In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS 2 at nanoscale

1T-MoS2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS2 is thermodynamically metastable due to the distorted crystal structure. Recently, researchers have detected the J1 and A1g Raman peaks after the HER process and co...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 16; pp. 9246 - 9254
Main Authors Huang, Junxiao, Pan, Xuelei, Liao, Xiaobin, Yan, Mengyu, Dunn, Bruce, Luo, Wen, Mai, Liqiang
Format Journal Article
LanguageEnglish
Published England 30.04.2020
Online AccessGet full text

Cover

Loading…
Abstract 1T-MoS2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS2 is thermodynamically metastable due to the distorted crystal structure. Recently, researchers have detected the J1 and A1g Raman peaks after the HER process and confirmed that the 2H-1T phase possesses good stability. Therefore, continuous HER is likely to transform 1T-MoS2 into a stable 2H-1T mixed phase. The in situ characterization of 1T-MoS2 individual nanosheets in the HER process is important to understand the intrinsic electrocatalytic behaviour at confined nanoscale, which has rarely been investigated. Herein, we built an individual 1T-MoS2 nanosheet micro-nano device by the intercalation of N-butyllithium into 2H-MoS2. Then, the device was kept at an overpotential (η) of 450 mV, which was much lower than the onset potential, for 20 minutes to ensure continuous HER. Through this electrochemical treatment, we successfully obtained a mixed phase of 2H-1T and monitored the electrochemical phase transition by in situ Raman mapping and atomic force microscopy (AFM). The HER performance of the 2H-1T phase was superior to that of 1T-MoS2 and 2H-MoS2. Additionally, computational simulations demonstrated that the 2H-1T phase exhibited optimal hydrogen adsorption energy. The presented work displays the excellent catalysis of the mixed phase obtained by the electrochemical phase transition, which provides new directions for improving the catalytic activity of TMDs.
AbstractList 1T-MoS 2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS 2 is thermodynamically metastable due to the distorted crystal structure. Recently, researchers have detected the J 1 and A 1g Raman peaks after the HER process and confirmed that the 2H–1T phase possesses good stability. Therefore, continuous HER is likely to transform 1T-MoS 2 into a stable 2H–1T mixed phase. The in situ characterization of 1T-MoS 2 individual nanosheets in the HER process is important to understand the intrinsic electrocatalytic behaviour at confined nanoscale, which has rarely been investigated. Herein, we built an individual 1T-MoS 2 nanosheet micro–nano device by the intercalation of N -butyllithium into 2H-MoS 2 . Then, the device was kept at an overpotential ( η ) of 450 mV, which was much lower than the onset potential, for 20 minutes to ensure continuous HER. Through this electrochemical treatment, we successfully obtained a mixed phase of 2H–1T and monitored the electrochemical phase transition by in situ Raman mapping and atomic force microscopy (AFM). The HER performance of the 2H–1T phase was superior to that of 1T-MoS 2 and 2H-MoS 2 . Additionally, computational simulations demonstrated that the 2H–1T phase exhibited optimal hydrogen adsorption energy. The presented work displays the excellent catalysis of the mixed phase obtained by the electrochemical phase transition, which provides new directions for improving the catalytic activity of TMDs.
1T-MoS2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS2 is thermodynamically metastable due to the distorted crystal structure. Recently, researchers have detected the J1 and A1g Raman peaks after the HER process and confirmed that the 2H-1T phase possesses good stability. Therefore, continuous HER is likely to transform 1T-MoS2 into a stable 2H-1T mixed phase. The in situ characterization of 1T-MoS2 individual nanosheets in the HER process is important to understand the intrinsic electrocatalytic behaviour at confined nanoscale, which has rarely been investigated. Herein, we built an individual 1T-MoS2 nanosheet micro-nano device by the intercalation of N-butyllithium into 2H-MoS2. Then, the device was kept at an overpotential (η) of 450 mV, which was much lower than the onset potential, for 20 minutes to ensure continuous HER. Through this electrochemical treatment, we successfully obtained a mixed phase of 2H-1T and monitored the electrochemical phase transition by in situ Raman mapping and atomic force microscopy (AFM). The HER performance of the 2H-1T phase was superior to that of 1T-MoS2 and 2H-MoS2. Additionally, computational simulations demonstrated that the 2H-1T phase exhibited optimal hydrogen adsorption energy. The presented work displays the excellent catalysis of the mixed phase obtained by the electrochemical phase transition, which provides new directions for improving the catalytic activity of TMDs.
Author Pan, Xuelei
Mai, Liqiang
Huang, Junxiao
Yan, Mengyu
Dunn, Bruce
Liao, Xiaobin
Luo, Wen
Author_xml – sequence: 1
  givenname: Junxiao
  orcidid: 0000-0003-3332-4522
  surname: Huang
  fullname: Huang, Junxiao
  email: mlq518@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn
– sequence: 2
  givenname: Xuelei
  orcidid: 0000-0002-8317-2080
  surname: Pan
  fullname: Pan, Xuelei
  email: mlq518@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn
– sequence: 3
  givenname: Xiaobin
  orcidid: 0000-0002-2455-832X
  surname: Liao
  fullname: Liao, Xiaobin
  email: mlq518@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn
– sequence: 4
  givenname: Mengyu
  orcidid: 0000-0003-1028-0627
  surname: Yan
  fullname: Yan, Mengyu
  organization: Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195-2120, USA
– sequence: 5
  givenname: Bruce
  orcidid: 0000-0001-5669-4740
  surname: Dunn
  fullname: Dunn, Bruce
  organization: Materials Science and Engineering, University of California, Los Angeles, California 90096, USA
– sequence: 6
  givenname: Wen
  orcidid: 0000-0002-1732-295X
  surname: Luo
  fullname: Luo, Wen
  email: mlq518@whut.edu.cn, luowen_1991@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn and Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China. luowen_1991@whut.edu.cn
– sequence: 7
  givenname: Liqiang
  orcidid: 0000-0003-4259-7725
  surname: Mai
  fullname: Mai, Liqiang
  email: mlq518@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32307502$$D View this record in MEDLINE/PubMed
BookMark eNpFkElPwzAYRC1URBe48AOQz0gBL0kcH1HZigpI0Htkx59pUGJXtnsov56iLpxmDm_m8MZo4LwDhC4puaGEy9t78vZBGC3pywkaMZKTjHPBBsde5kM0jvGbkFLykp-hIWeciIKwEfqZORzbtMa9d23yoXVf2FucloChgyYF3yyhbxvVdRvcOrNuwODVUkXAKSi3nbbe7Reh92bj1IHuIamYlO4A00X26j8xwyphp5yPWwLO0alVXYSLfU7Q4vFhMX3O5u9Ps-ndPGukZJklEqqyEIZbUwmqK2W1VgIamlNtiZJCCJlTqqmRRlpuiqJgpbA6p7KsrOATdL27bYKPMYCtV6HtVdjUlNR__up_f1v4agev1roHc0QPwvgv895ucw
CitedBy_id crossref_primary_10_1007_s12274_023_5664_4
crossref_primary_10_1002_aenm_202300183
crossref_primary_10_1021_acs_chemrev_3c00422
crossref_primary_10_1002_apxr_202200060
crossref_primary_10_1016_j_jcis_2024_01_200
crossref_primary_10_1038_s43586_022_00164_0
crossref_primary_10_1002_adfm_202105675
crossref_primary_10_1002_smll_202202336
crossref_primary_10_1016_j_cej_2021_132072
crossref_primary_10_1016_j_cej_2022_137683
crossref_primary_10_1016_j_cej_2023_141939
crossref_primary_10_1021_acscentsci_0c01022
crossref_primary_10_1002_adfm_202214085
crossref_primary_10_1039_D1DT01948A
crossref_primary_10_1039_D2NR00491G
crossref_primary_10_1007_s12274_022_5326_y
crossref_primary_10_1039_D1QM00674F
crossref_primary_10_1021_acsaem_3c01080
crossref_primary_10_1021_acs_chemrev_3c00132
crossref_primary_10_1039_D1SE01188J
crossref_primary_10_1016_j_cej_2024_149122
crossref_primary_10_1021_acs_chemrev_3c00711
crossref_primary_10_3390_ma13122786
crossref_primary_10_1016_j_cej_2024_151934
crossref_primary_10_1016_j_mtsust_2021_100073
crossref_primary_10_1016_j_jallcom_2022_164539
crossref_primary_10_1039_D2SC01398C
crossref_primary_10_1002_smm2_1142
crossref_primary_10_1002_pssa_202100551
crossref_primary_10_1039_D2RA03066G
crossref_primary_10_1021_acsami_3c02192
crossref_primary_10_1007_s40820_021_00784_3
crossref_primary_10_1088_1361_648X_acd219
crossref_primary_10_1021_acs_analchem_4c00515
Cites_doi 10.1002/smll.201900078
10.1021/acsami.9b01374
10.1021/acs.nanolett.7b00855
10.1021/acs.nanolett.5b01196
10.1007/s12274-014-0677-7
10.1021/acs.nanolett.8b01335
10.1038/s41929-018-0195-1
10.1002/adma.201505597
10.1103/PhysRevB.44.3955
10.1103/PhysRevB.88.245428
10.1002/adma.201701955
10.1063/1.4862859
10.1021/acscatal.8b03365
10.1073/pnas.1316792110
10.1038/s41467-017-00778-z
10.1002/anie.201710512
10.1021/jp4076355
10.1038/s41467-020-15231-x
10.1038/ncomms7088
10.1002/adma.201705509
10.1126/science.1102896
10.1038/srep07293
10.1002/smll.201900131
10.1021/acs.nanolett.5b02619
10.1039/C2CS35272A
10.1021/acs.jpcc.5b04658
10.1021/acscatal.6b01211
10.1038/nnano.2012.193
10.1002/adma.201807771
10.1038/s41586-018-0574-4
10.1021/acs.nanolett.7b05213
10.1002/adma.201604464
10.1038/s41563-018-0187-1
10.1021/acsnano.8b02649
10.1038/nnano.2009.177
10.1007/s12274-017-1802-1
10.1103/PhysRevB.85.235407
10.1038/s41557-018-0035-6
10.1039/C4CS00470A
10.1002/anie.201708748
10.1038/s41467-019-09269-9
10.1039/C5CS00151J
10.1002/smll.201901883
10.1021/jacs.6b03714
10.1021/acs.nanolett.8b00452
10.1039/C7CP00990A
ContentType Journal Article
DBID NPM
AAYXX
CITATION
DOI 10.1039/D0NR02161J
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 9254
ExternalDocumentID 10_1039_D0NR02161J
32307502
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
NPM
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
CITATION
ID FETCH-LOGICAL-c992-f09e8657d3fd871b8afbba7ec141bf0a97779411b1d9d9f3d555267fb41968f73
ISSN 2040-3364
IngestDate Fri Aug 23 00:27:51 EDT 2024
Sat Sep 28 08:27:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c992-f09e8657d3fd871b8afbba7ec141bf0a97779411b1d9d9f3d555267fb41968f73
ORCID 0000-0001-5669-4740
0000-0003-1028-0627
0000-0003-3332-4522
0000-0002-8317-2080
0000-0002-2455-832X
0000-0002-1732-295X
0000-0003-4259-7725
PMID 32307502
PageCount 9
ParticipantIDs crossref_primary_10_1039_D0NR02161J
pubmed_primary_32307502
PublicationCentury 2000
PublicationDate 2020-Apr-30
2020-04-30
PublicationDateYYYYMMDD 2020-04-30
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-Apr-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
References Yu (D0NR02161J-(cit18)/*[position()=1]) 2018; 10
Er (D0NR02161J-(cit5)/*[position()=1]) 2018; 18
Gao (D0NR02161J-(cit13)/*[position()=1]) 2015; 119
Ke (D0NR02161J-(cit33)/*[position()=1]) 2019
Sandoval (D0NR02161J-(cit27)/*[position()=1]) 1991; 44
Lin (D0NR02161J-(cit32)/*[position()=1]) 2018; 562
Chen (D0NR02161J-(cit39)/*[position()=1]) 2015; 6
Wang (D0NR02161J-(cit37)/*[position()=1]) 2017; 8
Kan (D0NR02161J-(cit14)/*[position()=1]) 2014; 118
Calandra (D0NR02161J-(cit28)/*[position()=1]) 2013; 88
Jiao (D0NR02161J-(cit44)/*[position()=1]) 2015; 44
Thoi (D0NR02161J-(cit1)/*[position()=1]) 2013; 42
Wang (D0NR02161J-(cit15)/*[position()=1]) 2015; 8
Zhang (D0NR02161J-(cit2)/*[position()=1]) 2018; 1
Wang (D0NR02161J-(cit22)/*[position()=1]) 2012; 7
Voiry (D0NR02161J-(cit11)/*[position()=1]) 2016; 28
Zhang (D0NR02161J-(cit43)/*[position()=1]) 2019; 15
Tang (D0NR02161J-(cit45)/*[position()=1]) 2016; 6
Ling (D0NR02161J-(cit4)/*[position()=1]) 2019; 31
Zhang (D0NR02161J-(cit21)/*[position()=1]) 2017; 29
Fang (D0NR02161J-(cit17)/*[position()=1]) 2018; 57
Yin (D0NR02161J-(cit46)/*[position()=1]) 2016; 138
Zhuang (D0NR02161J-(cit3)/*[position()=1]) 2018; 57
Zhou (D0NR02161J-(cit8)/*[position()=1]) 2019
Wang (D0NR02161J-(cit12)/*[position()=1]) 2017; 29
Zhu (D0NR02161J-(cit34)/*[position()=1]) 2019; 10
Tan (D0NR02161J-(cit31)/*[position()=1]) 2018; 30
Watzele (D0NR02161J-(cit38)/*[position()=1]) 2018; 8
Xia (D0NR02161J-(cit41)/*[position()=1]) 2009; 4
Henckel (D0NR02161J-(cit6)/*[position()=1]) 2018; 18
Yan (D0NR02161J-(cit9)/*[position()=1]) 2018; 11
Yan (D0NR02161J-(cit10)/*[position()=1]) 2017; 17
Yang (D0NR02161J-(cit35)/*[position()=1]) 2020; 11
Li (D0NR02161J-(cit26)/*[position()=1]) 2012; 85
Wang (D0NR02161J-(cit30)/*[position()=1]) 2013; 110
Tan (D0NR02161J-(cit29)/*[position()=1]) 2018; 12
Xiong (D0NR02161J-(cit23)/*[position()=1]) 2015; 15
Huang (D0NR02161J-(cit25)/*[position()=1]) 2017; 19
Liu (D0NR02161J-(cit19)/*[position()=1]) 2018; 17
Guo (D0NR02161J-(cit24)/*[position()=1]) 2015; 15
Nguyen (D0NR02161J-(cit7)/*[position()=1]) 2019; 11
Novoselov (D0NR02161J-(cit36)/*[position()=1]) 2004; 306
Sun (D0NR02161J-(cit20)/*[position()=1]) 2018; 18
Fan (D0NR02161J-(cit42)/*[position()=1]) 2014; 115
Chu (D0NR02161J-(cit40)/*[position()=1]) 2014; 4
Voiry (D0NR02161J-(cit16)/*[position()=1]) 2015; 44
References_xml – start-page: 1900078
  year: 2019
  ident: D0NR02161J-(cit8)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201900078
  contributor:
    fullname: Zhou
– volume: 11
  start-page: 14786
  year: 2019
  ident: D0NR02161J-(cit7)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01374
  contributor:
    fullname: Nguyen
– volume: 17
  start-page: 4109
  year: 2017
  ident: D0NR02161J-(cit10)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00855
  contributor:
    fullname: Yan
– volume: 15
  start-page: 5081
  year: 2015
  ident: D0NR02161J-(cit24)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01196
  contributor:
    fullname: Guo
– volume: 8
  start-page: 566
  year: 2015
  ident: D0NR02161J-(cit15)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0677-7
  contributor:
    fullname: Wang
– volume: 18
  start-page: 3943
  year: 2018
  ident: D0NR02161J-(cit5)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01335
  contributor:
    fullname: Er
– volume: 1
  start-page: 985
  year: 2018
  ident: D0NR02161J-(cit2)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0195-1
  contributor:
    fullname: Zhang
– volume: 28
  start-page: 6197
  year: 2016
  ident: D0NR02161J-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505597
  contributor:
    fullname: Voiry
– volume: 44
  start-page: 3955
  year: 1991
  ident: D0NR02161J-(cit27)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.44.3955
  contributor:
    fullname: Sandoval
– volume: 88
  start-page: 245428
  year: 2013
  ident: D0NR02161J-(cit28)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.88.245428
  contributor:
    fullname: Calandra
– volume: 29
  start-page: 1701955
  year: 2017
  ident: D0NR02161J-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701955
  contributor:
    fullname: Zhang
– volume: 115
  start-page: 053527
  year: 2014
  ident: D0NR02161J-(cit42)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4862859
  contributor:
    fullname: Fan
– volume: 8
  start-page: 9456
  year: 2018
  ident: D0NR02161J-(cit38)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03365
  contributor:
    fullname: Watzele
– volume: 110
  start-page: 19701
  year: 2013
  ident: D0NR02161J-(cit30)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1316792110
  contributor:
    fullname: Wang
– volume: 8
  start-page: 645
  year: 2017
  ident: D0NR02161J-(cit37)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00778-z
  contributor:
    fullname: Wang
– volume: 57
  start-page: 1232
  year: 2018
  ident: D0NR02161J-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710512
  contributor:
    fullname: Fang
– volume: 118
  start-page: 1515
  year: 2014
  ident: D0NR02161J-(cit14)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4076355
  contributor:
    fullname: Kan
– volume: 11
  start-page: 1378
  year: 2020
  ident: D0NR02161J-(cit35)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15231-x
  contributor:
    fullname: Yang
– volume: 6
  start-page: 6088
  year: 2015
  ident: D0NR02161J-(cit39)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7088
  contributor:
    fullname: Chen
– volume: 30
  start-page: 1705509
  year: 2018
  ident: D0NR02161J-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705509
  contributor:
    fullname: Tan
– volume: 306
  start-page: 666
  year: 2004
  ident: D0NR02161J-(cit36)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1102896
  contributor:
    fullname: Novoselov
– volume: 4
  start-page: 7293
  year: 2014
  ident: D0NR02161J-(cit40)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep07293
  contributor:
    fullname: Chu
– start-page: 1900131
  year: 2019
  ident: D0NR02161J-(cit33)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201900131
  contributor:
    fullname: Ke
– volume: 15
  start-page: 6777
  year: 2015
  ident: D0NR02161J-(cit23)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02619
  contributor:
    fullname: Xiong
– volume: 42
  start-page: 2388
  year: 2013
  ident: D0NR02161J-(cit1)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35272A
  contributor:
    fullname: Thoi
– volume: 119
  start-page: 13124
  year: 2015
  ident: D0NR02161J-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b04658
  contributor:
    fullname: Gao
– volume: 6
  start-page: 4953
  year: 2016
  ident: D0NR02161J-(cit45)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01211
  contributor:
    fullname: Tang
– volume: 7
  start-page: 699
  year: 2012
  ident: D0NR02161J-(cit22)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
  contributor:
    fullname: Wang
– volume: 31
  start-page: 1807771
  year: 2019
  ident: D0NR02161J-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807771
  contributor:
    fullname: Ling
– volume: 562
  start-page: 254
  year: 2018
  ident: D0NR02161J-(cit32)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0574-4
  contributor:
    fullname: Lin
– volume: 18
  start-page: 2329
  year: 2018
  ident: D0NR02161J-(cit6)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05213
  contributor:
    fullname: Henckel
– volume: 29
  start-page: 1604464
  year: 2017
  ident: D0NR02161J-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604464
  contributor:
    fullname: Wang
– volume: 17
  start-page: 1108
  year: 2018
  ident: D0NR02161J-(cit19)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0187-1
  contributor:
    fullname: Liu
– volume: 12
  start-page: 5051
  year: 2018
  ident: D0NR02161J-(cit29)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02649
  contributor:
    fullname: Tan
– volume: 4
  start-page: 505
  year: 2009
  ident: D0NR02161J-(cit41)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.177
  contributor:
    fullname: Xia
– volume: 11
  start-page: 3205
  year: 2018
  ident: D0NR02161J-(cit9)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1802-1
  contributor:
    fullname: Yan
– volume: 85
  start-page: 235407
  year: 2012
  ident: D0NR02161J-(cit26)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.85.235407
  contributor:
    fullname: Li
– volume: 10
  start-page: 638
  year: 2018
  ident: D0NR02161J-(cit18)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0035-6
  contributor:
    fullname: Yu
– volume: 44
  start-page: 2060
  year: 2015
  ident: D0NR02161J-(cit44)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
  contributor:
    fullname: Jiao
– volume: 57
  start-page: 496
  year: 2018
  ident: D0NR02161J-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708748
  contributor:
    fullname: Zhuang
– volume: 10
  start-page: 1348
  year: 2019
  ident: D0NR02161J-(cit34)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09269-9
  contributor:
    fullname: Zhu
– volume: 44
  start-page: 2702
  year: 2015
  ident: D0NR02161J-(cit16)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00151J
  contributor:
    fullname: Voiry
– volume: 15
  start-page: 1901883
  year: 2019
  ident: D0NR02161J-(cit43)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201901883
  contributor:
    fullname: Zhang
– volume: 138
  start-page: 7965
  year: 2016
  ident: D0NR02161J-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03714
  contributor:
    fullname: Yin
– volume: 18
  start-page: 3435
  year: 2018
  ident: D0NR02161J-(cit20)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00452
  contributor:
    fullname: Sun
– volume: 19
  start-page: 13696
  year: 2017
  ident: D0NR02161J-(cit25)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00990A
  contributor:
    fullname: Huang
SSID ssj0069363
Score 2.3578691
Snippet 1T-MoS2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS2 is thermodynamically...
1T-MoS 2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS 2 is thermodynamically...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 9246
Title In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS 2 at nanoscale
URI https://www.ncbi.nlm.nih.gov/pubmed/32307502
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagK6HlgHizvGQJblUgjhO7Pi7P3aLtAYoopypObFGJOlU3kWB_PWPHiROxSMAlrZxxWvn7Mp6xZ8YIPafc1RG3bkmho5QmNJI8lRErRJkWkhBFbILz2YKdfE7nq2wVlrJddkktXxQXl-aV_A-q0Aa42izZf0C2fyg0wHfAF66AMFz_CuNTMz3f1M10617MvQ9gdmEa7ek2hS8H8N1m95WN3evffYN5y54MYdpoLd9jv63K9nB6J71VdQ52o02rIsvorPo0TWzao8lNdQ4So_ihxajRUcQvQs8b82OTV2Gbyqm4VQP_btNHAoGAa4VPuemp-rWVtUG3P5vh0kQSD3ZZlFNhiY1XpJSP9W0y5NVQe4IvyC5V6zG1VVHfxIuPYJIwMh8KASS7rQOY2qD2LE7C1NYHHHa3rqKDBDTSbIIOjj-8ev-lm7SZoIx21WupeBl-6hBd6zqPTJeRE-KMkeVNdMN7Efi4pcQtdEWZ2-j6oLbkHXRxarAlBw7kwJXGADX-jRzYkwM7cuBADt9jTA4cyIFbcuAE5zXuyXEXLd-9Xb4-ifxBG1Fhg491LNSMZbykugT_Wc5yLWXOVUFSInWcg4sAWpsQSUpRCk3LLMsSxrVMQX3PNKf30MRURj1AmIDDRpXIU8UKeNVTKQpOGRdEwqQbZ_oIPeuGcL1ry6msXRgEFesw5kfofju6vUwHwcM_3nmEDgMFH6NJvW_UE7AXa_nUY_0LvFZuBg
link.rule.ids 315,783,787,27938,27939
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+monitoring+of+the+electrochemically+induced+phase+transition+of+thermodynamically+metastable+1T-MoS+2+at+nanoscale&rft.jtitle=Nanoscale&rft.au=Huang%2C+Junxiao&rft.au=Pan%2C+Xuelei&rft.au=Liao%2C+Xiaobin&rft.au=Yan%2C+Mengyu&rft.date=2020-04-30&rft.eissn=2040-3372&rft.volume=12&rft.issue=16&rft.spage=9246&rft_id=info:doi/10.1039%2FD0NR02161J&rft_id=info%3Apmid%2F32307502&rft.externalDocID=32307502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon