - Diabetes Metab. 2009 Sep;35(4):251-60 23028366 - PLoS Genet. 2012 Sep;8(9):e1002959 20950707 - Biochim Biophys Acta. 2011 Jan;1811(1):9-16 16249444 - Diabetes. 2005 Nov;54(11):3190-7 16150820 - J Lipid Res. 2005 Nov;46(11):2347-55 6759224 - Diabetes. 1982 Oct;31(10):911-6 22466288 - Nature. 2012 Apr 19;484(7394):333-8 16675698 - Science. 2006 May 5;312(5774):734-7 20889351 - Trends Endocrinol Metab. 2011 Jan;22(1):1-8 19433586 - J Biol Chem. 2009 Jul 3;284(27):18282-91 15550674 - Science. 2004 Nov 19;306(5700):1383-6 8186813 - Int J Obes Relat Metab Disord. 1994 Mar;18(3):161-6 11334421 - Diabetes. 2001 May;50(5):1158-65 10553009 - J Lipid Res. 1999 Nov;40(11):2059-66 21297467 - Curr Opin Endocrinol Diabetes Obes. 2011 Apr;18(2):139-43 21857651 - Nat Med. 2011 Sep;17(9):1076-85 16123319 - Arterioscler Thromb Vasc Biol. 2005 Oct;25(10):2062-8 1439783 - Science. 1992 Oct 30;258(5083):766-70 18769626 - J Clin Invest. 2008 Sep;118(9):2992-3002 12518034 - J Lipid Res. 2003 Jan;44(1):154-63 21106876 - Endocrinology. 2011 Jan;152(1):48-58 20609972 - Lancet. 2010 Jun 26;375(9733):2267-77 16034410 - Nature. 2005 Jul 21;436(7049):356-62 22546860 - J Clin Invest. 2012 Jun;122(6):2176-94 12954598 - Am J Physiol Endocrinol Metab. 2003 Dec;285(6):E1182-95 19723629 - J Biol Chem. 2009 Oct 30;284(44):30218-29 19464318 - Prog Lipid Res. 2009 Sep;48(5):275-97 21948998 - Diabetes. 2011 Oct;60(10):2441-9 17420421 - Arch Intern Med. 2007 Apr 9;167(7):642-8 19246492 - FASEB J. 2009 Jul;23(7):2307-16 21641555 - Cell Metab. 2011 Jun 8;13(6):739-48 15183629 - Lancet. 2004 Jun 5;363(9424):1892-4 14766202 - Biochem Biophys Res Commun. 2004 Mar 5;315(2):255-63 19422792 - Biochem Biophys Res Commun. 2009 Jul 10;384(4):482-5 9717730 - J Lipid Res. 1998 Aug;39(8):1688-95 8506334 - Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4897-901 11217863 - Nature. 2001 Feb 8;409(6821):729-33 21047918 - J Clin Endocrinol Metab. 2011 Jan;96(1):E73-82 19252892 - Diabetologia. 2009 May;52(5):882-90 22685301 - J Biol Chem. 2012 Jul 20;287(30):25038-48 20877011 - J Clin Invest. 2010 Oct;120(10):3466-79 874089 - J Clin Invest. 1977 Jul;60(1):265-70 15644949 - Can J Physiol Pharmacol. 2004 Dec;82(12):1075-83 12865325 - Endocrinology. 2003 Aug;144(8):3456-62 18335062 - PLoS One. 2008;3(3):e1793 |
References_xml | – volume: 22 start-page: 1 year: 2011 ident: ref38 article-title: Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2010.09.002 – volume: 60 start-page: 265 year: 1977 ident: ref32 article-title: A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis publication-title: J Clin Invest doi: 10.1172/JCI108764 – volume: 61 start-page: 1986 year: 2012 ident: ref50 article-title: Adipose tissue microRNAs as regulators of CCL2 production in human obesity publication-title: Diabetes doi: 10.2337/db11-1508 – volume: 50 start-page: 1158 year: 2001 ident: ref18 article-title: Thiazolidinediones increase plasma-adipose tissue FFA exchange capacity and enhance insulin-mediated control of systemic FFA availability publication-title: Diabetes doi: 10.2337/diabetes.50.5.1158 – volume: 436 start-page: 356 year: 2005 ident: ref20 article-title: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes publication-title: Nature doi: 10.1038/nature03711 – volume: 118 start-page: 2992 year: 2008 ident: ref22 article-title: Insulin sensitivity: modulation by nutrients and inflammation publication-title: J Clin Invest doi: 10.1172/JCI34260 – volume: 40 start-page: 2059 year: 1999 ident: ref12 article-title: Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)32429-9 – volume: 384 start-page: 482 year: 2009 ident: ref46 article-title: Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2009.05.002 – volume: 363 start-page: 1892 year: 2004 ident: ref40 article-title: The nicotinic acid receptor—a new mechanism for an old drug publication-title: Lancet doi: 10.1016/S0140-6736(04)16359-9 – volume: 8 start-page: e1002959 year: 2012 ident: ref51 article-title: Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002959 – volume: 36 start-page: 581 year: 2012 ident: ref9 article-title: Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models publication-title: Int J Obes doi: 10.1038/ijo.2011.113 – volume: 90 start-page: 4897 year: 1993 ident: ref42 article-title: Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.90.11.4897 – volume: 409 start-page: 729 year: 2001 ident: ref34 article-title: Adipose-selective targeting of the Glut4 gene impairs insulin action in muscle and liver publication-title: Nature doi: 10.1038/35055575 – volume: 306 start-page: 1383 year: 2004 ident: ref3 article-title: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase publication-title: Science doi: 10.1126/science.1100747 – volume: 18 start-page: 161 year: 1994 ident: ref49 article-title: A new technique for biopsy of human abdominal fat under local anaesthesia with Lidocaine publication-title: Int J Obesity – volume: 120 start-page: 3466 year: 2010 ident: ref17 article-title: Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue publication-title: J Clin Invest doi: 10.1172/JCI42845 – volume: 96 start-page: E73 year: 2011 ident: ref47 article-title: Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2010-1575 – volume: 48 start-page: 275 year: 2009 ident: ref1 article-title: Lipolysis and lipid mobilization in human adipose tissue publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2009.05.001 – volume: 144 start-page: 3456 year: 2003 ident: ref33 article-title: Increased hepatic insulin sensitivity together with decreased hepatic triglyceride stores in hormone-sensitive lipase-deficient mice publication-title: Endocrinology doi: 10.1210/en.2002-0036 – volume: 13 start-page: 739 year: 2011 ident: ref27 article-title: Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype publication-title: Cell Metab doi: 10.1016/j.cmet.2011.05.002 – volume: 54 start-page: 3190 year: 2005 ident: ref11 article-title: Adipocyte lipases and defect of lipolysis in human obesity publication-title: Diabetes doi: 10.2337/diabetes.54.11.3190 – volume: 285 start-page: E1182 year: 2003 ident: ref13 article-title: Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00259.2003 – volume: 484 start-page: 333 year: 2012 ident: ref35 article-title: A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism publication-title: Nature doi: 10.1038/nature10986 – volume: 167 start-page: 642 year: 2007 ident: ref4 article-title: Heterogeneity in the prevalence of risk factors for cardiovascular disease and type 2 diabetes mellitus in obese individuals: effect of differences in insulin sensitivity publication-title: Arch Int Med doi: 10.1001/archinte.167.7.642 – volume: 287 start-page: 25038 year: 2012 ident: ref31 article-title: Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) alpha and delta in brown adipocytes to match fatty acid oxidation with supply publication-title: J Biol Chem doi: 10.1074/jbc.M112.374041 – volume: 82 start-page: 1075 year: 2004 ident: ref45 article-title: Percent relative cumulative frequency analysis in indirect calorimetry: application to studies of transgenic mice publication-title: Can J Physiol Pharmacol doi: 10.1139/y04-117 – volume: 23 start-page: 2307 year: 2009 ident: ref14 article-title: Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL publication-title: FASEB J doi: 10.1096/fj.08-120923 – volume: 13 start-page: 1019 year: 2006 ident: ref41 article-title: Small-molecule compounds that modulate lipolysis in adipose tissue: targeting strategies and molecular classes publication-title: Chem Biol doi: 10.1016/j.chembiol.2006.09.010 – volume: 315 start-page: 255 year: 2004 ident: ref28 article-title: Adipocyte differentiation of multipotent cells established from human adipose tissue publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2004.01.053 – volume: 18 start-page: 139 year: 2011 ident: ref21 article-title: Obesity, insulin resistance and free fatty acids publication-title: Curr Op Endocrinol Diabetes Obesity doi: 10.1097/MED.0b013e3283444b09 – volume: 315 start-page: 1396 year: 2005 ident: ref19 article-title: Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.105.086926 – volume: 44 start-page: 154 year: 2003 ident: ref44 article-title: Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis publication-title: J Lipid Res doi: 10.1194/jlr.M200250-JLR200 – volume: 52 start-page: 882 year: 2009 ident: ref36 article-title: Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans publication-title: Diabetologia doi: 10.1007/s00125-009-1300-4 – volume: 44 start-page: 2089 year: 2003 ident: ref16 article-title: Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue publication-title: J Lipid Res doi: 10.1194/jlr.M300190-JLR200 – volume: 152 start-page: 48 year: 2011 ident: ref25 article-title: Adipose triglyceride lipase-null mice are resistant to high-fat diet-induced insulin resistance despite reduced energy expenditure and ectopic lipid accumulation publication-title: Endocrinology doi: 10.1210/en.2010-0661 – volume: 375 start-page: 2267 year: 2010 ident: ref7 article-title: Lipid-induced insulin resistance: unravelling the mechanism publication-title: Lancet doi: 10.1016/S0140-6736(10)60408-4 – volume: 39 start-page: 1688 year: 1998 ident: ref10 article-title: Hormone-sensitive lipase expression and activity in relation to lipolysis in human fat cells publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)32199-4 – volume: 35 start-page: 251 year: 2009 ident: ref39 article-title: Role of macrophage tissue infiltration in obesity and insulin resistance publication-title: Diabetes Metab doi: 10.1016/j.diabet.2009.05.001 – volume: 278 start-page: 36380 year: 2003 ident: ref43 article-title: Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact publication-title: J Biol Chem doi: 10.1074/jbc.M213032200 – volume: 46 start-page: 2347 year: 2005 ident: ref23 article-title: Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans publication-title: J Lipid Res doi: 10.1194/jlr.M500294-JLR200 – volume: 1811 start-page: 9 year: 2011 ident: ref29 article-title: Hormone-sensitive lipase modulates adipose metabolism through PPARgamma publication-title: Biochim Biophys Acta doi: 10.1016/j.bbalip.2010.10.001 – volume: 284 start-page: 18282 year: 2009 ident: ref2 article-title: Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes publication-title: J Biol Chem doi: 10.1074/jbc.M109.008631 – volume: 3 start-page: e1793 year: 2008 ident: ref15 article-title: Attainment of brown adipocyte features in white adipocytes of hormone-sensitive lipase null mice publication-title: PLoS ONE doi: 10.1371/journal.pone.0001793 – volume: 284 start-page: 30218 year: 2009 ident: ref26 article-title: Adipose triglyceride lipase deficiency causes tissue-specific changes in insulin signaling publication-title: J Biol Chem doi: 10.1074/jbc.M109.047787 – volume: 25 start-page: 2062 year: 2005 ident: ref8 article-title: A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000183883.72263.13 – volume: 122 start-page: 2176 year: 2012 ident: ref37 article-title: The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans publication-title: J Clin Invest doi: 10.1172/JCI41636 – volume: 60 start-page: 2441 year: 2011 ident: ref6 article-title: Fatty acids, obesity, and insulin resistance: time for a reevaluation publication-title: Diabetes doi: 10.2337/db11-0425 – volume: 258 start-page: 766 year: 1992 ident: ref5 article-title: What if Minkowski had been ageusic? An alternative angle on diabetes publication-title: Science doi: 10.1126/science.1439783 – volume: 17 start-page: 1076 year: 2011 ident: ref30 article-title: ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1 publication-title: Nat Med doi: 10.1038/nm.2439 – volume: 31 start-page: 911 year: 1982 ident: ref48 article-title: Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus publication-title: Diabetes doi: 10.2337/diab.31.10.911 – volume: 312 start-page: 734 year: 2006 ident: ref24 article-title: Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase publication-title: Science doi: 10.1126/science.1123965 – reference: 16162821 - J Pharmacol Exp Ther. 2005 Dec;315(3):1396-402 – reference: 12518034 - J Lipid Res. 2003 Jan;44(1):154-63 – reference: 19464318 - Prog Lipid Res. 2009 Sep;48(5):275-97 – reference: 19252892 - Diabetologia. 2009 May;52(5):882-90 – reference: 19433586 - J Biol Chem. 2009 Jul 3;284(27):18282-91 – reference: 19246492 - FASEB J. 2009 Jul;23(7):2307-16 – reference: 21297467 - Curr Opin Endocrinol Diabetes Obes. 2011 Apr;18(2):139-43 – reference: 11217863 - Nature. 2001 Feb 8;409(6821):729-33 – reference: 8186813 - Int J Obes Relat Metab Disord. 1994 Mar;18(3):161-6 – reference: 14766202 - Biochem Biophys Res Commun. 2004 Mar 5;315(2):255-63 – reference: 22546860 - J Clin Invest. 2012 Jun;122(6):2176-94 – reference: 19422792 - Biochem Biophys Res Commun. 2009 Jul 10;384(4):482-5 – reference: 20950707 - Biochim Biophys Acta. 2011 Jan;1811(1):9-16 – reference: 16150820 - J Lipid Res. 2005 Nov;46(11):2347-55 – reference: 22688341 - Diabetes. 2012 Aug;61(8):1986-93 – reference: 20877011 - J Clin Invest. 2010 Oct;120(10):3466-79 – reference: 16249444 - Diabetes. 2005 Nov;54(11):3190-7 – reference: 21106876 - Endocrinology. 2011 Jan;152(1):48-58 – reference: 15183629 - Lancet. 2004 Jun 5;363(9424):1892-4 – reference: 21047918 - J Clin Endocrinol Metab. 2011 Jan;96(1):E73-82 – reference: 21641555 - Cell Metab. 2011 Jun 8;13(6):739-48 – reference: 19723629 - J Biol Chem. 2009 Oct 30;284(44):30218-29 – reference: 16123319 - Arterioscler Thromb Vasc Biol. 2005 Oct;25(10):2062-8 – reference: 8506334 - Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4897-901 – reference: 16675698 - Science. 2006 May 5;312(5774):734-7 – reference: 20609972 - Lancet. 2010 Jun 26;375(9733):2267-77 – reference: 15550674 - Science. 2004 Nov 19;306(5700):1383-6 – reference: 12923228 - J Lipid Res. 2003 Nov;44(11):2089-99 – reference: 16034410 - Nature. 2005 Jul 21;436(7049):356-62 – reference: 17420421 - Arch Intern Med. 2007 Apr 9;167(7):642-8 – reference: 19539513 - Diabetes Metab. 2009 Sep;35(4):251-60 – reference: 22685301 - J Biol Chem. 2012 Jul 20;287(30):25038-48 – reference: 12865325 - Endocrinology. 2003 Aug;144(8):3456-62 – reference: 12954598 - Am J Physiol Endocrinol Metab. 2003 Dec;285(6):E1182-95 – reference: 18769626 - J Clin Invest. 2008 Sep;118(9):2992-3002 – reference: 21673652 - Int J Obes (Lond). 2012 Apr;36(4):581-94 – reference: 874089 - J Clin Invest. 1977 Jul;60(1):265-70 – reference: 12835327 - J Biol Chem. 2003 Sep 19;278(38):36380-8 – reference: 17052606 - Chem Biol. 2006 Oct;13(10):1019-27 – reference: 6759224 - Diabetes. 1982 Oct;31(10):911-6 – reference: 21948998 - Diabetes. 2011 Oct;60(10):2441-9 – reference: 20889351 - Trends Endocrinol Metab. 2011 Jan;22(1):1-8 – reference: 9717730 - J Lipid Res. 1998 Aug;39(8):1688-95 – reference: 11334421 - Diabetes. 2001 May;50(5):1158-65 – reference: 21857651 - Nat Med. 2011 Sep;17(9):1076-85 – reference: 1439783 - Science. 1992 Oct 30;258(5083):766-70 – reference: 18335062 - PLoS One. 2008;3(3):e1793 – reference: 22466288 - Nature. 2012 Apr 19;484(7394):333-8 – reference: 23431264 - PLoS Biol. 2013;11(2):e1001483 – reference: 23028366 - PLoS Genet. 2012 Sep;8(9):e1002959 – reference: 10553009 - J Lipid Res. 1999 Nov;40(11):2059-66 – reference: 15644949 - Can J Physiol Pharmacol. 2004 Dec;82(12):1075-83 |
SSID | ssj0022928 |
Score | 2.486439 |
Snippet | When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been... Partial inhibition of adipose tissue lipolysis does not increase fat mass but improves glucose metabolism and insulin sensitivity through modulation of fatty... When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have... |
SourceID | plos doaj swepub pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1001485 |
SubjectTerms | Adipose tissue Adipose Tissue - drug effects Adipose Tissue - metabolism Adipose Tissue, White - drug effects Adipose Tissue, White - metabolism Adipose tissues Adolescent Adult Aged Animals Biologi Biological Sciences Biology Body fat Body weight Cardiovascular diseases Diabetes Endocrinology and metabolism Glucose Glucose metabolism Human health and pathology Humans Insulin Insulin resistance Life Sciences Lipid Metabolism - drug effects Lipolysis Lipolysis - drug effects Male Medicine Metabolism Mice Middle Aged Natural Sciences Naturvetenskap Niacin - pharmacology Obesity Physiological aspects Proteins Risk factors Sterol Esterase - metabolism Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXxLuBggzicQrdxE4cHwtqVRAUBBRVXCw_uxG7yYpkkTjyzxk73tVGrNQeOOSQeGzHM2N7Jhl_g9Azx8AKKEuaEi1dSrkjKc8rmSpaOKqMzGVI9_bhpDw-pe_OirONVF8-JmyABx4Yt09hiynBKlAy01SBOWwc-DSSFRY8cc3COfIJn6ycqehq5TxkVfVQMzCdGYmH5gjL9qOMXi1U3QYEIurzKG9sSgG7f71CX536AMmdxaztthmh_8ZSjhBHwy51dBPdiOYlPhiGdQtdsc1tdG1IOPn7DvrzyQ8YCOpmWqsQrYVbh6WpF21ncR-kgGdwF5BKcB0-OdgOx8h2PLc9aM2s7uZYNgbHSHbc-TD4IQ8F9l9222WPw394uerCyR7PwVC_i06PDr--OU5jEoZUc170qVUTx6kmulLWgftSUp2ZSQ6yNIxpmMOmmChXMlvyzDAJ_qHJpTS8lI6A5a7JPbTTtI3dRZhzx4rcUWcrScHuVBYMEDlxilPGTKUSRFZSEDoilPtEGTMRfrsx8FQGLgovOxFll6B0XWsxIHRcQP_aC3hN6_G1wwPQOhG1TlykdQl66tVDeASNxofonMtl14m3H7-JA1giwbEtfU_bib6cXIbo84joZSRyLXBEy3h2Avjq4btGlHsjSlgs9Kj4-dTzY2PsxwfvgRrWu7nwyRUykle_sgTteo1fMbADdmb-DDJ4l9DDahZsL36yLvad-xi-xrbLQAP-Lyk5SdD9YdKsXySHyhm8YYLYaDqN3nRc0tTTgIZOwGOGRhN0OEy8UZXZcgGXgkt0VlhuqirLuFCZJYIaQ0TlNBG6oJkBwSqwQhL0fUs7gy8sIgDXNLa32PiyfsnGX2xpPD76Ufs2YU_MKXnwP5T0Ibqeh-QtPvhqD-30P5f2EZjQvXocVsu_L2zHKQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoERIXxLuBggLicQrdxE6cnNCCWlrUFkRbqHqx_OxGbJPQZJE48s8ZO95tI1bQQw4bT8Zej2c840y-QeiFoeAFZBmJsOQmIoXBUZHkPBIkNUQonnBX7m1vP9s-Ih-P02N_4Nb6tMq5TXSGWtXSnpFvxDi2H0GCe_u2-RHZqlH27aovobGCrjvoMljP9Pgi4EoKV1vVAs6AUlPsP53DNN7wknrTiLJ2OETEVlO-tDU5BP-FnV6Z2DTJ1WZat8tc0b8zKge4o26v2rqNbnknMxz3q-IOuqaru-hGX3by1z30-7NdL0CwU01K4XK2wtqEY1U2davDQyeLcBd-ObySsD940G34oc9vD_d0B2tnWrZnIa8UsHH57OGBTYbvq1GE38puUs-6cDx1sM2-iy3ehXvgrt9HR1ubh--3I1-KIZJFkXaRFiNTEIllLrSBICYjMlajBCSqKJWgySodCZNRnRWxohyiRJVwroqMGwz-u8QP0GpVV3oNhUVhaJoYYnTOCXifQoMbwkdGFIRSlYsA4bkUmPQ45bZcxpS5l28U4pV-FpmVHfOyC1C0eKrpcTr-Q__OCnhBa1G23Y36_JR5pWUE3JsMPFLBY0kEhGLKQDzNaaoxHklKA_TcLg9mcTQqm6hzymdty3Y-fWVjMJQQ3ma2p-VEB_tXIfoyIHrtiUwNMyK5_4IC5tWCeA0o1weUYDLkoPnlxM7Hpf--Pd4FarB6Z8yWWIhxkv-MA7RmV_x8Alt2oYTQw1wLljc_WzTbzm0mX6XrmaOBKBhnBQ7Qw15pFgNJ4OEYRhggOlCnwUiHLVU5cZjoGOJmYBqgzV7xBo9MZw1cAi7WaqYLledgLpiINWZEKcxyIzGTKYkVCFaALxKgkyV8-oiYeRiuiefXXDpfvyLzV0uY-1vfS8sTdsaE4Ef_nuTH6GbiirPY5Kp1tNqdz_QTcJE78dTZwT9OTr41 priority: 102 providerName: ProQuest |
Title | Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23431266 https://www.proquest.com/docview/1314343758 https://www.proquest.com/docview/1312173693 https://inserm.hal.science/inserm-00841328 https://pubmed.ncbi.nlm.nih.gov/PMC3576369 https://lup.lub.lu.se/record/3674672 oai:portal.research.lu.se:publications/e9d88119-b1e3-4dd3-8fc3-c541d330beac http://kipublications.ki.se/Default.aspx?queryparsed=id:126238584 https://doaj.org/article/42416511ba1c4b118df254a75e330c77 http://dx.doi.org/10.1371/journal.pbio.1001485 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELb6EBIXxLuBsgqIxynVJnbi5IDQFrW00C2lLyoulp_diG2yNFlEj_xzxk521YhF9JCVNh6PkxmPPZNMvkHopaHgBSQJCbDkJiCZwUEWpTwQJDZEKB5xV-5tuJ_snJCPZ_HZEprVbG0FWC0M7Ww9qZPL8cavH1fvwODfuqoNNJx12piIvHSYQiSNl9Eq7E2JDceGZP5eIYoyV23VQtCAmVPcfkz3Ly6dzcph-s9X7uWRTZxcmYzLapFz-neOZQeJ1O1e23fRndbt9AfNPLmHlnRxH91qClFePUC_D-wMAoLdYpQLl8Xll8YfqHxSVto_dtrx9-CfQzDxm0cRuvI_NBnv_lDXMJvGeXXh80IBG5fh7h_Z9PimPoX_Na9H5bT2B2MH5NwOsc1rfwgO_EN0sr11_H4naIszBDLL4jrQom8yIrFMhTYQ1iREhqofgY4VpRJsW8V9YRKqkyxUlEPcqCLOVZZwg8Gjl_gRWinKQq8hP8sMjSNDjE45AX9UaHBMeN-IjFCqUuEhPNMCky1yuS2gMWbudRyFCKaRIrO6Y63uPBTMe00a5I7_0G9aBc9pLe62O1FenrPWjBmxkwp8VMFDSQQEZ8pAhM1prDHuS0o99MJOD2aRNQqbunPOp1XFdj-fsgEsnRDwJnakxURH-zchOuwQvWmJTAkSkbz9pgLkamG9OpTrHUpYRGSn-dXIyuPave8M9oAa1sELZosuhDhKf4YeWrMzfibACsQZ2m-TIeqEEWZWsLj5-bzZDm5z-wpdTh0NxMU4ybCHHjdGM7-QCDqHcIUeoh1z6lxpt6XIRw4lHUMkDUw9tNUYXqfLeDqBQ8DBKs10ptI0DDMmQo0ZUQqz1EjMZExCBYoV4J146NsCPs3yxFpgrlHLb3LtifsNmb9ewLw99T23PGGvjAh-clPCp-h25Aq32MSrdbRSX071M3Cfa9FDy_SM9tDq5tb-wWHPPYSC309f0p5bK_8A2VnNQw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LctMwUNOmw8CF4V1DAcNQOJnGluLHgWFSaEloEjp9QIeL0LPJkNqmTmB65If4RlayE-ohA7304EOs1UrZXa125dUuQs90BFZAGBIPC6Y9kmjsJUHMPE5amnDJAmbLvfUHYeeQvD9qHS2hX7O7MCascqYTraKWmTBn5Bs-9s0lSDBvX-ffPFM1ynxdnZXQKMViR539AJeteNV9C_xdD4LtrYM3Ha-qKuCJJGlNPMWbOiECi5grDfZ4SIQvmwFMTkaRAKGUrSbXYaTCxJcRA4dHBozJJGQagykqMOBdRivE3GhtoJXNrcHu3tzFCxJbzdWkuAE1EuHqsh6O_I1KNl7mfJTZzEfE1G8-txnamgHznWF5aAIzG_k4KxYZv3_HcNYyndrdcfsGul6ZtW67lMObaEmlt9CVstDl2W30c9dIKAB00-GI2ygxN9NuW47yrFDugeW-24NfNkOKWx51qMJ9V0bUu301AWkdj4oTl6US0NgIenffhN-X9S_cT6PJMJtO3PbYJoquhthmE7cPDsIddHgpbLqLGmmWqlXkJomOWoEmWsWMgL3LFRg-rKl5QqJIxtxBeMYFKqrM6KZAx5jaz30ReEglFanhHa145yBv3isvM4P8B37TMHgOa_J62xfZ6TGt1AQlYFCFYANz5gvCwfmTGjx4FrUUxk0RRQ56asSDmswdqQkNOmbToqDdDx9pG1QzONShGWkx0P7gIkB7NaAXFZDOgCKCVXc2gK4mbVgNcq0GCUpK1JrXh4Ye5_57p90DaNCzJ9QUdfBxEH_3HbRqJH5GwIL-WfYwwmwVLG5-Mm82g5vYwVRlUwsDfjcOE-yge-WimU8kgM4-zNBBUW051WZab0lHQ5uFHYOnDkgdtFUuvFqX8TSHh8NDC0VVIuPY9xPKfYUpkRLTWAtMRYv4EhjLwfpx0OcFeEofnFaJv4YVvvzcif4FkT9fgLx69XVkcMJeHBB8_99Efoyudg76PdrrDnYeoGuBLQ1jQrvWUGNyOlUPwUCf8EeVVnTRl8tWxL8BFID9FA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENa0ZWC4MLxrKCAYCifT2FIs-8AwgTa09EGHttDhIvRsMqR2qBOYHvlb_DpWspPWQwa49OBDrPVK0a5W39qrXYSeWgYoIEloSJSwIc0sCbM4FaGkbUulFrHw5d62d5L1A_rusH04h35NzsK4sMqJTfSGWhfKvSNfiUjkDkECvF2xdVjE7mr31fBb6CpIuS-tk3IalYpsmtMf4L6VLzdWQdbLcdxd23-zHtYVBkKVZe1RaGTLZlQRlUpjAZsnVEW6FcNANWMKFFS3W9ImzCRZpJkA50fHQugsEZYALFUE-M6jS4wAqoK1xA7PnL0483VdXbIbMCiM1Mf2CItWai15MZT9wudAoq6S87lt0VcPmO4R8z0XorkwHBTlLBj8ZzRnI-ep3ye719G1GuDiTqWRN9CcyW-iy1XJy9Nb6Oeu01Ug2Mh7fenjxXBhcUf3h0Vp8L7XA7wFv3yuFFy99DAlflvF1uNtMwK9HfTLYyxyDWx8LD3ec4H4VSUM_Kk_6hXjEe4MfMrououuGOFtcBVuo4MLEdIdtJAXuVlEOMssa8eWWpMKCshXGoBAomVlRhnTqQwQmUiBqzpHuivVMeD-wx8DX6maRe5kx2vZBSicPjWscoT8g_61E_CU1mX49jeKkyNeGwxOAVolgIaliBSV4AZqC768YG1DSEsxFqAnTj24y-GRu9VwJMZlyTfef-QdMNLgWieup9lEezv_Q_ShQfS8JrIFzIgS9ekNmFeXQKxBudSgBHOlGs3LPTcf5_77emcLqMHiHnNX3iEicfo9CtCi0_jJBJb8zABAD5NVMLv58bTZde6iCHNTjD0NeOAkyUiA7laLZjqQGB6OYIQBYo3l1BhpsyXv93w-dgI-OzAN0Fq18BqPDMZDuCRcvDTcZDpNoyjjMjKEU60JT60iXLVppEGwEnBQgD7P4FN547xOAdar-Q3Pvdv_T-bPZjCvb33tO56wK8eU3Pv7JD9CV8D88q2Nnc376Grsa8S4GK8ltDA6GZsHgNRH8qE3iRh9uWgb_Btoff_b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+Inhibition+of+Adipose+Tissue+Lipolysis+Improves+Glucose+Metabolism+and+Insulin+Sensitivity+Without+Alteration+of+Fat+Mass&rft.jtitle=PLoS+biology&rft.au=Girousse%2C+A&rft.au=Tavernier%2C+G&rft.au=Valle%2C+C&rft.au=Moro%2C+C&rft.date=2013-02-01&rft.issn=1544-9173&rft.volume=11&rft.issue=2&rft.spage=e1001485&rft_id=info:doi/10.1371%2Fjournal.pbio.1001485&rft.externalDocID=oai_swepub_ki_se_531243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |