Contactless SpO 2 with an RGB camera: experimental proof of calibrated SpO 2

Camera-based blood oxygen saturation (SpO 2 ) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a risk of cross-infection, in case of fragile skin, and/or to improve the clinical workflow. Despite promising results, productization of the...

Full description

Saved in:
Bibliographic Details
Published inBiomedical optics express Vol. 13; no. 12; p. 6791
Main Authors van Gastel, Mark, Verkruysse, Wim
Format Journal Article
LanguageEnglish
Published United States 01.12.2022
Online AccessGet full text

Cover

Loading…
Abstract Camera-based blood oxygen saturation (SpO 2 ) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a risk of cross-infection, in case of fragile skin, and/or to improve the clinical workflow. Despite promising results, productization of the technology is hampered by the unavailability of adequate hardware, especially a camera, which can capture the optimal wavelengths for SpO 2 measurements in the red near-infrared region. A regular color (RGB) camera is attractive because of its availability, but also poses several risks and challenges which affect the accuracy of the measurement. To mitigate the most important risks, we propose to add low-cost commercial off-the-shelf (COTS) components to the setup. We executed two studies with this setup: one at a hypoxia lab with SpO 2 values in the range 70 − 100% with the purpose to determine the calibration model, and the other study on volunteers to investigate the accuracy for different spot-check scenarios. The proposed processing pipeline includes face tracking and a robust method to estimate the ratio of relative amplitudes of the photoplethysmographic waveforms. Results show that the error is smaller than 4 percent points for realistic screening scenarios where the subject is seated, either with or without head support and/or ambient light.
AbstractList Camera-based blood oxygen saturation (SpO 2 ) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a risk of cross-infection, in case of fragile skin, and/or to improve the clinical workflow. Despite promising results, productization of the technology is hampered by the unavailability of adequate hardware, especially a camera, which can capture the optimal wavelengths for SpO 2 measurements in the red near-infrared region. A regular color (RGB) camera is attractive because of its availability, but also poses several risks and challenges which affect the accuracy of the measurement. To mitigate the most important risks, we propose to add low-cost commercial off-the-shelf (COTS) components to the setup. We executed two studies with this setup: one at a hypoxia lab with SpO 2 values in the range 70 − 100% with the purpose to determine the calibration model, and the other study on volunteers to investigate the accuracy for different spot-check scenarios. The proposed processing pipeline includes face tracking and a robust method to estimate the ratio of relative amplitudes of the photoplethysmographic waveforms. Results show that the error is smaller than 4 percent points for realistic screening scenarios where the subject is seated, either with or without head support and/or ambient light.
Camera-based blood oxygen saturation (SpO ) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a risk of cross-infection, in case of fragile skin, and/or to improve the clinical workflow. Despite promising results, productization of the technology is hampered by the unavailability of adequate hardware, especially a camera, which can capture the optimal wavelengths for SpO measurements in the red near-infrared region. A regular color (RGB) camera is attractive because of its availability, but also poses several risks and challenges which affect the accuracy of the measurement. To mitigate the most important risks, we propose to add low-cost commercial off-the-shelf (COTS) components to the setup. We executed two studies with this setup: one at a hypoxia lab with SpO values in the range 70 - 100% with the purpose to determine the calibration model, and the other study on volunteers to investigate the accuracy for different spot-check scenarios. The proposed processing pipeline includes face tracking and a robust method to estimate the ratio of relative amplitudes of the photoplethysmographic waveforms. Results show that the error is smaller than 4 percent points for realistic screening scenarios where the subject is seated, either with or without head support and/or ambient light.
Author Verkruysse, Wim
van Gastel, Mark
Author_xml – sequence: 1
  givenname: Mark
  orcidid: 0000-0002-5422-0143
  surname: van Gastel
  fullname: van Gastel, Mark
– sequence: 2
  givenname: Wim
  orcidid: 0000-0002-1381-2740
  surname: Verkruysse
  fullname: Verkruysse, Wim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36589571$$D View this record in MEDLINE/PubMed
BookMark eNptUF1LwzAUDTJxc-7FHyB5FjqT5qOpb67MKQwGuveQpDdY6dqSVtR_b6QORLxcuJfLOYd7zjmaNG0DCF1SsqRM8pvVbr3kGWUsPUGzlAqZZESJya99ihZ9_0picZ4Rps7QlEmhcpHRGdoWbTMYN9TQ9_i52-EUv1fDCzYNftqssDMHCOYWw0cHoTpAxNa4C23rcWxn6soGM0A5Ui_QqTd1D4ufOUf7-_W-eEi2u81jcbdNXJ7TxHCZewumFNwymqalVQ545p0XvrREiFJIIzhTLpMK4kVyqrwhXqRcWQJsjq5G2e7NHqDUXfzMhE99dBUBZAS40PZ9AK9dNZihilaDqWpNif7OTsfs9JhdpFz_oRxV_wF_ARxcbLc
CitedBy_id crossref_primary_10_3390_s24123963
crossref_primary_10_3390_app15073422
crossref_primary_10_3390_s24248118
crossref_primary_10_1016_j_bspc_2024_106574
crossref_primary_10_1016_j_neucom_2024_127282
crossref_primary_10_1364_BOE_510925
Cites_doi 10.1371/journal.pone.0057117
10.1364/BOE.6.000086
10.1038/srep38609
10.1109/TBME.2013.2266196
10.1364/BOE.7.004941
10.3390/s21186120
10.3390/app11094255
10.1080/03610927708827533
10.1016/j.jemermed.2022.06.001
10.1371/journal.pone.0049074
10.1007/s10877-019-00449-y
10.1038/srep40150
10.1117/12.2606145
10.1364/BOE.6.003320
10.1213/ANE.0000000000001381
10.1364/OE.21.017464
10.1109/TBME.2015.2390261
10.48550/arXiv.2107.05087
10.1117/12.2293521
10.1109/TBME.2015.2481896
10.1364/BOE.419199
10.1007/s10916-016-0439-z
10.3390/jimaging8040094
10.1364/BOE.423508
10.1117/12.2290448
10.1093/cid/ciq076
ContentType Journal Article
Copyright 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
Copyright_xml – notice: 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
DBID AAYXX
CITATION
NPM
DOI 10.1364/BOE.471332
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 2156-7085
ExternalDocumentID 36589571
10_1364_BOE_471332
Genre Journal Article
GroupedDBID 4.4
53G
8SL
AAFWJ
AAWJZ
AAYXX
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
DIK
DSZJF
E3Z
EBS
GROUPED_DOAJ
GX1
HYE
KQ8
LPK
M~E
O5R
O5S
OFLFD
OK1
OPJBK
ROL
ROS
RPM
TR6
NPM
ROP
ID FETCH-LOGICAL-c991-a469fbead54b3122db8ce47fcf5fdb055d56a5438c768edb06418fa0f5248b0e3
ISSN 2156-7085
IngestDate Wed Feb 19 02:13:00 EST 2025
Thu Apr 24 23:09:54 EDT 2025
Tue Jul 01 01:36:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c991-a469fbead54b3122db8ce47fcf5fdb055d56a5438c768edb06418fa0f5248b0e3
ORCID 0000-0002-1381-2740
0000-0002-5422-0143
PMID 36589571
ParticipantIDs pubmed_primary_36589571
crossref_citationtrail_10_1364_BOE_471332
crossref_primary_10_1364_BOE_471332
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
2022-Dec-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomedical optics express
PublicationTitleAlternate Biomed Opt Express
PublicationYear 2022
References Capraro (boe-13-12-6791-R9) 2022; 63
Amelard (boe-13-12-6791-R7) 2017; 7
Kim (boe-13-12-6791-R19) 2021; 21
Kamshilin (boe-13-12-6791-R11) 2013; 8
van Gastel (boe-13-12-6791-R6) 2016; 6
Jeong (boe-13-12-6791-R5) 2016; 40
Holland (boe-13-12-6791-R30) 1977; 6
Guazzi (boe-13-12-6791-R18) 2015; 6
Lai (boe-13-12-6791-R12) 2022; 8
Nishidate (boe-13-12-6791-R21) 2018; 10501
Verkruysse (boe-13-12-6791-R13) 2017; 124
van Gastel (boe-13-12-6791-R4) 2016; 7
Wei (boe-13-12-6791-R20) 2021; 12
Mathew (boe-13-12-6791-R23) 2021
Van Gastel (boe-13-12-6791-R2) 2015; 62
Moço (boe-13-12-6791-R27) 2021; 35
van Gastel (boe-13-12-6791-R8) 2018; 10501
van Gastel (boe-13-12-6791-R32) 2021; 12
Shao (boe-13-12-6791-R17) 2015; 63
Bal (boe-13-12-6791-R26) 2015; 6
Bilo (boe-13-12-6791-R29) 2012; 7
Al-Naji (boe-13-12-6791-R25) 2021; 11
Kong (boe-13-12-6791-R15) 2013; 21
Brieva (boe-13-12-6791-R24) 2021; 12088
De Haan (boe-13-12-6791-R1) 2013; 60
Majumdar (boe-13-12-6791-R31) 2011; 52
References_xml – volume: 8
  start-page: e57117
  year: 2013
  ident: boe-13-12-6791-R11
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057117
– volume: 6
  start-page: 86
  year: 2015
  ident: boe-13-12-6791-R26
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.000086
– volume: 6
  start-page: 38609
  year: 2016
  ident: boe-13-12-6791-R6
  publication-title: Sci. Rep.
  doi: 10.1038/srep38609
– volume: 60
  start-page: 2878
  year: 2013
  ident: boe-13-12-6791-R1
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2266196
– volume: 7
  start-page: 4941
  year: 2016
  ident: boe-13-12-6791-R4
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.7.004941
– volume: 21
  start-page: 6120
  year: 2021
  ident: boe-13-12-6791-R19
  publication-title: Sensors
  doi: 10.3390/s21186120
– volume: 11
  start-page: 4255
  year: 2021
  ident: boe-13-12-6791-R25
  publication-title: Appl. Sci.
  doi: 10.3390/app11094255
– volume: 6
  start-page: 813
  year: 1977
  ident: boe-13-12-6791-R30
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610927708827533
– volume: 63
  start-page: 115
  year: 2022
  ident: boe-13-12-6791-R9
  publication-title: The J. Emer. Med.
  doi: 10.1016/j.jemermed.2022.06.001
– volume: 7
  start-page: e49074
  year: 2012
  ident: boe-13-12-6791-R29
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049074
– volume: 35
  start-page: 123
  year: 2021
  ident: boe-13-12-6791-R27
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-019-00449-y
– volume: 7
  start-page: 40150
  year: 2017
  ident: boe-13-12-6791-R7
  publication-title: Sci. Rep.
  doi: 10.1038/srep40150
– volume: 12088
  start-page: 21
  year: 2021
  ident: boe-13-12-6791-R24
  publication-title: Proc. SPIE
  doi: 10.1117/12.2606145
– volume: 6
  start-page: 3320
  year: 2015
  ident: boe-13-12-6791-R18
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.003320
– volume: 124
  start-page: 136
  year: 2017
  ident: boe-13-12-6791-R13
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000001381
– volume: 21
  start-page: 17464
  year: 2013
  ident: boe-13-12-6791-R15
  publication-title: Opt. Express
  doi: 10.1364/OE.21.017464
– volume: 62
  start-page: 1425
  year: 2015
  ident: boe-13-12-6791-R2
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2390261
– year: 2021
  ident: boe-13-12-6791-R23
  doi: 10.48550/arXiv.2107.05087
– volume: 10501
  start-page: 38
  year: 2018
  ident: boe-13-12-6791-R8
  publication-title: Proc. SPIE
  doi: 10.1117/12.2293521
– volume: 63
  start-page: 1091
  year: 2015
  ident: boe-13-12-6791-R17
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2481896
– volume: 12
  start-page: 2813
  year: 2021
  ident: boe-13-12-6791-R32
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.419199
– volume: 40
  start-page: 77
  year: 2016
  ident: boe-13-12-6791-R5
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0439-z
– volume: 8
  start-page: 94
  year: 2022
  ident: boe-13-12-6791-R12
  publication-title: J. Imaging
  doi: 10.3390/jimaging8040094
– volume: 12
  start-page: 5227
  year: 2021
  ident: boe-13-12-6791-R20
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.423508
– volume: 10501
  start-page: 35
  year: 2018
  ident: boe-13-12-6791-R21
  publication-title: Proc. SPIE
  doi: 10.1117/12.2290448
– volume: 52
  start-page: 325
  year: 2011
  ident: boe-13-12-6791-R31
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciq076
SSID ssj0000447038
Score 2.3152893
Snippet Camera-based blood oxygen saturation (SpO 2 ) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is...
Camera-based blood oxygen saturation (SpO ) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 6791
Title Contactless SpO 2 with an RGB camera: experimental proof of calibrated SpO 2
URI https://www.ncbi.nlm.nih.gov/pubmed/36589571
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELe2TkLwgBjboIwhS-wFVSmpv5LsbZtY0QRDYmX0rbJdW0KUUpXyAH_9znaSuqxI26QoihzHie730-nOuQ-EPoJeHCquZGKoTcFB0VmiiqyTcMozk3KrZOHynU9_iOML9r3P-_MufT67ZKba-nFpXsn_oApjgKvLkv0HZOtFYQCuAV84A8Jw_iuMXWkpqeEKtNXPyVmLVKlqrfPul5aWbsPJt96Jy_iDygQD0UWTS-8re5PTPbzwf9dn5XsAbye-kjOsUUdrlGlPXQkUGT3N-PllptfT-4e70LHx8uom3lggJArS8PoHjAGRZGnoqNM2S8YqBUpjopBIHYostOL6Q09TwVz0-dlRmzkvmcSTQC6TG48YBfOo4KFFy5Oq2NWtl-gVAQfB9a7o9jv17lrKGKgy346w-uKyNi28-XD-3lW0Uq20YJgsuBje1OhtoPXSR8CfA-Cv0Qsz3kRrUeXITbRyWsZEvEEnEQswAIkJdizAcoyBBTiw4BOOOYA9BzAccw6ER9-i3rej3tfjpOyRkWgXsyaZKKwCbcCZoh1ChirXhmVWW26HKuV8yIXkjOYa3EoDI4J1citTywnLVWroO9QY347NNsJE8ayQhRUFmG2gjBVVhdSKEsNya1PZRAeVfAa6rB_v2piMBv6nqGADEOsgiLWJ9uu5k1A1ZemsrSDmek6Fxc6zd96j1TlXd1FjNr03H8AsnKk9v52y53nwG78MXN8
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contactless+SpO+2+with+an+RGB+camera%3A+experimental+proof+of+calibrated+SpO+2&rft.jtitle=Biomedical+optics+express&rft.au=van+Gastel%2C+Mark&rft.au=Verkruysse%2C+Wim&rft.date=2022-12-01&rft.issn=2156-7085&rft.eissn=2156-7085&rft.volume=13&rft.issue=12&rft.spage=6791&rft_id=info:doi/10.1364%2FBOE.471332&rft_id=info%3Apmid%2F36589571&rft.externalDocID=36589571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon