In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS 2 at nanoscale
1T-MoS2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS2 is thermodynamically metastable due to the distorted crystal structure. Recently, researchers have detected the J1 and A1g Raman peaks after the HER process and co...
Saved in:
Published in | Nanoscale Vol. 12; no. 16; pp. 9246 - 9254 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
30.04.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | 1T-MoS2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS2 is thermodynamically metastable due to the distorted crystal structure. Recently, researchers have detected the J1 and A1g Raman peaks after the HER process and confirmed that the 2H-1T phase possesses good stability. Therefore, continuous HER is likely to transform 1T-MoS2 into a stable 2H-1T mixed phase. The in situ characterization of 1T-MoS2 individual nanosheets in the HER process is important to understand the intrinsic electrocatalytic behaviour at confined nanoscale, which has rarely been investigated. Herein, we built an individual 1T-MoS2 nanosheet micro-nano device by the intercalation of N-butyllithium into 2H-MoS2. Then, the device was kept at an overpotential (η) of 450 mV, which was much lower than the onset potential, for 20 minutes to ensure continuous HER. Through this electrochemical treatment, we successfully obtained a mixed phase of 2H-1T and monitored the electrochemical phase transition by in situ Raman mapping and atomic force microscopy (AFM). The HER performance of the 2H-1T phase was superior to that of 1T-MoS2 and 2H-MoS2. Additionally, computational simulations demonstrated that the 2H-1T phase exhibited optimal hydrogen adsorption energy. The presented work displays the excellent catalysis of the mixed phase obtained by the electrochemical phase transition, which provides new directions for improving the catalytic activity of TMDs. |
---|---|
AbstractList | 1T-MoS
2
is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS
2
is thermodynamically metastable due to the distorted crystal structure. Recently, researchers have detected the J
1
and A
1g
Raman peaks after the HER process and confirmed that the 2H–1T phase possesses good stability. Therefore, continuous HER is likely to transform 1T-MoS
2
into a stable 2H–1T mixed phase. The
in situ
characterization of 1T-MoS
2
individual nanosheets in the HER process is important to understand the intrinsic electrocatalytic behaviour at confined nanoscale, which has rarely been investigated. Herein, we built an individual 1T-MoS
2
nanosheet micro–nano device by the intercalation of
N
-butyllithium into 2H-MoS
2
. Then, the device was kept at an overpotential (
η
) of 450 mV, which was much lower than the onset potential, for 20 minutes to ensure continuous HER. Through this electrochemical treatment, we successfully obtained a mixed phase of 2H–1T and monitored the electrochemical phase transition by
in situ
Raman mapping and atomic force microscopy (AFM). The HER performance of the 2H–1T phase was superior to that of 1T-MoS
2
and 2H-MoS
2
. Additionally, computational simulations demonstrated that the 2H–1T phase exhibited optimal hydrogen adsorption energy. The presented work displays the excellent catalysis of the mixed phase obtained by the electrochemical phase transition, which provides new directions for improving the catalytic activity of TMDs. 1T-MoS2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS2 is thermodynamically metastable due to the distorted crystal structure. Recently, researchers have detected the J1 and A1g Raman peaks after the HER process and confirmed that the 2H-1T phase possesses good stability. Therefore, continuous HER is likely to transform 1T-MoS2 into a stable 2H-1T mixed phase. The in situ characterization of 1T-MoS2 individual nanosheets in the HER process is important to understand the intrinsic electrocatalytic behaviour at confined nanoscale, which has rarely been investigated. Herein, we built an individual 1T-MoS2 nanosheet micro-nano device by the intercalation of N-butyllithium into 2H-MoS2. Then, the device was kept at an overpotential (η) of 450 mV, which was much lower than the onset potential, for 20 minutes to ensure continuous HER. Through this electrochemical treatment, we successfully obtained a mixed phase of 2H-1T and monitored the electrochemical phase transition by in situ Raman mapping and atomic force microscopy (AFM). The HER performance of the 2H-1T phase was superior to that of 1T-MoS2 and 2H-MoS2. Additionally, computational simulations demonstrated that the 2H-1T phase exhibited optimal hydrogen adsorption energy. The presented work displays the excellent catalysis of the mixed phase obtained by the electrochemical phase transition, which provides new directions for improving the catalytic activity of TMDs. |
Author | Pan, Xuelei Mai, Liqiang Huang, Junxiao Yan, Mengyu Dunn, Bruce Liao, Xiaobin Luo, Wen |
Author_xml | – sequence: 1 givenname: Junxiao orcidid: 0000-0003-3332-4522 surname: Huang fullname: Huang, Junxiao email: mlq518@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn – sequence: 2 givenname: Xuelei orcidid: 0000-0002-8317-2080 surname: Pan fullname: Pan, Xuelei email: mlq518@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn – sequence: 3 givenname: Xiaobin orcidid: 0000-0002-2455-832X surname: Liao fullname: Liao, Xiaobin email: mlq518@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn – sequence: 4 givenname: Mengyu orcidid: 0000-0003-1028-0627 surname: Yan fullname: Yan, Mengyu organization: Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195-2120, USA – sequence: 5 givenname: Bruce orcidid: 0000-0001-5669-4740 surname: Dunn fullname: Dunn, Bruce organization: Materials Science and Engineering, University of California, Los Angeles, California 90096, USA – sequence: 6 givenname: Wen orcidid: 0000-0002-1732-295X surname: Luo fullname: Luo, Wen email: mlq518@whut.edu.cn, luowen_1991@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn and Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China. luowen_1991@whut.edu.cn – sequence: 7 givenname: Liqiang orcidid: 0000-0003-4259-7725 surname: Mai fullname: Mai, Liqiang email: mlq518@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. mlq518@whut.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32307502$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkElPwzAYRC1URBe48AOQz0gBL0kcH1HZigpI0Htkx59pUGJXtnsov56iLpxmDm_m8MZo4LwDhC4puaGEy9t78vZBGC3pywkaMZKTjHPBBsde5kM0jvGbkFLykp-hIWeciIKwEfqZORzbtMa9d23yoXVf2FucloChgyYF3yyhbxvVdRvcOrNuwODVUkXAKSi3nbbe7Reh92bj1IHuIamYlO4A00X26j8xwyphp5yPWwLO0alVXYSLfU7Q4vFhMX3O5u9Ps-ndPGukZJklEqqyEIZbUwmqK2W1VgIamlNtiZJCCJlTqqmRRlpuiqJgpbA6p7KsrOATdL27bYKPMYCtV6HtVdjUlNR__up_f1v4agev1roHc0QPwvgv895ucw |
CitedBy_id | crossref_primary_10_1007_s12274_023_5664_4 crossref_primary_10_1002_aenm_202300183 crossref_primary_10_1021_acs_chemrev_3c00422 crossref_primary_10_1002_apxr_202200060 crossref_primary_10_1016_j_jcis_2024_01_200 crossref_primary_10_1038_s43586_022_00164_0 crossref_primary_10_1002_adfm_202105675 crossref_primary_10_1002_smll_202202336 crossref_primary_10_1016_j_cej_2021_132072 crossref_primary_10_1016_j_cej_2022_137683 crossref_primary_10_1016_j_cej_2023_141939 crossref_primary_10_1021_acscentsci_0c01022 crossref_primary_10_1002_adfm_202214085 crossref_primary_10_1039_D1DT01948A crossref_primary_10_1039_D2NR00491G crossref_primary_10_1007_s12274_022_5326_y crossref_primary_10_1039_D1QM00674F crossref_primary_10_1021_acsaem_3c01080 crossref_primary_10_1021_acs_chemrev_3c00132 crossref_primary_10_1039_D1SE01188J crossref_primary_10_1016_j_cej_2024_149122 crossref_primary_10_1021_acs_chemrev_3c00711 crossref_primary_10_3390_ma13122786 crossref_primary_10_1016_j_cej_2024_151934 crossref_primary_10_1016_j_mtsust_2021_100073 crossref_primary_10_1016_j_jallcom_2022_164539 crossref_primary_10_1039_D2SC01398C crossref_primary_10_1002_smm2_1142 crossref_primary_10_1002_pssa_202100551 crossref_primary_10_1039_D2RA03066G crossref_primary_10_1021_acsami_3c02192 crossref_primary_10_1007_s40820_021_00784_3 crossref_primary_10_1088_1361_648X_acd219 crossref_primary_10_1021_acs_analchem_4c00515 |
Cites_doi | 10.1002/smll.201900078 10.1021/acsami.9b01374 10.1021/acs.nanolett.7b00855 10.1021/acs.nanolett.5b01196 10.1007/s12274-014-0677-7 10.1021/acs.nanolett.8b01335 10.1038/s41929-018-0195-1 10.1002/adma.201505597 10.1103/PhysRevB.44.3955 10.1103/PhysRevB.88.245428 10.1002/adma.201701955 10.1063/1.4862859 10.1021/acscatal.8b03365 10.1073/pnas.1316792110 10.1038/s41467-017-00778-z 10.1002/anie.201710512 10.1021/jp4076355 10.1038/s41467-020-15231-x 10.1038/ncomms7088 10.1002/adma.201705509 10.1126/science.1102896 10.1038/srep07293 10.1002/smll.201900131 10.1021/acs.nanolett.5b02619 10.1039/C2CS35272A 10.1021/acs.jpcc.5b04658 10.1021/acscatal.6b01211 10.1038/nnano.2012.193 10.1002/adma.201807771 10.1038/s41586-018-0574-4 10.1021/acs.nanolett.7b05213 10.1002/adma.201604464 10.1038/s41563-018-0187-1 10.1021/acsnano.8b02649 10.1038/nnano.2009.177 10.1007/s12274-017-1802-1 10.1103/PhysRevB.85.235407 10.1038/s41557-018-0035-6 10.1039/C4CS00470A 10.1002/anie.201708748 10.1038/s41467-019-09269-9 10.1039/C5CS00151J 10.1002/smll.201901883 10.1021/jacs.6b03714 10.1021/acs.nanolett.8b00452 10.1039/C7CP00990A |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION |
DOI | 10.1039/D0NR02161J |
DatabaseName | PubMed CrossRef |
DatabaseTitle | PubMed CrossRef |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 9254 |
ExternalDocumentID | 10_1039_D0NR02161J 32307502 |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I NPM O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX CITATION |
ID | FETCH-LOGICAL-c992-f09e8657d3fd871b8afbba7ec141bf0a97779411b1d9d9f3d555267fb41968f73 |
ISSN | 2040-3364 |
IngestDate | Fri Aug 23 00:27:51 EDT 2024 Sat Sep 28 08:27:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c992-f09e8657d3fd871b8afbba7ec141bf0a97779411b1d9d9f3d555267fb41968f73 |
ORCID | 0000-0001-5669-4740 0000-0003-1028-0627 0000-0003-3332-4522 0000-0002-8317-2080 0000-0002-2455-832X 0000-0002-1732-295X 0000-0003-4259-7725 |
PMID | 32307502 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_D0NR02161J pubmed_primary_32307502 |
PublicationCentury | 2000 |
PublicationDate | 2020-Apr-30 2020-04-30 |
PublicationDateYYYYMMDD | 2020-04-30 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-Apr-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2020 |
References | Yu (D0NR02161J-(cit18)/*[position()=1]) 2018; 10 Er (D0NR02161J-(cit5)/*[position()=1]) 2018; 18 Gao (D0NR02161J-(cit13)/*[position()=1]) 2015; 119 Ke (D0NR02161J-(cit33)/*[position()=1]) 2019 Sandoval (D0NR02161J-(cit27)/*[position()=1]) 1991; 44 Lin (D0NR02161J-(cit32)/*[position()=1]) 2018; 562 Chen (D0NR02161J-(cit39)/*[position()=1]) 2015; 6 Wang (D0NR02161J-(cit37)/*[position()=1]) 2017; 8 Kan (D0NR02161J-(cit14)/*[position()=1]) 2014; 118 Calandra (D0NR02161J-(cit28)/*[position()=1]) 2013; 88 Jiao (D0NR02161J-(cit44)/*[position()=1]) 2015; 44 Thoi (D0NR02161J-(cit1)/*[position()=1]) 2013; 42 Wang (D0NR02161J-(cit15)/*[position()=1]) 2015; 8 Zhang (D0NR02161J-(cit2)/*[position()=1]) 2018; 1 Wang (D0NR02161J-(cit22)/*[position()=1]) 2012; 7 Voiry (D0NR02161J-(cit11)/*[position()=1]) 2016; 28 Zhang (D0NR02161J-(cit43)/*[position()=1]) 2019; 15 Tang (D0NR02161J-(cit45)/*[position()=1]) 2016; 6 Ling (D0NR02161J-(cit4)/*[position()=1]) 2019; 31 Zhang (D0NR02161J-(cit21)/*[position()=1]) 2017; 29 Fang (D0NR02161J-(cit17)/*[position()=1]) 2018; 57 Yin (D0NR02161J-(cit46)/*[position()=1]) 2016; 138 Zhuang (D0NR02161J-(cit3)/*[position()=1]) 2018; 57 Zhou (D0NR02161J-(cit8)/*[position()=1]) 2019 Wang (D0NR02161J-(cit12)/*[position()=1]) 2017; 29 Zhu (D0NR02161J-(cit34)/*[position()=1]) 2019; 10 Tan (D0NR02161J-(cit31)/*[position()=1]) 2018; 30 Watzele (D0NR02161J-(cit38)/*[position()=1]) 2018; 8 Xia (D0NR02161J-(cit41)/*[position()=1]) 2009; 4 Henckel (D0NR02161J-(cit6)/*[position()=1]) 2018; 18 Yan (D0NR02161J-(cit9)/*[position()=1]) 2018; 11 Yan (D0NR02161J-(cit10)/*[position()=1]) 2017; 17 Yang (D0NR02161J-(cit35)/*[position()=1]) 2020; 11 Li (D0NR02161J-(cit26)/*[position()=1]) 2012; 85 Wang (D0NR02161J-(cit30)/*[position()=1]) 2013; 110 Tan (D0NR02161J-(cit29)/*[position()=1]) 2018; 12 Xiong (D0NR02161J-(cit23)/*[position()=1]) 2015; 15 Huang (D0NR02161J-(cit25)/*[position()=1]) 2017; 19 Liu (D0NR02161J-(cit19)/*[position()=1]) 2018; 17 Guo (D0NR02161J-(cit24)/*[position()=1]) 2015; 15 Nguyen (D0NR02161J-(cit7)/*[position()=1]) 2019; 11 Novoselov (D0NR02161J-(cit36)/*[position()=1]) 2004; 306 Sun (D0NR02161J-(cit20)/*[position()=1]) 2018; 18 Fan (D0NR02161J-(cit42)/*[position()=1]) 2014; 115 Chu (D0NR02161J-(cit40)/*[position()=1]) 2014; 4 Voiry (D0NR02161J-(cit16)/*[position()=1]) 2015; 44 |
References_xml | – start-page: 1900078 year: 2019 ident: D0NR02161J-(cit8)/*[position()=1] publication-title: Small doi: 10.1002/smll.201900078 contributor: fullname: Zhou – volume: 11 start-page: 14786 year: 2019 ident: D0NR02161J-(cit7)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01374 contributor: fullname: Nguyen – volume: 17 start-page: 4109 year: 2017 ident: D0NR02161J-(cit10)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00855 contributor: fullname: Yan – volume: 15 start-page: 5081 year: 2015 ident: D0NR02161J-(cit24)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01196 contributor: fullname: Guo – volume: 8 start-page: 566 year: 2015 ident: D0NR02161J-(cit15)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-014-0677-7 contributor: fullname: Wang – volume: 18 start-page: 3943 year: 2018 ident: D0NR02161J-(cit5)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01335 contributor: fullname: Er – volume: 1 start-page: 985 year: 2018 ident: D0NR02161J-(cit2)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0195-1 contributor: fullname: Zhang – volume: 28 start-page: 6197 year: 2016 ident: D0NR02161J-(cit11)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505597 contributor: fullname: Voiry – volume: 44 start-page: 3955 year: 1991 ident: D0NR02161J-(cit27)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.44.3955 contributor: fullname: Sandoval – volume: 88 start-page: 245428 year: 2013 ident: D0NR02161J-(cit28)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.245428 contributor: fullname: Calandra – volume: 29 start-page: 1701955 year: 2017 ident: D0NR02161J-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701955 contributor: fullname: Zhang – volume: 115 start-page: 053527 year: 2014 ident: D0NR02161J-(cit42)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4862859 contributor: fullname: Fan – volume: 8 start-page: 9456 year: 2018 ident: D0NR02161J-(cit38)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b03365 contributor: fullname: Watzele – volume: 110 start-page: 19701 year: 2013 ident: D0NR02161J-(cit30)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1316792110 contributor: fullname: Wang – volume: 8 start-page: 645 year: 2017 ident: D0NR02161J-(cit37)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-00778-z contributor: fullname: Wang – volume: 57 start-page: 1232 year: 2018 ident: D0NR02161J-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710512 contributor: fullname: Fang – volume: 118 start-page: 1515 year: 2014 ident: D0NR02161J-(cit14)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp4076355 contributor: fullname: Kan – volume: 11 start-page: 1378 year: 2020 ident: D0NR02161J-(cit35)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-15231-x contributor: fullname: Yang – volume: 6 start-page: 6088 year: 2015 ident: D0NR02161J-(cit39)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7088 contributor: fullname: Chen – volume: 30 start-page: 1705509 year: 2018 ident: D0NR02161J-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705509 contributor: fullname: Tan – volume: 306 start-page: 666 year: 2004 ident: D0NR02161J-(cit36)/*[position()=1] publication-title: Science doi: 10.1126/science.1102896 contributor: fullname: Novoselov – volume: 4 start-page: 7293 year: 2014 ident: D0NR02161J-(cit40)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep07293 contributor: fullname: Chu – start-page: 1900131 year: 2019 ident: D0NR02161J-(cit33)/*[position()=1] publication-title: Small doi: 10.1002/smll.201900131 contributor: fullname: Ke – volume: 15 start-page: 6777 year: 2015 ident: D0NR02161J-(cit23)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02619 contributor: fullname: Xiong – volume: 42 start-page: 2388 year: 2013 ident: D0NR02161J-(cit1)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35272A contributor: fullname: Thoi – volume: 119 start-page: 13124 year: 2015 ident: D0NR02161J-(cit13)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b04658 contributor: fullname: Gao – volume: 6 start-page: 4953 year: 2016 ident: D0NR02161J-(cit45)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b01211 contributor: fullname: Tang – volume: 7 start-page: 699 year: 2012 ident: D0NR02161J-(cit22)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 contributor: fullname: Wang – volume: 31 start-page: 1807771 year: 2019 ident: D0NR02161J-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201807771 contributor: fullname: Ling – volume: 562 start-page: 254 year: 2018 ident: D0NR02161J-(cit32)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0574-4 contributor: fullname: Lin – volume: 18 start-page: 2329 year: 2018 ident: D0NR02161J-(cit6)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05213 contributor: fullname: Henckel – volume: 29 start-page: 1604464 year: 2017 ident: D0NR02161J-(cit12)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604464 contributor: fullname: Wang – volume: 17 start-page: 1108 year: 2018 ident: D0NR02161J-(cit19)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0187-1 contributor: fullname: Liu – volume: 12 start-page: 5051 year: 2018 ident: D0NR02161J-(cit29)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b02649 contributor: fullname: Tan – volume: 4 start-page: 505 year: 2009 ident: D0NR02161J-(cit41)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.177 contributor: fullname: Xia – volume: 11 start-page: 3205 year: 2018 ident: D0NR02161J-(cit9)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1802-1 contributor: fullname: Yan – volume: 85 start-page: 235407 year: 2012 ident: D0NR02161J-(cit26)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.85.235407 contributor: fullname: Li – volume: 10 start-page: 638 year: 2018 ident: D0NR02161J-(cit18)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-018-0035-6 contributor: fullname: Yu – volume: 44 start-page: 2060 year: 2015 ident: D0NR02161J-(cit44)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A contributor: fullname: Jiao – volume: 57 start-page: 496 year: 2018 ident: D0NR02161J-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708748 contributor: fullname: Zhuang – volume: 10 start-page: 1348 year: 2019 ident: D0NR02161J-(cit34)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09269-9 contributor: fullname: Zhu – volume: 44 start-page: 2702 year: 2015 ident: D0NR02161J-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00151J contributor: fullname: Voiry – volume: 15 start-page: 1901883 year: 2019 ident: D0NR02161J-(cit43)/*[position()=1] publication-title: Small doi: 10.1002/smll.201901883 contributor: fullname: Zhang – volume: 138 start-page: 7965 year: 2016 ident: D0NR02161J-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03714 contributor: fullname: Yin – volume: 18 start-page: 3435 year: 2018 ident: D0NR02161J-(cit20)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00452 contributor: fullname: Sun – volume: 19 start-page: 13696 year: 2017 ident: D0NR02161J-(cit25)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00990A contributor: fullname: Huang |
SSID | ssj0069363 |
Score | 2.3578691 |
Snippet | 1T-MoS2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS2 is thermodynamically... 1T-MoS 2 is widely used in the hydrogen evolution reaction (HER) due to its abundant active sites and good conductivity. However, 1T-MoS 2 is thermodynamically... |
SourceID | crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 9246 |
Title | In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS 2 at nanoscale |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32307502 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagK6HlgHizvGQJblUgjhO7Pi7P3aLtAYoopypObFGJOlU3kWB_PWPHiROxSMAlrZxxWvn7Mp6xZ8YIPafc1RG3bkmho5QmNJI8lRErRJkWkhBFbILz2YKdfE7nq2wVlrJddkktXxQXl-aV_A-q0Aa42izZf0C2fyg0wHfAF66AMFz_CuNTMz3f1M10617MvQ9gdmEa7ek2hS8H8N1m95WN3evffYN5y54MYdpoLd9jv63K9nB6J71VdQ52o02rIsvorPo0TWzao8lNdQ4So_ihxajRUcQvQs8b82OTV2Gbyqm4VQP_btNHAoGAa4VPuemp-rWVtUG3P5vh0kQSD3ZZlFNhiY1XpJSP9W0y5NVQe4IvyC5V6zG1VVHfxIuPYJIwMh8KASS7rQOY2qD2LE7C1NYHHHa3rqKDBDTSbIIOjj-8ev-lm7SZoIx21WupeBl-6hBd6zqPTJeRE-KMkeVNdMN7Efi4pcQtdEWZ2-j6oLbkHXRxarAlBw7kwJXGADX-jRzYkwM7cuBADt9jTA4cyIFbcuAE5zXuyXEXLd-9Xb4-ifxBG1Fhg491LNSMZbykugT_Wc5yLWXOVUFSInWcg4sAWpsQSUpRCk3LLMsSxrVMQX3PNKf30MRURj1AmIDDRpXIU8UKeNVTKQpOGRdEwqQbZ_oIPeuGcL1ry6msXRgEFesw5kfofju6vUwHwcM_3nmEDgMFH6NJvW_UE7AXa_nUY_0LvFZuBg |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+monitoring+of+the+electrochemically+induced+phase+transition+of+thermodynamically+metastable+1T-MoS+2+at+nanoscale&rft.jtitle=Nanoscale&rft.au=Huang%2C+Junxiao&rft.au=Pan%2C+Xuelei&rft.au=Liao%2C+Xiaobin&rft.au=Yan%2C+Mengyu&rft.date=2020-04-30&rft.eissn=2040-3372&rft.volume=12&rft.issue=16&rft.spage=9246&rft_id=info:doi/10.1039%2FD0NR02161J&rft_id=info%3Apmid%2F32307502&rft.externalDocID=32307502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |