Contactless SpO 2 with an RGB camera: experimental proof of calibrated SpO 2
Camera-based blood oxygen saturation (SpO 2 ) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a risk of cross-infection, in case of fragile skin, and/or to improve the clinical workflow. Despite promising results, productization of the...
Saved in:
Published in | Biomedical optics express Vol. 13; no. 12; p. 6791 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Camera-based blood oxygen saturation (SpO
2
) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a risk of cross-infection, in case of fragile skin, and/or to improve the clinical workflow. Despite promising results, productization of the technology is hampered by the unavailability of adequate hardware, especially a camera, which can capture the optimal wavelengths for SpO
2
measurements in the red near-infrared region. A regular color (RGB) camera is attractive because of its availability, but also poses several risks and challenges which affect the accuracy of the measurement. To mitigate the most important risks, we propose to add low-cost commercial off-the-shelf (COTS) components to the setup. We executed two studies with this setup: one at a hypoxia lab with SpO
2
values in the range 70 − 100% with the purpose to determine the calibration model, and the other study on volunteers to investigate the accuracy for different spot-check scenarios. The proposed processing pipeline includes face tracking and a robust method to estimate the ratio of relative amplitudes of the photoplethysmographic waveforms. Results show that the error is smaller than 4 percent points for realistic screening scenarios where the subject is seated, either with or without head support and/or ambient light. |
---|---|
AbstractList | Camera-based blood oxygen saturation (SpO
2
) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a risk of cross-infection, in case of fragile skin, and/or to improve the clinical workflow. Despite promising results, productization of the technology is hampered by the unavailability of adequate hardware, especially a camera, which can capture the optimal wavelengths for SpO
2
measurements in the red near-infrared region. A regular color (RGB) camera is attractive because of its availability, but also poses several risks and challenges which affect the accuracy of the measurement. To mitigate the most important risks, we propose to add low-cost commercial off-the-shelf (COTS) components to the setup. We executed two studies with this setup: one at a hypoxia lab with SpO
2
values in the range 70 − 100% with the purpose to determine the calibration model, and the other study on volunteers to investigate the accuracy for different spot-check scenarios. The proposed processing pipeline includes face tracking and a robust method to estimate the ratio of relative amplitudes of the photoplethysmographic waveforms. Results show that the error is smaller than 4 percent points for realistic screening scenarios where the subject is seated, either with or without head support and/or ambient light. Camera-based blood oxygen saturation (SpO ) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a risk of cross-infection, in case of fragile skin, and/or to improve the clinical workflow. Despite promising results, productization of the technology is hampered by the unavailability of adequate hardware, especially a camera, which can capture the optimal wavelengths for SpO measurements in the red near-infrared region. A regular color (RGB) camera is attractive because of its availability, but also poses several risks and challenges which affect the accuracy of the measurement. To mitigate the most important risks, we propose to add low-cost commercial off-the-shelf (COTS) components to the setup. We executed two studies with this setup: one at a hypoxia lab with SpO values in the range 70 - 100% with the purpose to determine the calibration model, and the other study on volunteers to investigate the accuracy for different spot-check scenarios. The proposed processing pipeline includes face tracking and a robust method to estimate the ratio of relative amplitudes of the photoplethysmographic waveforms. Results show that the error is smaller than 4 percent points for realistic screening scenarios where the subject is seated, either with or without head support and/or ambient light. |
Author | Verkruysse, Wim van Gastel, Mark |
Author_xml | – sequence: 1 givenname: Mark orcidid: 0000-0002-5422-0143 surname: van Gastel fullname: van Gastel, Mark – sequence: 2 givenname: Wim orcidid: 0000-0002-1381-2740 surname: Verkruysse fullname: Verkruysse, Wim |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36589571$$D View this record in MEDLINE/PubMed |
BookMark | eNptUF1LwzAUDTJxc-7FHyB5FjqT5qOpb67MKQwGuveQpDdY6dqSVtR_b6QORLxcuJfLOYd7zjmaNG0DCF1SsqRM8pvVbr3kGWUsPUGzlAqZZESJya99ihZ9_0picZ4Rps7QlEmhcpHRGdoWbTMYN9TQ9_i52-EUv1fDCzYNftqssDMHCOYWw0cHoTpAxNa4C23rcWxn6soGM0A5Ui_QqTd1D4ufOUf7-_W-eEi2u81jcbdNXJ7TxHCZewumFNwymqalVQ545p0XvrREiFJIIzhTLpMK4kVyqrwhXqRcWQJsjq5G2e7NHqDUXfzMhE99dBUBZAS40PZ9AK9dNZihilaDqWpNif7OTsfs9JhdpFz_oRxV_wF_ARxcbLc |
CitedBy_id | crossref_primary_10_3390_s24123963 crossref_primary_10_3390_app15073422 crossref_primary_10_3390_s24248118 crossref_primary_10_1016_j_bspc_2024_106574 crossref_primary_10_1016_j_neucom_2024_127282 crossref_primary_10_1364_BOE_510925 |
Cites_doi | 10.1371/journal.pone.0057117 10.1364/BOE.6.000086 10.1038/srep38609 10.1109/TBME.2013.2266196 10.1364/BOE.7.004941 10.3390/s21186120 10.3390/app11094255 10.1080/03610927708827533 10.1016/j.jemermed.2022.06.001 10.1371/journal.pone.0049074 10.1007/s10877-019-00449-y 10.1038/srep40150 10.1117/12.2606145 10.1364/BOE.6.003320 10.1213/ANE.0000000000001381 10.1364/OE.21.017464 10.1109/TBME.2015.2390261 10.48550/arXiv.2107.05087 10.1117/12.2293521 10.1109/TBME.2015.2481896 10.1364/BOE.419199 10.1007/s10916-016-0439-z 10.3390/jimaging8040094 10.1364/BOE.423508 10.1117/12.2290448 10.1093/cid/ciq076 |
ContentType | Journal Article |
Copyright | 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement. |
Copyright_xml | – notice: 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement. |
DBID | AAYXX CITATION NPM |
DOI | 10.1364/BOE.471332 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2156-7085 |
ExternalDocumentID | 36589571 10_1364_BOE_471332 |
Genre | Journal Article |
GroupedDBID | 4.4 53G 8SL AAFWJ AAWJZ AAYXX ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS AOIJS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION DIK DSZJF E3Z EBS GROUPED_DOAJ GX1 HYE KQ8 LPK M~E O5R O5S OFLFD OK1 OPJBK ROL ROS RPM TR6 NPM ROP |
ID | FETCH-LOGICAL-c991-a469fbead54b3122db8ce47fcf5fdb055d56a5438c768edb06418fa0f5248b0e3 |
ISSN | 2156-7085 |
IngestDate | Wed Feb 19 02:13:00 EST 2025 Thu Apr 24 23:09:54 EDT 2025 Tue Jul 01 01:36:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c991-a469fbead54b3122db8ce47fcf5fdb055d56a5438c768edb06418fa0f5248b0e3 |
ORCID | 0000-0002-1381-2740 0000-0002-5422-0143 |
PMID | 36589571 |
ParticipantIDs | pubmed_primary_36589571 crossref_citationtrail_10_1364_BOE_471332 crossref_primary_10_1364_BOE_471332 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 2022-Dec-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomedical optics express |
PublicationTitleAlternate | Biomed Opt Express |
PublicationYear | 2022 |
References | Capraro (boe-13-12-6791-R9) 2022; 63 Amelard (boe-13-12-6791-R7) 2017; 7 Kim (boe-13-12-6791-R19) 2021; 21 Kamshilin (boe-13-12-6791-R11) 2013; 8 van Gastel (boe-13-12-6791-R6) 2016; 6 Jeong (boe-13-12-6791-R5) 2016; 40 Holland (boe-13-12-6791-R30) 1977; 6 Guazzi (boe-13-12-6791-R18) 2015; 6 Lai (boe-13-12-6791-R12) 2022; 8 Nishidate (boe-13-12-6791-R21) 2018; 10501 Verkruysse (boe-13-12-6791-R13) 2017; 124 van Gastel (boe-13-12-6791-R4) 2016; 7 Wei (boe-13-12-6791-R20) 2021; 12 Mathew (boe-13-12-6791-R23) 2021 Van Gastel (boe-13-12-6791-R2) 2015; 62 Moço (boe-13-12-6791-R27) 2021; 35 van Gastel (boe-13-12-6791-R8) 2018; 10501 van Gastel (boe-13-12-6791-R32) 2021; 12 Shao (boe-13-12-6791-R17) 2015; 63 Bal (boe-13-12-6791-R26) 2015; 6 Bilo (boe-13-12-6791-R29) 2012; 7 Al-Naji (boe-13-12-6791-R25) 2021; 11 Kong (boe-13-12-6791-R15) 2013; 21 Brieva (boe-13-12-6791-R24) 2021; 12088 De Haan (boe-13-12-6791-R1) 2013; 60 Majumdar (boe-13-12-6791-R31) 2011; 52 |
References_xml | – volume: 8 start-page: e57117 year: 2013 ident: boe-13-12-6791-R11 publication-title: PLoS One doi: 10.1371/journal.pone.0057117 – volume: 6 start-page: 86 year: 2015 ident: boe-13-12-6791-R26 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.000086 – volume: 6 start-page: 38609 year: 2016 ident: boe-13-12-6791-R6 publication-title: Sci. Rep. doi: 10.1038/srep38609 – volume: 60 start-page: 2878 year: 2013 ident: boe-13-12-6791-R1 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2266196 – volume: 7 start-page: 4941 year: 2016 ident: boe-13-12-6791-R4 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.004941 – volume: 21 start-page: 6120 year: 2021 ident: boe-13-12-6791-R19 publication-title: Sensors doi: 10.3390/s21186120 – volume: 11 start-page: 4255 year: 2021 ident: boe-13-12-6791-R25 publication-title: Appl. Sci. doi: 10.3390/app11094255 – volume: 6 start-page: 813 year: 1977 ident: boe-13-12-6791-R30 publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610927708827533 – volume: 63 start-page: 115 year: 2022 ident: boe-13-12-6791-R9 publication-title: The J. Emer. Med. doi: 10.1016/j.jemermed.2022.06.001 – volume: 7 start-page: e49074 year: 2012 ident: boe-13-12-6791-R29 publication-title: PLoS One doi: 10.1371/journal.pone.0049074 – volume: 35 start-page: 123 year: 2021 ident: boe-13-12-6791-R27 publication-title: J. Clin. Monit. Comput. doi: 10.1007/s10877-019-00449-y – volume: 7 start-page: 40150 year: 2017 ident: boe-13-12-6791-R7 publication-title: Sci. Rep. doi: 10.1038/srep40150 – volume: 12088 start-page: 21 year: 2021 ident: boe-13-12-6791-R24 publication-title: Proc. SPIE doi: 10.1117/12.2606145 – volume: 6 start-page: 3320 year: 2015 ident: boe-13-12-6791-R18 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.003320 – volume: 124 start-page: 136 year: 2017 ident: boe-13-12-6791-R13 publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000001381 – volume: 21 start-page: 17464 year: 2013 ident: boe-13-12-6791-R15 publication-title: Opt. Express doi: 10.1364/OE.21.017464 – volume: 62 start-page: 1425 year: 2015 ident: boe-13-12-6791-R2 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2390261 – year: 2021 ident: boe-13-12-6791-R23 doi: 10.48550/arXiv.2107.05087 – volume: 10501 start-page: 38 year: 2018 ident: boe-13-12-6791-R8 publication-title: Proc. SPIE doi: 10.1117/12.2293521 – volume: 63 start-page: 1091 year: 2015 ident: boe-13-12-6791-R17 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2481896 – volume: 12 start-page: 2813 year: 2021 ident: boe-13-12-6791-R32 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.419199 – volume: 40 start-page: 77 year: 2016 ident: boe-13-12-6791-R5 publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0439-z – volume: 8 start-page: 94 year: 2022 ident: boe-13-12-6791-R12 publication-title: J. Imaging doi: 10.3390/jimaging8040094 – volume: 12 start-page: 5227 year: 2021 ident: boe-13-12-6791-R20 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.423508 – volume: 10501 start-page: 35 year: 2018 ident: boe-13-12-6791-R21 publication-title: Proc. SPIE doi: 10.1117/12.2290448 – volume: 52 start-page: 325 year: 2011 ident: boe-13-12-6791-R31 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciq076 |
SSID | ssj0000447038 |
Score | 2.3152893 |
Snippet | Camera-based blood oxygen saturation (SpO
2
) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is... Camera-based blood oxygen saturation (SpO ) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 6791 |
Title | Contactless SpO 2 with an RGB camera: experimental proof of calibrated SpO 2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36589571 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELe2TkLwgBjboIwhS-wFVSmpv5LsbZtY0QRDYmX0rbJdW0KUUpXyAH_9znaSuqxI26QoihzHie730-nOuQ-EPoJeHCquZGKoTcFB0VmiiqyTcMozk3KrZOHynU9_iOML9r3P-_MufT67ZKba-nFpXsn_oApjgKvLkv0HZOtFYQCuAV84A8Jw_iuMXWkpqeEKtNXPyVmLVKlqrfPul5aWbsPJt96Jy_iDygQD0UWTS-8re5PTPbzwf9dn5XsAbye-kjOsUUdrlGlPXQkUGT3N-PllptfT-4e70LHx8uom3lggJArS8PoHjAGRZGnoqNM2S8YqBUpjopBIHYostOL6Q09TwVz0-dlRmzkvmcSTQC6TG48YBfOo4KFFy5Oq2NWtl-gVAQfB9a7o9jv17lrKGKgy346w-uKyNi28-XD-3lW0Uq20YJgsuBje1OhtoPXSR8CfA-Cv0Qsz3kRrUeXITbRyWsZEvEEnEQswAIkJdizAcoyBBTiw4BOOOYA9BzAccw6ER9-i3rej3tfjpOyRkWgXsyaZKKwCbcCZoh1ChirXhmVWW26HKuV8yIXkjOYa3EoDI4J1citTywnLVWroO9QY347NNsJE8ayQhRUFmG2gjBVVhdSKEsNya1PZRAeVfAa6rB_v2piMBv6nqGADEOsgiLWJ9uu5k1A1ZemsrSDmek6Fxc6zd96j1TlXd1FjNr03H8AsnKk9v52y53nwG78MXN8 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contactless+SpO+2+with+an+RGB+camera%3A+experimental+proof+of+calibrated+SpO+2&rft.jtitle=Biomedical+optics+express&rft.au=van+Gastel%2C+Mark&rft.au=Verkruysse%2C+Wim&rft.date=2022-12-01&rft.issn=2156-7085&rft.eissn=2156-7085&rft.volume=13&rft.issue=12&rft.spage=6791&rft_id=info:doi/10.1364%2FBOE.471332&rft_id=info%3Apmid%2F36589571&rft.externalDocID=36589571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon |