Interfacial electronic properties between PtSe 2 and 2D metal electrodes: a first-principles simulation
Monolayer (ML) PtSe 2 is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe 2 field effect transistors (FETs). In this...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 25; no. 16; pp. 11545 - 11554 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
26.04.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Monolayer (ML) PtSe
2
is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe
2
field effect transistors (FETs). In this study, a series of 2D metals, transition metal dichalcogenides (NbSe
2
, TaS
2
), borophene, and MXenes (V
2
C(OH)
2
, V
2
CF
2
, Nb
2
C(OH)
2
, Nb
2
CF
2
, Nb
2
CO
2
, Hf
2
C(OH)
2
, Hf
2
CF
2
) were used as electrodes for FET fabrication. The interfacial electronic properties of electrodes and PtSe
2
were studied in both the vertical and lateral directions using the
ab initio
method. In the vertical direction, PtSe
2
formed ohmic contacts with most of the 2D metals except for Nb
2
CF
2
and Hf
2
CF
2
. Specifically, in the cases of Nb
2
CF
2
and Hf
2
CF
2
, p- and n-type Schottky contacts were formed with Schottky barrier heights (SBHs) of 0.48 eV and 0.02 eV, respectively. In the lateral direction, PtSe
2
with contacting Hf
2
CF
2
and V
2
C(OH)
2
electrodes formed n-type Schottky contacts with SBHs of 0.14 eV and 0.09 eV, respectively. In the cases of TaS
2
and Nb
2
CF
2
electrodes, p-type Schottky contacts with SBHs of 0.35 eV and 0.29 eV, respectively, were formed. Moreover, n-type ohmic contacts were observed when Hf
2
C(OH)
2
and Nb
2
C(OH)
2
electrodes were applied, and p-type ohmic contacts were formed when borophene, NbSe
2
, Nb
2
CO
2
, and V
2
CF
2
electrodes were used. This work reports a systematic investigation of ML PtSe
2
-2D metal interfaces and serves as a practical guide for selecting electrode materials for PtSe
2
FETs. |
---|---|
AbstractList | Monolayer (ML) PtSe
is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe
field effect transistors (FETs). In this study, a series of 2D metals, transition metal dichalcogenides (NbSe
, TaS
), borophene, and MXenes (V
C(OH)
, V
CF
, Nb
C(OH)
, Nb
CF
, Nb
CO
, Hf
C(OH)
, Hf
CF
) were used as electrodes for FET fabrication. The interfacial electronic properties of electrodes and PtSe
were studied in both the vertical and lateral directions using the
method. In the vertical direction, PtSe
formed ohmic contacts with most of the 2D metals except for Nb
CF
and Hf
CF
. Specifically, in the cases of Nb
CF
and Hf
CF
, p- and n-type Schottky contacts were formed with Schottky barrier heights (SBHs) of 0.48 eV and 0.02 eV, respectively. In the lateral direction, PtSe
with contacting Hf
CF
and V
C(OH)
electrodes formed n-type Schottky contacts with SBHs of 0.14 eV and 0.09 eV, respectively. In the cases of TaS
and Nb
CF
electrodes, p-type Schottky contacts with SBHs of 0.35 eV and 0.29 eV, respectively, were formed. Moreover, n-type ohmic contacts were observed when Hf
C(OH)
and Nb
C(OH)
electrodes were applied, and p-type ohmic contacts were formed when borophene, NbSe
, Nb
CO
, and V
CF
electrodes were used. This work reports a systematic investigation of ML PtSe
-2D metal interfaces and serves as a practical guide for selecting electrode materials for PtSe
FETs. Monolayer (ML) PtSe 2 is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe 2 field effect transistors (FETs). In this study, a series of 2D metals, transition metal dichalcogenides (NbSe 2 , TaS 2 ), borophene, and MXenes (V 2 C(OH) 2 , V 2 CF 2 , Nb 2 C(OH) 2 , Nb 2 CF 2 , Nb 2 CO 2 , Hf 2 C(OH) 2 , Hf 2 CF 2 ) were used as electrodes for FET fabrication. The interfacial electronic properties of electrodes and PtSe 2 were studied in both the vertical and lateral directions using the ab initio method. In the vertical direction, PtSe 2 formed ohmic contacts with most of the 2D metals except for Nb 2 CF 2 and Hf 2 CF 2 . Specifically, in the cases of Nb 2 CF 2 and Hf 2 CF 2 , p- and n-type Schottky contacts were formed with Schottky barrier heights (SBHs) of 0.48 eV and 0.02 eV, respectively. In the lateral direction, PtSe 2 with contacting Hf 2 CF 2 and V 2 C(OH) 2 electrodes formed n-type Schottky contacts with SBHs of 0.14 eV and 0.09 eV, respectively. In the cases of TaS 2 and Nb 2 CF 2 electrodes, p-type Schottky contacts with SBHs of 0.35 eV and 0.29 eV, respectively, were formed. Moreover, n-type ohmic contacts were observed when Hf 2 C(OH) 2 and Nb 2 C(OH) 2 electrodes were applied, and p-type ohmic contacts were formed when borophene, NbSe 2 , Nb 2 CO 2 , and V 2 CF 2 electrodes were used. This work reports a systematic investigation of ML PtSe 2 -2D metal interfaces and serves as a practical guide for selecting electrode materials for PtSe 2 FETs. |
Author | Li, Zong-Liang Zhang, Guang-Ping Wang, Chuan-Kui Zhang, Wenfei Wang, Minglang Tian, Xinyue |
Author_xml | – sequence: 1 givenname: Xinyue orcidid: 0000-0002-7790-3633 surname: Tian fullname: Tian, Xinyue organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 2 givenname: Wenfei surname: Zhang fullname: Zhang, Wenfei organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 3 givenname: Guang-Ping orcidid: 0000-0001-7928-4146 surname: Zhang fullname: Zhang, Guang-Ping organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 4 givenname: Zong-Liang orcidid: 0000-0003-2519-924X surname: Li fullname: Li, Zong-Liang organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 5 givenname: Chuan-Kui surname: Wang fullname: Wang, Chuan-Kui organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 6 givenname: Minglang orcidid: 0000-0003-0637-4671 surname: Wang fullname: Wang, Minglang organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37039540$$D View this record in MEDLINE/PubMed |
BookMark | eNptkFtLAzEQhYNU7EVf_AGSZ2E12ewtvkmrtlCwYN-XXCYS2c0uSYr4712ttSA-zcCc73DmTNHIdQ4QuqTkhhLGbxfpfENyWmTLEzShWcESTqps9LuXxRhNQ3gjhNCcsjM0ZuXA5RmZoNeVi-CNUFY0GBpQ0XfOKtz7rgcfLQQsIb4DOLyJL4BTLJzG6QK3EI-EhnCHBTbWh5j03jpl-2ZAg213jYi2c-fo1IgmwMXPnKHt48N2vkzWz0-r-f06UZyTpOJGFaLKlSJUlUYxrcBkArg2xGgjJWVMFwWXTOhCDGdeUpGRlJecSVlpNkNXe9t-J1vQ9ZClFf6jPjw8CMheoHwXggdTKxu_E0YvbFNTUn91Wh87HZDrP8jB9R_xJ5H7eGA |
CitedBy_id | crossref_primary_10_1021_acs_jpca_4c05203 crossref_primary_10_1016_j_apsusc_2024_160045 crossref_primary_10_1039_D4CP04328F crossref_primary_10_1039_D3CP04677J crossref_primary_10_1088_1361_648X_ad12ff |
Cites_doi | 10.1088/2053-1583/aa5147 10.1109/TED.2015.2433931 10.1088/2516-1075/ac635b 10.1038/s41699-017-0007-5 10.1021/nl304777e 10.1038/s41699-022-00311-x 10.1007/s12648-017-1028-9 10.1016/j.jmrt.2022.02.128 10.1021/nl403465v 10.1039/C7NR07779C 10.1002/lpor.202100594 10.1039/D0CP04450D 10.1088/2053-1583/aa75eb 10.1016/j.jssc.2020.121942 10.1126/science.1250140 10.1016/j.cocom.2019.e00375 10.1103/PhysRevLett.108.196802 10.1103/PhysRevLett.77.3865 10.1063/1.5113188 10.1088/1361-6463/aabf30 10.1016/j.physb.2019.411792 10.1021/acs.jpcc.1c03286 10.1002/er.7889 10.1002/advs.202201272 10.1016/j.comptc.2021.113586 10.1038/s41427-018-0035-4 10.1021/nl303583v 10.1002/inf2.12013 10.1007/s12274-017-1895-6 10.1002/adma.201604230 10.3390/ma9090716 10.1002/adfm.201705970 10.1038/s41586-021-04323-3 10.1103/PhysRevB.63.245407 10.1016/j.physb.2022.414517 10.1088/1674-1056/ac4cbf 10.1007/s10853-020-04866-2 10.1016/j.ijhydene.2022.06.188 10.1021/acsanm.9b00290 10.1016/j.jssc.2020.121178 10.1126/science.1102896 10.1016/j.chemphys.2022.111652 10.1155/2022/3487853 10.1021/acs.nanolett.5b00964 10.1002/adma.202203332 10.1039/D0CP02663H 10.1021/acsanm.9b01375 10.1002/er.6129 10.1039/C8CP04615H 10.1080/14786435.2021.1917783 10.1016/j.apsusc.2017.07.198 10.1021/acs.jpcc.1c09500 10.1002/qua.26538 10.1039/C5NR06204G 10.1039/C9MH01020C 10.1088/1674-1056/aba277 10.1038/nnano.2014.150 10.1016/j.apsusc.2021.150386 10.1021/acsaelm.1c01221 10.1002/er.5071 10.1039/D2CP04117K 10.1002/admi.202201166 10.1038/nnano.2016.242 10.1039/C3NR06072A 10.1038/s41598-021-95088-2 10.1063/1.4943267 10.1088/2053-1591/abcfde 10.1016/j.physe.2022.115224 10.1039/D2TA01932A 10.1021/acsami.0c17810 10.1021/acs.chemmater.5b04899 10.1063/5.0020400 10.1038/nnano.2012.193 10.1021/acs.jpclett.8b00266 10.1039/C9TA01393H 10.1021/acs.nanolett.1c04522 10.1021/acsami.8b06427 10.1021/acsaelm.2c00552 10.1002/qua.26216 10.1016/S0010-4655(98)00201-X |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM |
DOI | 10.1039/D2CP05164H |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 11554 |
ExternalDocumentID | 37039540 10_1039_D2CP05164H |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 123 29O 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- P2P R56 R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 YNT -JG AGSTE NPM OK1 UCJ |
ID | FETCH-LOGICAL-c990-89fc6a85cc01c7fc3dcef4ae9df0fdfbb133d669b3ad6ac3d971a4029793bb8d3 |
ISSN | 1463-9076 |
IngestDate | Wed Feb 19 02:23:42 EST 2025 Tue Jul 01 00:54:29 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c990-89fc6a85cc01c7fc3dcef4ae9df0fdfbb133d669b3ad6ac3d971a4029793bb8d3 |
ORCID | 0000-0003-0637-4671 0000-0003-2519-924X 0000-0001-7928-4146 0000-0002-7790-3633 |
PMID | 37039540 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_37039540 crossref_citationtrail_10_1039_D2CP05164H crossref_primary_10_1039_D2CP05164H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-26 2023-Apr-26 |
PublicationDateYYYYMMDD | 2023-04-26 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2023 |
References | Das (D2CP05164H/cit18/1) 2013; 13 Ahmad (D2CP05164H/cit33/1) 2022; 47 Sofi (D2CP05164H/cit55/1) 2020 Li (D2CP05164H/cit17/1) 2018; 11 Liu (D2CP05164H/cit65/1) 2021; 125 Taylor (D2CP05164H/cit79/1) 2001; 63 Pan (D2CP05164H/cit46/1) 2016; 28 Wang (D2CP05164H/cit38/1) 2022; 1209 Pan (D2CP05164H/cit66/1) 2020; 55 Cui (D2CP05164H/cit34/1) 2022; 18 Wang (D2CP05164H/cit67/1) 2022; 4 John (D2CP05164H/cit75/1) 1996; 77 Wang (D2CP05164H/cit15/1) 2018; 10 Lee (D2CP05164H/cit19/1) 2014; 9 Wang (D2CP05164H/cit76/1) 2020; 29 Wang (D2CP05164H/cit81/1) 2015; 15 Sofi (D2CP05164H/cit58/1) 2020; 577 Liu (D2CP05164H/cit71/1) 2022; 24 Shi (D2CP05164H/cit13/1) 2018; 20 Jin (D2CP05164H/cit44/1) 2017; 4 Wang (D2CP05164H/cit47/1) 2016; 8 Sofi (D2CP05164H/cit57/1) 2020; 7 Sofi (D2CP05164H/cit62/1) 2020; 2265 Chanana (D2CP05164H/cit83/1) 2016; 108 Akhtar (D2CP05164H/cit1/1) 2017; 1 Sofi (D2CP05164H/cit53/1) 2020; 45 Meng (D2CP05164H/cit80/1) 2018; 51 Mak (D2CP05164H/cit22/1) 2014; 344 Wang (D2CP05164H/cit78/1) 2022; 140 Wu (D2CP05164H/cit25/1) 2022; 603 Dong (D2CP05164H/cit70/1) 2022; 9 Zhao (D2CP05164H/cit6/1) 2020; 7 Kang (D2CP05164H/cit45/1) 2014; 4 Jiang (D2CP05164H/cit28/1) 2019; 1 Bandurin (D2CP05164H/cit16/1) 2017; 12 El Sachat (D2CP05164H/cit35/1) 2022; 6 Sofi (D2CP05164H/cit60/1) 2021; 101 Cheng (D2CP05164H/cit11/1) 2022; 22 Lu (D2CP05164H/cit21/1) 2014; 6 Zeng (D2CP05164H/cit30/1) 2018; 28 Fuchs (D2CP05164H/cit74/1) 1999; 119 Huang (D2CP05164H/cit27/1) 2016; 9 Zou (D2CP05164H/cit69/1) 2020; 22 Liu (D2CP05164H/cit20/1) 2013; 13 Zeng (D2CP05164H/cit29/1) 2018; 10 Zhao (D2CP05164H/cit41/1) 2022; 562 Dong (D2CP05164H/cit42/1) 2021; 564 Sofi (D2CP05164H/cit59/1) 2021; 296 Kim (D2CP05164H/cit37/1) 2022; 126 Sofi (D2CP05164H/cit50/1) 2023; 650 Zhou (D2CP05164H/cit7/1) 2017; 10 Sofi (D2CP05164H/cit51/1) 2019; 44 Zhang (D2CP05164H/cit31/1) 2018; 9 Kaur (D2CP05164H/cit10/1) 2022; 4 Sofi (D2CP05164H/cit63/1) 2019; 19 Rebecca Florance (D2CP05164H/cit5/1) 2022; 2022 Zhang (D2CP05164H/cit40/1) 2022; 4 Wani (D2CP05164H/cit8/1) 2022; 46 Smidstrup (D2CP05164H/cit72/1) 2020; 32 Zhao (D2CP05164H/cit32/1) 2017; 29 Das (D2CP05164H/cit26/1) 2021; 13 Novoselov (D2CP05164H/cit4/1) 2004; 306 Xiao (D2CP05164H/cit24/1) 2012; 108 Vishnoi (D2CP05164H/cit14/1) 2022; 10 Kempt (D2CP05164H/cit36/1) 2022; 9 Wang (D2CP05164H/cit77/1) 2022; 31 Chanana (D2CP05164H/cit82/1) 2015; 62 Zhang (D2CP05164H/cit68/1) 2019; 2 Wang (D2CP05164H/cit39/1) 2022; 16 Sofi (D2CP05164H/cit61/1) 2019; 2115 Kaur (D2CP05164H/cit9/1) 2019; 7 Wang (D2CP05164H/cit23/1) 2012; 7 Sofi (D2CP05164H/cit56/1) 2020; 284 Xu (D2CP05164H/cit48/1) 2019; 2 Kaur (D2CP05164H/cit64/1) 2017; 91 Liu (D2CP05164H/cit12/1) 2022; 34 Isacsson (D2CP05164H/cit2/1) 2016; 4 Dong (D2CP05164H/cit43/1) 2020; 22 Sofi (D2CP05164H/cit52/1) 2020; 121 Bhat (D2CP05164H/cit49/1) 2021; 11 Gong (D2CP05164H/cit84/1) 2014; 14 Sofi (D2CP05164H/cit54/1) 2020; 120 Ma (D2CP05164H/cit3/1) 2017; 426 |
References_xml | – volume: 4 start-page: 012002 year: 2016 ident: D2CP05164H/cit2/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa5147 – volume: 62 start-page: 2346 year: 2015 ident: D2CP05164H/cit82/1 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2015.2433931 – volume: 4 start-page: 023001 year: 2022 ident: D2CP05164H/cit10/1 publication-title: Electron. Struct. doi: 10.1088/2516-1075/ac635b – volume: 1 start-page: 1 year: 2017 ident: D2CP05164H/cit1/1 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-017-0007-5 – volume: 13 start-page: 1983 year: 2013 ident: D2CP05164H/cit20/1 publication-title: Nano Lett. doi: 10.1021/nl304777e – volume: 6 start-page: 1 year: 2022 ident: D2CP05164H/cit35/1 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-022-00311-x – volume: 91 start-page: 1305 year: 2017 ident: D2CP05164H/cit64/1 publication-title: Indian J. Phys. doi: 10.1007/s12648-017-1028-9 – volume: 18 start-page: 629 year: 2022 ident: D2CP05164H/cit34/1 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.02.128 – volume: 14 start-page: 1714 year: 2014 ident: D2CP05164H/cit84/1 publication-title: Nano Lett. doi: 10.1021/nl403465v – volume: 10 start-page: 480 year: 2017 ident: D2CP05164H/cit7/1 publication-title: Nanoscale doi: 10.1039/C7NR07779C – volume: 16 start-page: 2100594 year: 2022 ident: D2CP05164H/cit39/1 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202100594 – volume: 22 start-page: 28074 year: 2020 ident: D2CP05164H/cit43/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP04450D – volume: 4 start-page: 025116 year: 2017 ident: D2CP05164H/cit44/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa75eb – volume: 296 start-page: 121942 year: 2021 ident: D2CP05164H/cit59/1 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2020.121942 – volume: 344 start-page: 1489 year: 2014 ident: D2CP05164H/cit22/1 publication-title: Science doi: 10.1126/science.1250140 – start-page: 105330 volume-title: AIP. Adv. year: 2020 ident: D2CP05164H/cit55/1 – volume: 19 start-page: 00375 year: 2019 ident: D2CP05164H/cit63/1 publication-title: Comput. Condensed Matter doi: 10.1016/j.cocom.2019.e00375 – volume: 108 start-page: 196802 year: 2012 ident: D2CP05164H/cit24/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.196802 – volume: 77 start-page: 3865 year: 1996 ident: D2CP05164H/cit75/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 2115 start-page: 030349 year: 2019 ident: D2CP05164H/cit61/1 publication-title: AIP Conf. Proc. doi: 10.1063/1.5113188 – volume: 51 start-page: 225007 year: 2018 ident: D2CP05164H/cit80/1 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aabf30 – volume: 577 start-page: 411792 year: 2020 ident: D2CP05164H/cit58/1 publication-title: Physica B doi: 10.1016/j.physb.2019.411792 – volume: 125 start-page: 16200 year: 2021 ident: D2CP05164H/cit65/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c03286 – volume: 46 start-page: 10885 year: 2022 ident: D2CP05164H/cit8/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.7889 – volume: 9 start-page: e2201272 year: 2022 ident: D2CP05164H/cit36/1 publication-title: Adv. Sci. doi: 10.1002/advs.202201272 – volume: 1209 start-page: 113586 year: 2022 ident: D2CP05164H/cit38/1 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2021.113586 – volume: 10 start-page: 352 year: 2018 ident: D2CP05164H/cit29/1 publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0035-4 – volume: 13 start-page: 100 year: 2013 ident: D2CP05164H/cit18/1 publication-title: Nano Lett. doi: 10.1021/nl303583v – volume: 1 start-page: 260 year: 2019 ident: D2CP05164H/cit28/1 publication-title: InfoMat doi: 10.1002/inf2.12013 – volume: 11 start-page: 2658 year: 2018 ident: D2CP05164H/cit17/1 publication-title: Nano Res. doi: 10.1007/s12274-017-1895-6 – volume: 29 start-page: 1604230 year: 2017 ident: D2CP05164H/cit32/1 publication-title: Adv. Mater. doi: 10.1002/adma.201604230 – volume: 9 start-page: 716 year: 2016 ident: D2CP05164H/cit27/1 publication-title: Materials doi: 10.3390/ma9090716 – volume: 28 start-page: 1705970 year: 2018 ident: D2CP05164H/cit30/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705970 – volume: 603 start-page: 259 year: 2022 ident: D2CP05164H/cit25/1 publication-title: Nature doi: 10.1038/s41586-021-04323-3 – volume: 63 start-page: 245407 year: 2001 ident: D2CP05164H/cit79/1 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.63.245407 – volume: 650 start-page: 414517 year: 2023 ident: D2CP05164H/cit50/1 publication-title: Physica B doi: 10.1016/j.physb.2022.414517 – volume: 31 start-page: 077303 year: 2022 ident: D2CP05164H/cit77/1 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac4cbf – volume: 55 start-page: 11439 year: 2020 ident: D2CP05164H/cit66/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04866-2 – volume: 47 start-page: 28833 year: 2022 ident: D2CP05164H/cit33/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.188 – volume: 2 start-page: 2796 year: 2019 ident: D2CP05164H/cit68/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00290 – volume: 284 start-page: 121178 year: 2020 ident: D2CP05164H/cit56/1 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2020.121178 – volume: 306 start-page: 666 year: 2004 ident: D2CP05164H/cit4/1 publication-title: Science doi: 10.1126/science.1102896 – volume: 562 start-page: 111652 year: 2022 ident: D2CP05164H/cit41/1 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2022.111652 – volume: 2022 start-page: 1 year: 2022 ident: D2CP05164H/cit5/1 publication-title: J. Nanomater. doi: 10.1155/2022/3487853 – volume: 15 start-page: 4013 year: 2015 ident: D2CP05164H/cit81/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00964 – volume: 34 start-page: e2203332 year: 2022 ident: D2CP05164H/cit12/1 publication-title: Adv. Mater. doi: 10.1002/adma.202203332 – volume: 22 start-page: 19202 year: 2020 ident: D2CP05164H/cit69/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP02663H – volume: 2 start-page: 6898 year: 2019 ident: D2CP05164H/cit48/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01375 – volume: 45 start-page: 4652 year: 2020 ident: D2CP05164H/cit53/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.6129 – volume: 20 start-page: 24641 year: 2018 ident: D2CP05164H/cit13/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04615H – volume: 101 start-page: 1654 year: 2021 ident: D2CP05164H/cit60/1 publication-title: Philos. Mag. doi: 10.1080/14786435.2021.1917783 – volume: 426 start-page: 244 year: 2017 ident: D2CP05164H/cit3/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.198 – volume: 126 start-page: 4150 year: 2022 ident: D2CP05164H/cit37/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c09500 – volume: 121 start-page: 26538 year: 2020 ident: D2CP05164H/cit52/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.26538 – volume: 8 start-page: 1179 year: 2016 ident: D2CP05164H/cit47/1 publication-title: Nanoscale doi: 10.1039/C5NR06204G – volume: 7 start-page: 252 year: 2020 ident: D2CP05164H/cit6/1 publication-title: Mater. Horiz. doi: 10.1039/C9MH01020C – volume: 29 start-page: 113101 year: 2020 ident: D2CP05164H/cit76/1 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/aba277 – volume: 9 start-page: 676 year: 2014 ident: D2CP05164H/cit19/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.150 – volume: 4 start-page: 031005 year: 2014 ident: D2CP05164H/cit45/1 publication-title: Phys. Rev. X – volume: 564 start-page: 150386 year: 2021 ident: D2CP05164H/cit42/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150386 – volume: 4 start-page: 1082 year: 2022 ident: D2CP05164H/cit67/1 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.1c01221 – volume: 44 start-page: 2137 year: 2019 ident: D2CP05164H/cit51/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.5071 – volume: 24 start-page: 29057 year: 2022 ident: D2CP05164H/cit71/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP04117K – volume: 9 start-page: 2201166 year: 2022 ident: D2CP05164H/cit70/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202201166 – volume: 12 start-page: 223 year: 2017 ident: D2CP05164H/cit16/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.242 – volume: 6 start-page: 2879 year: 2014 ident: D2CP05164H/cit21/1 publication-title: Nanoscale doi: 10.1039/C3NR06072A – volume: 11 start-page: 16473 year: 2021 ident: D2CP05164H/cit49/1 publication-title: Sci. Rep. doi: 10.1038/s41598-021-95088-2 – volume: 108 start-page: 103107 year: 2016 ident: D2CP05164H/cit83/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4943267 – volume: 7 start-page: 125701 year: 2020 ident: D2CP05164H/cit57/1 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/abcfde – volume: 140 start-page: 115224 year: 2022 ident: D2CP05164H/cit78/1 publication-title: Phys. E doi: 10.1016/j.physe.2022.115224 – volume: 10 start-page: 19534 year: 2022 ident: D2CP05164H/cit14/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01932A – volume: 13 start-page: 1861 year: 2021 ident: D2CP05164H/cit26/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c17810 – volume: 28 start-page: 2100 year: 2016 ident: D2CP05164H/cit46/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04899 – volume: 2265 start-page: 030346 year: 2020 ident: D2CP05164H/cit62/1 publication-title: AIP Conf. Proc. doi: 10.1063/5.0020400 – volume: 32 start-page: 015901 year: 2020 ident: D2CP05164H/cit72/1 publication-title: J. Phys.: Condens. Matter – volume: 7 start-page: 699 year: 2012 ident: D2CP05164H/cit23/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 9 start-page: 1185 year: 2018 ident: D2CP05164H/cit31/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00266 – volume: 7 start-page: 12604 year: 2019 ident: D2CP05164H/cit9/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01393H – volume: 22 start-page: 2270 year: 2022 ident: D2CP05164H/cit11/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04522 – volume: 10 start-page: 23344 year: 2018 ident: D2CP05164H/cit15/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06427 – volume: 4 start-page: 5177 year: 2022 ident: D2CP05164H/cit40/1 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c00552 – volume: 120 start-page: 26216 year: 2020 ident: D2CP05164H/cit54/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.26216 – volume: 119 start-page: 67 year: 1999 ident: D2CP05164H/cit74/1 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(98)00201-X |
SSID | ssj0001513 |
Score | 2.4123633 |
Snippet | Monolayer (ML) PtSe
2
is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for... Monolayer (ML) PtSe is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 11545 |
Title | Interfacial electronic properties between PtSe 2 and 2D metal electrodes: a first-principles simulation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37039540 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4puND1mCC5oCTZ7jxdymdKiggSIRRMWlchy7igRZtbaH8Q_xb_Icx0m29TC4RNGrHSl5v_o9__w-CHnNipIZNLxBwrkMGNc8SLSWgSmN0dZfBrC5w5-_8Nk39mkez0ejP4Oope2meKt-78wr-R-togz1arNk_0Gz3UNRgPeoX7yihvF6Ix03dJ6RDes96GezsgT7ua2U2oVhZZuvlmm1LHk0tW2j-xmli4qTh6ZCTzBYefZ9fbiufrXNvYYubOY1q3yvOHdnRY4nWTc8Q5amXe5YXjmedV7VF9sOSh1Z_V3XRlfXxAjfehlk3rjasKEm9uDHGYpP8ZHLIWcRgT1-cYnx7TLLOAS4LW-LYA9lrmGcX5tdUrTH4HCltWWE4oHZDq1jtNMmTMCWVJ1GaYYLEGez3vL50_4rBrELU2wO6EEs-rm3yF6E-5FoTPaOT_KPp53RR8cJXCKbezFfCRfEu372Jd_n0i6m8Wbye-Ruuw2hxw5T98lI1w_I7dRr9CFZDrBFe2zRHlu0xRa12KIRRWzRaEobbNEeW--ppFeRRXtkPSL5h5M8nQVtU45ACVt1QBjFZRIrNQnVkVFQKm2Y1KI0E_x_F0UIUHIuCpAll_izOAolsx3SBBRFUsJjMq7Pav2UUBYrLmKIQgmCGaWSSMqJAPTfIeGsMPvkjf9aC9UWrLd9U34urutln7zqxq5cmZado564j96NATR4AjctBzea_4zc6dH8nIw351v9An3STfGyxcNfOxiNfA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+electronic+properties+between+PtSe+2+and+2D+metal+electrodes%3A+a+first-principles+simulation&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Tian%2C+Xinyue&rft.au=Zhang%2C+Wenfei&rft.au=Zhang%2C+Guang-Ping&rft.au=Li%2C+Zong-Liang&rft.date=2023-04-26&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=25&rft.issue=16&rft.spage=11545&rft.epage=11554&rft_id=info:doi/10.1039%2FD2CP05164H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CP05164H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |