Mastering the Data Lifecycle for Governed AI-BI in the Cloud: From Ingestion to Auditable Deletion
The rapid evolution of AI-powered Business Intelligence (BI) solutions demands robust data governance frameworks that span the entire data lifecycle in cloud environments. Organizations face intensifying regulatory pressures, particularly from GDPR requirements concerning data erasure and storage li...
Saved in:
Published in | European Journal of Computer Science and Information Technology Vol. 13; no. 49; pp. 1 - 21 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
26.06.2025
|
Online Access | Get full text |
ISSN | 2054-0957 2054-0965 |
DOI | 10.37745/ejcsit.2013/vol13n49121 |
Cover
Abstract | The rapid evolution of AI-powered Business Intelligence (BI) solutions demands robust data governance frameworks that span the entire data lifecycle in cloud environments. Organizations face intensifying regulatory pressures, particularly from GDPR requirements concerning data erasure and storage limitations. The successful implementation of data governance requires integrated solutions addressing ownership, classification, ingestion, storage, and retention management. Through cloud-native tools and automated processes, enterprises can achieve both regulatory compliance and operational efficiency. The adoption of sophisticated data lifecycle management strategies, leveraging advanced capabilities from major cloud providers, enables organizations to maintain control over their data assets while supporting innovative AI-BI implementations. The integration of automated classification systems, intelligent storage management, and comprehensive audit mechanisms provides organizations with the necessary foundation to address evolving regulatory requirements while maximizing the value of their data assets. These frameworks enable seamless adaptation to changing compliance landscapes, ensuring sustainable growth and innovation in AI-powered business intelligence solutions. |
---|---|
AbstractList | The rapid evolution of AI-powered Business Intelligence (BI) solutions demands robust data governance frameworks that span the entire data lifecycle in cloud environments. Organizations face intensifying regulatory pressures, particularly from GDPR requirements concerning data erasure and storage limitations. The successful implementation of data governance requires integrated solutions addressing ownership, classification, ingestion, storage, and retention management. Through cloud-native tools and automated processes, enterprises can achieve both regulatory compliance and operational efficiency. The adoption of sophisticated data lifecycle management strategies, leveraging advanced capabilities from major cloud providers, enables organizations to maintain control over their data assets while supporting innovative AI-BI implementations. The integration of automated classification systems, intelligent storage management, and comprehensive audit mechanisms provides organizations with the necessary foundation to address evolving regulatory requirements while maximizing the value of their data assets. These frameworks enable seamless adaptation to changing compliance landscapes, ensuring sustainable growth and innovation in AI-powered business intelligence solutions. |
Author | Ravva, Karthik |
Author_xml | – sequence: 1 givenname: Karthik surname: Ravva fullname: Ravva, Karthik |
BookMark | eNpNkM1OAjEUhRuDiYi8Q19goP9D3SEIToJxw37Sae9gzdCadiDh7eXHGFfn5Jxz7-J7RIMQAyCEKZnwshRyCl82-37CCOXTY-woD0JTRu_QkBEpCqKVHPx5WT6gcc6-IUKUXElSDlHzbnIPyYcd7j8BL01v8Ma3YE-2A9zGhNfxCCmAw_OqeKmwD9fhoosH94xXKe5xFXaQex_PTcTzg_O9ac7HS-jgkj6h-9Z0Gca_OkLb1et28VZsPtbVYr4prNa0kG5mG6YVMdow0XKpCAhDGCdOg7BCO8aso0qXRhDNm5liYJx1AKIFVTI-QrPbW5tizgna-jv5vUmnmpL6Squ-0aovtOp_tPgPIOlixg |
Cites_doi | 10.21275/SR231119083703 10.1109/TSE.2007.70746 10.1145/1629175.1629210 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.37745/ejcsit.2013/vol13n49121 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2054-0965 |
EndPage | 21 |
ExternalDocumentID | 10_37745_ejcsit_2013_vol13n49121 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
ID | FETCH-LOGICAL-c991-5d8cb2960a9a24f3560e4a0230d9e4c49d22cd1697a4093b862eadcdee4fe6723 |
ISSN | 2054-0957 |
IngestDate | Thu Jul 10 07:52:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c991-5d8cb2960a9a24f3560e4a0230d9e4c49d22cd1697a4093b862eadcdee4fe6723 |
OpenAccessLink | https://doi.org/10.37745/ejcsit.2013/vol13n49121 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_37745_ejcsit_2013_vol13n49121 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-26 |
PublicationDateYYYYMMDD | 2025-06-26 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | European Journal of Computer Science and Information Technology |
PublicationYear | 2025 |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref0 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 – ident: ref1 – ident: ref4 – ident: ref5 – ident: ref6 – ident: ref7 – ident: ref2 doi: 10.21275/SR231119083703 – ident: ref8 doi: 10.1109/TSE.2007.70746 – ident: ref9 – ident: ref0 – ident: ref10 – ident: ref11 – ident: ref3 doi: 10.1145/1629175.1629210 – ident: ref12 – ident: ref15 – ident: ref14 |
SSID | ssib044736507 |
Score | 2.295011 |
Snippet | The rapid evolution of AI-powered Business Intelligence (BI) solutions demands robust data governance frameworks that span the entire data lifecycle in cloud... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 1 |
Title | Mastering the Data Lifecycle for Governed AI-BI in the Cloud: From Ingestion to Auditable Deletion |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBWue-mlNKSl-USHXLeJPnbXys2NE-KCeygu5LZotVrqNKxDuw6kh576wzsjWYowgbS5LGZZD7bnefRGmjdDyBEr6lGrlM2EakUG_0ST1YwVmW2l1BKW0JGbsTT7XFx-lZ-u8qvB4E9StbTq6w_m16O6kud4Fe6BX1El-x-ejUbhBrwG_8IVPAzXf_LxTGObgyB4muheQ47dWnMPz7n6QT9JFzjleJp9nIaaxrOb5cqNdr5Abcm0wyMmRAHQ0DGKNJyaamKxLffaaZtb9wmNDWMhYpTwBcZRFPnI5v0XfXcXlGj9t8X3dOeB51gh5eXtPkBxoHsZUDS_YNr0np__ECOsSJDkO5Su4yVLFl6vlN4M6QL4Kba_sNfm5wKLXxl2mgDDTHRSMc4eFrJweL-xvsWqQ8h3nLXK26rQVpVYekFe8rJ0h_2z3-chKklZCqCxqLuPX9iXhDljx8kHO06MJTwnISzzN-T12kV07GGzRQa22yZ1hAwFJFCEDI2QoeA0GiBDHWToonMPOsicUgQMjYCh_ZJGwNAAmLdkfnE-P7vM1mM2MoNlb3kzMjWHRFYrzWUrgAJbqTE1bZSVRqqGc9OwQpVanihRQwoM0cc01srWFiUX78iwW3b2PaGY2-d5UxqRl1KdiLpQ2A-RNWpkFTDPHcLCb1Ld-mYq1VNO2X3Ge_bIqwe87pNh_2NlD4A79vWhc-1fijZuoA |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mastering+the+Data+Lifecycle+for+Governed+AI-BI+in+the+Cloud%3A+From+Ingestion+to+Auditable+Deletion&rft.jtitle=European+Journal+of+Computer+Science+and+Information+Technology&rft.au=Ravva%2C+Karthik&rft.date=2025-06-26&rft.issn=2054-0957&rft.eissn=2054-0965&rft.volume=13&rft.issue=49&rft.spage=1&rft.epage=21&rft_id=info:doi/10.37745%2Fejcsit.2013%2Fvol13n49121&rft.externalDBID=n%2Fa&rft.externalDocID=10_37745_ejcsit_2013_vol13n49121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-0957&client=summon |