Interfacial electronic properties between PtSe 2 and 2D metal electrodes: a first-principles simulation

Monolayer (ML) PtSe 2 is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe 2 field effect transistors (FETs). In this...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 25; no. 16; pp. 11545 - 11554
Main Authors Tian, Xinyue, Zhang, Wenfei, Zhang, Guang-Ping, Li, Zong-Liang, Wang, Chuan-Kui, Wang, Minglang
Format Journal Article
LanguageEnglish
Published England 26.04.2023
Online AccessGet full text

Cover

Loading…
Abstract Monolayer (ML) PtSe 2 is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe 2 field effect transistors (FETs). In this study, a series of 2D metals, transition metal dichalcogenides (NbSe 2 , TaS 2 ), borophene, and MXenes (V 2 C(OH) 2 , V 2 CF 2 , Nb 2 C(OH) 2 , Nb 2 CF 2 , Nb 2 CO 2 , Hf 2 C(OH) 2 , Hf 2 CF 2 ) were used as electrodes for FET fabrication. The interfacial electronic properties of electrodes and PtSe 2 were studied in both the vertical and lateral directions using the ab initio method. In the vertical direction, PtSe 2 formed ohmic contacts with most of the 2D metals except for Nb 2 CF 2 and Hf 2 CF 2 . Specifically, in the cases of Nb 2 CF 2 and Hf 2 CF 2 , p- and n-type Schottky contacts were formed with Schottky barrier heights (SBHs) of 0.48 eV and 0.02 eV, respectively. In the lateral direction, PtSe 2 with contacting Hf 2 CF 2 and V 2 C(OH) 2 electrodes formed n-type Schottky contacts with SBHs of 0.14 eV and 0.09 eV, respectively. In the cases of TaS 2 and Nb 2 CF 2 electrodes, p-type Schottky contacts with SBHs of 0.35 eV and 0.29 eV, respectively, were formed. Moreover, n-type ohmic contacts were observed when Hf 2 C(OH) 2 and Nb 2 C(OH) 2 electrodes were applied, and p-type ohmic contacts were formed when borophene, NbSe 2 , Nb 2 CO 2 , and V 2 CF 2 electrodes were used. This work reports a systematic investigation of ML PtSe 2 -2D metal interfaces and serves as a practical guide for selecting electrode materials for PtSe 2 FETs.
AbstractList Monolayer (ML) PtSe is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe field effect transistors (FETs). In this study, a series of 2D metals, transition metal dichalcogenides (NbSe , TaS ), borophene, and MXenes (V C(OH) , V CF , Nb C(OH) , Nb CF , Nb CO , Hf C(OH) , Hf CF ) were used as electrodes for FET fabrication. The interfacial electronic properties of electrodes and PtSe were studied in both the vertical and lateral directions using the method. In the vertical direction, PtSe formed ohmic contacts with most of the 2D metals except for Nb CF and Hf CF . Specifically, in the cases of Nb CF and Hf CF , p- and n-type Schottky contacts were formed with Schottky barrier heights (SBHs) of 0.48 eV and 0.02 eV, respectively. In the lateral direction, PtSe with contacting Hf CF and V C(OH) electrodes formed n-type Schottky contacts with SBHs of 0.14 eV and 0.09 eV, respectively. In the cases of TaS and Nb CF electrodes, p-type Schottky contacts with SBHs of 0.35 eV and 0.29 eV, respectively, were formed. Moreover, n-type ohmic contacts were observed when Hf C(OH) and Nb C(OH) electrodes were applied, and p-type ohmic contacts were formed when borophene, NbSe , Nb CO , and V CF electrodes were used. This work reports a systematic investigation of ML PtSe -2D metal interfaces and serves as a practical guide for selecting electrode materials for PtSe FETs.
Monolayer (ML) PtSe 2 is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe 2 field effect transistors (FETs). In this study, a series of 2D metals, transition metal dichalcogenides (NbSe 2 , TaS 2 ), borophene, and MXenes (V 2 C(OH) 2 , V 2 CF 2 , Nb 2 C(OH) 2 , Nb 2 CF 2 , Nb 2 CO 2 , Hf 2 C(OH) 2 , Hf 2 CF 2 ) were used as electrodes for FET fabrication. The interfacial electronic properties of electrodes and PtSe 2 were studied in both the vertical and lateral directions using the ab initio method. In the vertical direction, PtSe 2 formed ohmic contacts with most of the 2D metals except for Nb 2 CF 2 and Hf 2 CF 2 . Specifically, in the cases of Nb 2 CF 2 and Hf 2 CF 2 , p- and n-type Schottky contacts were formed with Schottky barrier heights (SBHs) of 0.48 eV and 0.02 eV, respectively. In the lateral direction, PtSe 2 with contacting Hf 2 CF 2 and V 2 C(OH) 2 electrodes formed n-type Schottky contacts with SBHs of 0.14 eV and 0.09 eV, respectively. In the cases of TaS 2 and Nb 2 CF 2 electrodes, p-type Schottky contacts with SBHs of 0.35 eV and 0.29 eV, respectively, were formed. Moreover, n-type ohmic contacts were observed when Hf 2 C(OH) 2 and Nb 2 C(OH) 2 electrodes were applied, and p-type ohmic contacts were formed when borophene, NbSe 2 , Nb 2 CO 2 , and V 2 CF 2 electrodes were used. This work reports a systematic investigation of ML PtSe 2 -2D metal interfaces and serves as a practical guide for selecting electrode materials for PtSe 2 FETs.
Author Li, Zong-Liang
Zhang, Guang-Ping
Wang, Chuan-Kui
Zhang, Wenfei
Wang, Minglang
Tian, Xinyue
Author_xml – sequence: 1
  givenname: Xinyue
  orcidid: 0000-0002-7790-3633
  surname: Tian
  fullname: Tian, Xinyue
  organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 2
  givenname: Wenfei
  surname: Zhang
  fullname: Zhang, Wenfei
  organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 3
  givenname: Guang-Ping
  orcidid: 0000-0001-7928-4146
  surname: Zhang
  fullname: Zhang, Guang-Ping
  organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 4
  givenname: Zong-Liang
  orcidid: 0000-0003-2519-924X
  surname: Li
  fullname: Li, Zong-Liang
  organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 5
  givenname: Chuan-Kui
  surname: Wang
  fullname: Wang, Chuan-Kui
  organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 6
  givenname: Minglang
  orcidid: 0000-0003-0637-4671
  surname: Wang
  fullname: Wang, Minglang
  organization: Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37039540$$D View this record in MEDLINE/PubMed
BookMark eNptkFtLAzEQhYNU7EVf_AGSZ2E12ewtvkmrtlCwYN-XXCYS2c0uSYr4712ttSA-zcCc73DmTNHIdQ4QuqTkhhLGbxfpfENyWmTLEzShWcESTqps9LuXxRhNQ3gjhNCcsjM0ZuXA5RmZoNeVi-CNUFY0GBpQ0XfOKtz7rgcfLQQsIb4DOLyJL4BTLJzG6QK3EI-EhnCHBTbWh5j03jpl-2ZAg213jYi2c-fo1IgmwMXPnKHt48N2vkzWz0-r-f06UZyTpOJGFaLKlSJUlUYxrcBkArg2xGgjJWVMFwWXTOhCDGdeUpGRlJecSVlpNkNXe9t-J1vQ9ZClFf6jPjw8CMheoHwXggdTKxu_E0YvbFNTUn91Wh87HZDrP8jB9R_xJ5H7eGA
CitedBy_id crossref_primary_10_1021_acs_jpca_4c05203
crossref_primary_10_1016_j_apsusc_2024_160045
crossref_primary_10_1039_D4CP04328F
crossref_primary_10_1039_D3CP04677J
crossref_primary_10_1088_1361_648X_ad12ff
Cites_doi 10.1088/2053-1583/aa5147
10.1109/TED.2015.2433931
10.1088/2516-1075/ac635b
10.1038/s41699-017-0007-5
10.1021/nl304777e
10.1038/s41699-022-00311-x
10.1007/s12648-017-1028-9
10.1016/j.jmrt.2022.02.128
10.1021/nl403465v
10.1039/C7NR07779C
10.1002/lpor.202100594
10.1039/D0CP04450D
10.1088/2053-1583/aa75eb
10.1016/j.jssc.2020.121942
10.1126/science.1250140
10.1016/j.cocom.2019.e00375
10.1103/PhysRevLett.108.196802
10.1103/PhysRevLett.77.3865
10.1063/1.5113188
10.1088/1361-6463/aabf30
10.1016/j.physb.2019.411792
10.1021/acs.jpcc.1c03286
10.1002/er.7889
10.1002/advs.202201272
10.1016/j.comptc.2021.113586
10.1038/s41427-018-0035-4
10.1021/nl303583v
10.1002/inf2.12013
10.1007/s12274-017-1895-6
10.1002/adma.201604230
10.3390/ma9090716
10.1002/adfm.201705970
10.1038/s41586-021-04323-3
10.1103/PhysRevB.63.245407
10.1016/j.physb.2022.414517
10.1088/1674-1056/ac4cbf
10.1007/s10853-020-04866-2
10.1016/j.ijhydene.2022.06.188
10.1021/acsanm.9b00290
10.1016/j.jssc.2020.121178
10.1126/science.1102896
10.1016/j.chemphys.2022.111652
10.1155/2022/3487853
10.1021/acs.nanolett.5b00964
10.1002/adma.202203332
10.1039/D0CP02663H
10.1021/acsanm.9b01375
10.1002/er.6129
10.1039/C8CP04615H
10.1080/14786435.2021.1917783
10.1016/j.apsusc.2017.07.198
10.1021/acs.jpcc.1c09500
10.1002/qua.26538
10.1039/C5NR06204G
10.1039/C9MH01020C
10.1088/1674-1056/aba277
10.1038/nnano.2014.150
10.1016/j.apsusc.2021.150386
10.1021/acsaelm.1c01221
10.1002/er.5071
10.1039/D2CP04117K
10.1002/admi.202201166
10.1038/nnano.2016.242
10.1039/C3NR06072A
10.1038/s41598-021-95088-2
10.1063/1.4943267
10.1088/2053-1591/abcfde
10.1016/j.physe.2022.115224
10.1039/D2TA01932A
10.1021/acsami.0c17810
10.1021/acs.chemmater.5b04899
10.1063/5.0020400
10.1038/nnano.2012.193
10.1021/acs.jpclett.8b00266
10.1039/C9TA01393H
10.1021/acs.nanolett.1c04522
10.1021/acsami.8b06427
10.1021/acsaelm.2c00552
10.1002/qua.26216
10.1016/S0010-4655(98)00201-X
ContentType Journal Article
DBID AAYXX
CITATION
NPM
DOI 10.1039/D2CP05164H
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 11554
ExternalDocumentID 37039540
10_1039_D2CP05164H
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
123
29O
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
YNT
-JG
AGSTE
NPM
OK1
UCJ
ID FETCH-LOGICAL-c990-89fc6a85cc01c7fc3dcef4ae9df0fdfbb133d669b3ad6ac3d971a4029793bb8d3
ISSN 1463-9076
IngestDate Wed Feb 19 02:23:42 EST 2025
Tue Jul 01 00:54:29 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c990-89fc6a85cc01c7fc3dcef4ae9df0fdfbb133d669b3ad6ac3d971a4029793bb8d3
ORCID 0000-0003-0637-4671
0000-0003-2519-924X
0000-0001-7928-4146
0000-0002-7790-3633
PMID 37039540
PageCount 10
ParticipantIDs pubmed_primary_37039540
crossref_citationtrail_10_1039_D2CP05164H
crossref_primary_10_1039_D2CP05164H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-26
2023-Apr-26
PublicationDateYYYYMMDD 2023-04-26
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-26
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2023
References Das (D2CP05164H/cit18/1) 2013; 13
Ahmad (D2CP05164H/cit33/1) 2022; 47
Sofi (D2CP05164H/cit55/1) 2020
Li (D2CP05164H/cit17/1) 2018; 11
Liu (D2CP05164H/cit65/1) 2021; 125
Taylor (D2CP05164H/cit79/1) 2001; 63
Pan (D2CP05164H/cit46/1) 2016; 28
Wang (D2CP05164H/cit38/1) 2022; 1209
Pan (D2CP05164H/cit66/1) 2020; 55
Cui (D2CP05164H/cit34/1) 2022; 18
Wang (D2CP05164H/cit67/1) 2022; 4
John (D2CP05164H/cit75/1) 1996; 77
Wang (D2CP05164H/cit15/1) 2018; 10
Lee (D2CP05164H/cit19/1) 2014; 9
Wang (D2CP05164H/cit76/1) 2020; 29
Wang (D2CP05164H/cit81/1) 2015; 15
Sofi (D2CP05164H/cit58/1) 2020; 577
Liu (D2CP05164H/cit71/1) 2022; 24
Shi (D2CP05164H/cit13/1) 2018; 20
Jin (D2CP05164H/cit44/1) 2017; 4
Wang (D2CP05164H/cit47/1) 2016; 8
Sofi (D2CP05164H/cit57/1) 2020; 7
Sofi (D2CP05164H/cit62/1) 2020; 2265
Chanana (D2CP05164H/cit83/1) 2016; 108
Akhtar (D2CP05164H/cit1/1) 2017; 1
Sofi (D2CP05164H/cit53/1) 2020; 45
Meng (D2CP05164H/cit80/1) 2018; 51
Mak (D2CP05164H/cit22/1) 2014; 344
Wang (D2CP05164H/cit78/1) 2022; 140
Wu (D2CP05164H/cit25/1) 2022; 603
Dong (D2CP05164H/cit70/1) 2022; 9
Zhao (D2CP05164H/cit6/1) 2020; 7
Kang (D2CP05164H/cit45/1) 2014; 4
Jiang (D2CP05164H/cit28/1) 2019; 1
Bandurin (D2CP05164H/cit16/1) 2017; 12
El Sachat (D2CP05164H/cit35/1) 2022; 6
Sofi (D2CP05164H/cit60/1) 2021; 101
Cheng (D2CP05164H/cit11/1) 2022; 22
Lu (D2CP05164H/cit21/1) 2014; 6
Zeng (D2CP05164H/cit30/1) 2018; 28
Fuchs (D2CP05164H/cit74/1) 1999; 119
Huang (D2CP05164H/cit27/1) 2016; 9
Zou (D2CP05164H/cit69/1) 2020; 22
Liu (D2CP05164H/cit20/1) 2013; 13
Zeng (D2CP05164H/cit29/1) 2018; 10
Zhao (D2CP05164H/cit41/1) 2022; 562
Dong (D2CP05164H/cit42/1) 2021; 564
Sofi (D2CP05164H/cit59/1) 2021; 296
Kim (D2CP05164H/cit37/1) 2022; 126
Sofi (D2CP05164H/cit50/1) 2023; 650
Zhou (D2CP05164H/cit7/1) 2017; 10
Sofi (D2CP05164H/cit51/1) 2019; 44
Zhang (D2CP05164H/cit31/1) 2018; 9
Kaur (D2CP05164H/cit10/1) 2022; 4
Sofi (D2CP05164H/cit63/1) 2019; 19
Rebecca Florance (D2CP05164H/cit5/1) 2022; 2022
Zhang (D2CP05164H/cit40/1) 2022; 4
Wani (D2CP05164H/cit8/1) 2022; 46
Smidstrup (D2CP05164H/cit72/1) 2020; 32
Zhao (D2CP05164H/cit32/1) 2017; 29
Das (D2CP05164H/cit26/1) 2021; 13
Novoselov (D2CP05164H/cit4/1) 2004; 306
Xiao (D2CP05164H/cit24/1) 2012; 108
Vishnoi (D2CP05164H/cit14/1) 2022; 10
Kempt (D2CP05164H/cit36/1) 2022; 9
Wang (D2CP05164H/cit77/1) 2022; 31
Chanana (D2CP05164H/cit82/1) 2015; 62
Zhang (D2CP05164H/cit68/1) 2019; 2
Wang (D2CP05164H/cit39/1) 2022; 16
Sofi (D2CP05164H/cit61/1) 2019; 2115
Kaur (D2CP05164H/cit9/1) 2019; 7
Wang (D2CP05164H/cit23/1) 2012; 7
Sofi (D2CP05164H/cit56/1) 2020; 284
Xu (D2CP05164H/cit48/1) 2019; 2
Kaur (D2CP05164H/cit64/1) 2017; 91
Liu (D2CP05164H/cit12/1) 2022; 34
Isacsson (D2CP05164H/cit2/1) 2016; 4
Dong (D2CP05164H/cit43/1) 2020; 22
Sofi (D2CP05164H/cit52/1) 2020; 121
Bhat (D2CP05164H/cit49/1) 2021; 11
Gong (D2CP05164H/cit84/1) 2014; 14
Sofi (D2CP05164H/cit54/1) 2020; 120
Ma (D2CP05164H/cit3/1) 2017; 426
References_xml – volume: 4
  start-page: 012002
  year: 2016
  ident: D2CP05164H/cit2/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa5147
– volume: 62
  start-page: 2346
  year: 2015
  ident: D2CP05164H/cit82/1
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2015.2433931
– volume: 4
  start-page: 023001
  year: 2022
  ident: D2CP05164H/cit10/1
  publication-title: Electron. Struct.
  doi: 10.1088/2516-1075/ac635b
– volume: 1
  start-page: 1
  year: 2017
  ident: D2CP05164H/cit1/1
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-017-0007-5
– volume: 13
  start-page: 1983
  year: 2013
  ident: D2CP05164H/cit20/1
  publication-title: Nano Lett.
  doi: 10.1021/nl304777e
– volume: 6
  start-page: 1
  year: 2022
  ident: D2CP05164H/cit35/1
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-022-00311-x
– volume: 91
  start-page: 1305
  year: 2017
  ident: D2CP05164H/cit64/1
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-017-1028-9
– volume: 18
  start-page: 629
  year: 2022
  ident: D2CP05164H/cit34/1
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.02.128
– volume: 14
  start-page: 1714
  year: 2014
  ident: D2CP05164H/cit84/1
  publication-title: Nano Lett.
  doi: 10.1021/nl403465v
– volume: 10
  start-page: 480
  year: 2017
  ident: D2CP05164H/cit7/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR07779C
– volume: 16
  start-page: 2100594
  year: 2022
  ident: D2CP05164H/cit39/1
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.202100594
– volume: 22
  start-page: 28074
  year: 2020
  ident: D2CP05164H/cit43/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP04450D
– volume: 4
  start-page: 025116
  year: 2017
  ident: D2CP05164H/cit44/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa75eb
– volume: 296
  start-page: 121942
  year: 2021
  ident: D2CP05164H/cit59/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2020.121942
– volume: 344
  start-page: 1489
  year: 2014
  ident: D2CP05164H/cit22/1
  publication-title: Science
  doi: 10.1126/science.1250140
– start-page: 105330
  volume-title: AIP. Adv.
  year: 2020
  ident: D2CP05164H/cit55/1
– volume: 19
  start-page: 00375
  year: 2019
  ident: D2CP05164H/cit63/1
  publication-title: Comput. Condensed Matter
  doi: 10.1016/j.cocom.2019.e00375
– volume: 108
  start-page: 196802
  year: 2012
  ident: D2CP05164H/cit24/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.196802
– volume: 77
  start-page: 3865
  year: 1996
  ident: D2CP05164H/cit75/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 2115
  start-page: 030349
  year: 2019
  ident: D2CP05164H/cit61/1
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5113188
– volume: 51
  start-page: 225007
  year: 2018
  ident: D2CP05164H/cit80/1
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aabf30
– volume: 577
  start-page: 411792
  year: 2020
  ident: D2CP05164H/cit58/1
  publication-title: Physica B
  doi: 10.1016/j.physb.2019.411792
– volume: 125
  start-page: 16200
  year: 2021
  ident: D2CP05164H/cit65/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c03286
– volume: 46
  start-page: 10885
  year: 2022
  ident: D2CP05164H/cit8/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7889
– volume: 9
  start-page: e2201272
  year: 2022
  ident: D2CP05164H/cit36/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201272
– volume: 1209
  start-page: 113586
  year: 2022
  ident: D2CP05164H/cit38/1
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2021.113586
– volume: 10
  start-page: 352
  year: 2018
  ident: D2CP05164H/cit29/1
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0035-4
– volume: 13
  start-page: 100
  year: 2013
  ident: D2CP05164H/cit18/1
  publication-title: Nano Lett.
  doi: 10.1021/nl303583v
– volume: 1
  start-page: 260
  year: 2019
  ident: D2CP05164H/cit28/1
  publication-title: InfoMat
  doi: 10.1002/inf2.12013
– volume: 11
  start-page: 2658
  year: 2018
  ident: D2CP05164H/cit17/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1895-6
– volume: 29
  start-page: 1604230
  year: 2017
  ident: D2CP05164H/cit32/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604230
– volume: 9
  start-page: 716
  year: 2016
  ident: D2CP05164H/cit27/1
  publication-title: Materials
  doi: 10.3390/ma9090716
– volume: 28
  start-page: 1705970
  year: 2018
  ident: D2CP05164H/cit30/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705970
– volume: 603
  start-page: 259
  year: 2022
  ident: D2CP05164H/cit25/1
  publication-title: Nature
  doi: 10.1038/s41586-021-04323-3
– volume: 63
  start-page: 245407
  year: 2001
  ident: D2CP05164H/cit79/1
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.63.245407
– volume: 650
  start-page: 414517
  year: 2023
  ident: D2CP05164H/cit50/1
  publication-title: Physica B
  doi: 10.1016/j.physb.2022.414517
– volume: 31
  start-page: 077303
  year: 2022
  ident: D2CP05164H/cit77/1
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac4cbf
– volume: 55
  start-page: 11439
  year: 2020
  ident: D2CP05164H/cit66/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-04866-2
– volume: 47
  start-page: 28833
  year: 2022
  ident: D2CP05164H/cit33/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.188
– volume: 2
  start-page: 2796
  year: 2019
  ident: D2CP05164H/cit68/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00290
– volume: 284
  start-page: 121178
  year: 2020
  ident: D2CP05164H/cit56/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2020.121178
– volume: 306
  start-page: 666
  year: 2004
  ident: D2CP05164H/cit4/1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 562
  start-page: 111652
  year: 2022
  ident: D2CP05164H/cit41/1
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2022.111652
– volume: 2022
  start-page: 1
  year: 2022
  ident: D2CP05164H/cit5/1
  publication-title: J. Nanomater.
  doi: 10.1155/2022/3487853
– volume: 15
  start-page: 4013
  year: 2015
  ident: D2CP05164H/cit81/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00964
– volume: 34
  start-page: e2203332
  year: 2022
  ident: D2CP05164H/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203332
– volume: 22
  start-page: 19202
  year: 2020
  ident: D2CP05164H/cit69/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP02663H
– volume: 2
  start-page: 6898
  year: 2019
  ident: D2CP05164H/cit48/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01375
– volume: 45
  start-page: 4652
  year: 2020
  ident: D2CP05164H/cit53/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6129
– volume: 20
  start-page: 24641
  year: 2018
  ident: D2CP05164H/cit13/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP04615H
– volume: 101
  start-page: 1654
  year: 2021
  ident: D2CP05164H/cit60/1
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2021.1917783
– volume: 426
  start-page: 244
  year: 2017
  ident: D2CP05164H/cit3/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.198
– volume: 126
  start-page: 4150
  year: 2022
  ident: D2CP05164H/cit37/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c09500
– volume: 121
  start-page: 26538
  year: 2020
  ident: D2CP05164H/cit52/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.26538
– volume: 8
  start-page: 1179
  year: 2016
  ident: D2CP05164H/cit47/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR06204G
– volume: 7
  start-page: 252
  year: 2020
  ident: D2CP05164H/cit6/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01020C
– volume: 29
  start-page: 113101
  year: 2020
  ident: D2CP05164H/cit76/1
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/aba277
– volume: 9
  start-page: 676
  year: 2014
  ident: D2CP05164H/cit19/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.150
– volume: 4
  start-page: 031005
  year: 2014
  ident: D2CP05164H/cit45/1
  publication-title: Phys. Rev. X
– volume: 564
  start-page: 150386
  year: 2021
  ident: D2CP05164H/cit42/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150386
– volume: 4
  start-page: 1082
  year: 2022
  ident: D2CP05164H/cit67/1
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.1c01221
– volume: 44
  start-page: 2137
  year: 2019
  ident: D2CP05164H/cit51/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5071
– volume: 24
  start-page: 29057
  year: 2022
  ident: D2CP05164H/cit71/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP04117K
– volume: 9
  start-page: 2201166
  year: 2022
  ident: D2CP05164H/cit70/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202201166
– volume: 12
  start-page: 223
  year: 2017
  ident: D2CP05164H/cit16/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.242
– volume: 6
  start-page: 2879
  year: 2014
  ident: D2CP05164H/cit21/1
  publication-title: Nanoscale
  doi: 10.1039/C3NR06072A
– volume: 11
  start-page: 16473
  year: 2021
  ident: D2CP05164H/cit49/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-95088-2
– volume: 108
  start-page: 103107
  year: 2016
  ident: D2CP05164H/cit83/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4943267
– volume: 7
  start-page: 125701
  year: 2020
  ident: D2CP05164H/cit57/1
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/abcfde
– volume: 140
  start-page: 115224
  year: 2022
  ident: D2CP05164H/cit78/1
  publication-title: Phys. E
  doi: 10.1016/j.physe.2022.115224
– volume: 10
  start-page: 19534
  year: 2022
  ident: D2CP05164H/cit14/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01932A
– volume: 13
  start-page: 1861
  year: 2021
  ident: D2CP05164H/cit26/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17810
– volume: 28
  start-page: 2100
  year: 2016
  ident: D2CP05164H/cit46/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04899
– volume: 2265
  start-page: 030346
  year: 2020
  ident: D2CP05164H/cit62/1
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0020400
– volume: 32
  start-page: 015901
  year: 2020
  ident: D2CP05164H/cit72/1
  publication-title: J. Phys.: Condens. Matter
– volume: 7
  start-page: 699
  year: 2012
  ident: D2CP05164H/cit23/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 9
  start-page: 1185
  year: 2018
  ident: D2CP05164H/cit31/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00266
– volume: 7
  start-page: 12604
  year: 2019
  ident: D2CP05164H/cit9/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01393H
– volume: 22
  start-page: 2270
  year: 2022
  ident: D2CP05164H/cit11/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04522
– volume: 10
  start-page: 23344
  year: 2018
  ident: D2CP05164H/cit15/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06427
– volume: 4
  start-page: 5177
  year: 2022
  ident: D2CP05164H/cit40/1
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c00552
– volume: 120
  start-page: 26216
  year: 2020
  ident: D2CP05164H/cit54/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.26216
– volume: 119
  start-page: 67
  year: 1999
  ident: D2CP05164H/cit74/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(98)00201-X
SSID ssj0001513
Score 2.4123633
Snippet Monolayer (ML) PtSe 2 is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for...
Monolayer (ML) PtSe is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 11545
Title Interfacial electronic properties between PtSe 2 and 2D metal electrodes: a first-principles simulation
URI https://www.ncbi.nlm.nih.gov/pubmed/37039540
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4puND1mCC5oCTZ7jxdymdKiggSIRRMWlchy7igRZtbaH8Q_xb_Icx0m29TC4RNGrHSl5v_o9__w-CHnNipIZNLxBwrkMGNc8SLSWgSmN0dZfBrC5w5-_8Nk39mkez0ejP4Oope2meKt-78wr-R-togz1arNk_0Gz3UNRgPeoX7yihvF6Ix03dJ6RDes96GezsgT7ua2U2oVhZZuvlmm1LHk0tW2j-xmli4qTh6ZCTzBYefZ9fbiufrXNvYYubOY1q3yvOHdnRY4nWTc8Q5amXe5YXjmedV7VF9sOSh1Z_V3XRlfXxAjfehlk3rjasKEm9uDHGYpP8ZHLIWcRgT1-cYnx7TLLOAS4LW-LYA9lrmGcX5tdUrTH4HCltWWE4oHZDq1jtNMmTMCWVJ1GaYYLEGez3vL50_4rBrELU2wO6EEs-rm3yF6E-5FoTPaOT_KPp53RR8cJXCKbezFfCRfEu372Jd_n0i6m8Wbye-Ruuw2hxw5T98lI1w_I7dRr9CFZDrBFe2zRHlu0xRa12KIRRWzRaEobbNEeW--ppFeRRXtkPSL5h5M8nQVtU45ACVt1QBjFZRIrNQnVkVFQKm2Y1KI0E_x_F0UIUHIuCpAll_izOAolsx3SBBRFUsJjMq7Pav2UUBYrLmKIQgmCGaWSSMqJAPTfIeGsMPvkjf9aC9UWrLd9U34urutln7zqxq5cmZado564j96NATR4AjctBzea_4zc6dH8nIw351v9An3STfGyxcNfOxiNfA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+electronic+properties+between+PtSe+2+and+2D+metal+electrodes%3A+a+first-principles+simulation&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Tian%2C+Xinyue&rft.au=Zhang%2C+Wenfei&rft.au=Zhang%2C+Guang-Ping&rft.au=Li%2C+Zong-Liang&rft.date=2023-04-26&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=25&rft.issue=16&rft.spage=11545&rft.epage=11554&rft_id=info:doi/10.1039%2FD2CP05164H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CP05164H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon